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GENERALISATION OF A THEOREM IN THE THEORY OF
DIVERGENT SERIES

By G. H. HARDY.

[Received July 23rd, 1907.—Read November 14th, 1907.]

1. In a paper recently printed in these Proceedings* I proved the
following theorem! :—If

(1) "Zan is a series summable by Gesaro's method of mean values,

where sn =

tends to a finite limit as n tends to infinity ;

(2) /„ is a function of n which, together with its first and second
differences . , , , ,

Jn Jn+1 y Jn 4/»+l~r/n+2 J

is positive for all values of n;
then the series 2aw/TO is also summable.
Further, if fn is also a function of a variable x, and the condi-

tion (2) is satisfied throughout a certain interval of values of x, say (0, 1),
andf0 has a finite upper limit throughout this intervals then the series
2aw/» is uniformly summable throughout the interval: and if every fn is
a continuous function of x, the sum of the series is also a continuous
function of x.

I also stated (I.e., p. 267) that I had no doubt of the truth of an
obvious generalisation of this theorem. Suppose that the first of the
quantities , , ,

2 _

* Proc. London Math. Soc, Set. 2, Vol. 4, p. 247.
t L.c, p. 256.
I It is obvious that the same is true of /„.
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which tends to a limit as n tends to infinity, is s£. Then the series
may be said to be summable (Hk).*

Then it is natural to suppose that the theorem may be generalised by
supposing 2a» to be summable (Hk), and the k-\-l sets of differences

A/., A%, .... Afe+1/(l)

to be positive. But when I wrote my former paper I had not been able
to overcome the considerable algebraical difficulties which appeared to be
involved in the proof of this theorem.

On the other hand, the theorem which I had proved was not sufficient
to deal with all the interesting particular cases which actually arise when
we try to make applications of it (v. p. 264 of my former paper). I was
therefore led to consider in greater detail the most interesting particular
case, viz., that in which the/M's are such that Xanfn is convergent for all
points of (0, 1) except x = 0, and

lim fn= 1,

for all values of n\ and I obtained three theoremst which were sufficiently
general for the purposes of the applications which I had in view. Mr.
Bromwich then proved a more general theorem which included all these
theorems and also some very similar theorems arrived at independently,
for the case of k = 1, by Dr. C. N. Moore. I

It is mainly owing to suggestions derived from these latter investiga-
tions that I have since been able to prove a theorem which, so far as I
know, includes all the theorems which have been referred to. This
theorem stands to the generalisation contemplated in my former paper in
the same relation which Mr. Bromwich's theorem bears to the first of the
theorems which I proved in the Math. Annalen : that is to say, the con-
dition

/», Afn,

is replaced by the more general condition that
k\ Ak+lfn\

* This extension of Cesaro's method is due (implicitly) to Holder, Math. Annalen, Bd. xx.,
p. 535.

t " Some Theorems concerning Infinite Series," Math. Annalen, Bd. LXIV., p. 77.
X Moore, Trans. Amer. Math. Soc, Vol. vni., p. 299 ; Bromwich, Math. Annalen,

Bd. LXV., pp. 359 and 362.
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is convergent, or (when /„ is a function of x) that

Jo.fc|Afc+1/v|<Z
for all values of x and n.

2. There are two alternative definitions of the sum of a divergent series
on mean value lines when C^saro's original definition fails. One is
Holder's definition stated above, which defines summahility (Hk). But
Ce"saro himself gave a somewhat similar definition.* Let

Al =
k\

which we may, in the ordinary continental notation, write in the form

Ah _ (n+Jc\

—and let Si = A$ao+A»-i<h+...+A$<in.

And suppose that, as n tends to infinity,
ok i Ak
O ii / / I n

tends to a limit. Then we shall say that 2aw is summable (Ck).
For k = 1 Holder's and C6saro's definitions are identical. That this

is so for k = 2 has been proved by Mr. Bromwich.t In all ordinary cases
(as applied, e.g., to the series Is—2s+34—...) the two definitions lead to
the same result: and it has been proved by K. KnoppJ that Ce"saro's
definition includes Holder's—i.e., that if a series is summable (Hk) it is
also summable (Ck), and the sums agree. It is not unlikely that C6saro's
definition is more general: it is conceivable that the two always cover the
same ground. But Ce"saro's definition should certainly be adopted as the
standard one; for it is at least equally general, and is far more easy to
work with in practice, owing to the fact that the expression of an in terms
of the sums S* is as simple as the reverse equation, whereas the ex-
pression of an in terms of s£ is complicated and clumsy. The contrast
appears very clearly when Mr. Bromwich's work, with Oesaro's definition,
is contrasted with his own, or mine, with Holder's.

* Bromwich, Infinite Series, pp. 311 et seq.
t See pp. 363-5 of his paper in the Math. Annalen already quoted.
X Grenzwerte von Beihen u. s. w., Inaugural Dissertation, Berlin, 1907, p. 19.

SBK. 2 . VOL. 6. NO. 991- S
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8. The first part of the theorem is as follows :—

THEOREM A.—If 2 an is summable (Ck) and

is convergent, then 2 a n / n is summable (Ck). Further, its sum is equal to
that of the series ^ gk

which is absolutely convergent.

We note as a matter of minor detail that, if 2an is summable {Hk), it
is also summable (Ck), and so Sa n / n is summable (Ck): but we cannot
affirm that the latter series is summable (Hk), except for k = 1, 2.

That 2SjAk+1/n is absolutely convergent follows at once from the fact
that Sn/nk tends to a limit as n -> oo.

Some Algebraical Preliminaries.

4. We denote the sum

formed from 2anfn, as Sn is formed from 2<zn, by T£: and we proceed to
express T\ in terms of Qk Qk Qk

Oo, O i , . . . , On>

and the differences of the functions /«. We have

(1) an = S * -

Thus

This expression, as it stands, involves a certain number of terms S* with
negative suffixes j : these must be considered to be defined as being equal
to zero. In this formula for 7\ the coefficient of Sj is

S
* It is easy to see (Bromwich, Infinite Series, I.e.) that

and - ZdnZ" = ( l-s)* + 12S*x».
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If this expression contains any terms for which j-\-i>n, they may
simply be omitted. Thus, with this proviso, (2) may be written in the form

* = I . # 1 '->' ( T ) 4UM/'« = Jo v$ •
say.

5. Now

(4) < 9 - ! £ < - )

where /3j+i =

From this, it follows that

(5) a, = *£
where

(6) yj+i = A+ i "

To verify this result substitute for yj+i in the expression (5), and pick out
the coefficient of ySj+x- We find this coefficient to be (—1)A times

o

2 i / i + x + 2 + . . . i 2 ^ .

and it is easy to see that this reduces to fj+\.* Thus

* The simplest proof is probably by means of symbolical operators. Let E denote the
operation which, when performed on /,„ changes it into /,,+i. The expression above, on
writing i = A + fi, becomes

But (A + E)fn = / ( , - / n + i +/„•!=/•„

whence the result.
s 2
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But this expression may be simplified considerably. For

V v

i/! {i-v)\ {k-i+l+v)\ h\ {n-j-

~\ i )\J\ k )'
and so

But k (-r (
•-=0 \v

is the coefficient of £* in

2 ( -

or

or

and is therefore equal to (—)* (
\ k—%

if 0 ̂ .i ^k, and to zero if i = fc-fl. Thus

Hence

( U ) aj~i?o[ i ){ k-i JA fj+Xi

and

(12) Tu - .2 5, 2Q ^ ^ ^ k_. ) A /J+t,

with the proviso, we may repeat, that if j-\-i > n we must write 0
This formula is the end of our algebraical transformations.*

* It has been suggested to me that these transformations should be capable of being
simplified, and I do not doubt that this is so ; but I have not been able to effect any appre-
ciable simplification.
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6. Suppose, e.g., that k = 1. Then (12) becomes

(12^ Tn = | o Sj | ( n - ; + l) A%+2A/i+1(,

which is easily verified. If k = 2, (12) becomes

and so on.

7. We can now proceed to the proof of our theorem. We suppose that

is convergent. If this is so the same is true, as has been shown by
Mr. Bromwich,* of all the series

%\ (X = 0 , l , ...,&).

We have to show that in these circumstances

8. We consider first the terms in T£ for which i = 0. These give

N ° W

which is negative and numerically less than

Knk~\
where K is a constant. Thus

where |J201 < ^ 2:

and so

* Math. Annalen, I.e., p. 361.
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9. Next we consider

iT«-{ i )A\ k-i I8** tj+i'
Since

it follows that j
j=0

and therefore

(14) lim ( ^ =

From (18) and (14) it follows that

(15)
j=0

which establishes the theorem.

10. THEOREM B.—If, in addition,

£ vk I A*+1/J <o

/or aW values of n and x, then the series

t f j
is uniformly convergent.

Let S be the sum (Ck) of the series Za»: and let Za'n be the series
for which , a , , ^ AX

so that 8' = 0. Then

TO' MI' in'

2 Sf Ak+1fi = 5 2 A*+1/j+ 2 S;

say. Choose w so that for j ^ m,

i s;/41 <«.

* Mr. Bromwich (Lc, p. 361) has proved that the same is then true of

2 ^ - x | A**i_xyw | (A = 0, 1, .... fc).



1907.] GENERALISATION OF A THEOREM IN THE THEORY OF DIVERGENT SERIES. 268

Then

(16) | <r9

Also

(17)

and from (16) and (17) the theorem follows.

COROLLARIES.—(a) If every fn is continuous, the sum of the series 2anf
n

is continuous.

(/3) If all the differences

fn, A/n, . . . , Afc+1/n .

n

are positive, the condition 2 nkAk+1fn < K

is certainly satisfied, and the conclusions of the theorem apply.

The proof of this will be found in Lemma A of my paper in the Math.
Annalen quoted above.

11. Applications.—I have already stated that the very general
theorems proved by Messrs. Fej6r, Moore, and Bromwich, and myself,
with especial reference to a particular case, enable us to deal effectively
enough with the majority of interesting special applications which occur
naturally in analysis. It would therefore be futile to give any consider-
able number of illustrations here. In the paper cited above* I pointed out
the kind of case in which a more general theorem of the kind here proved
is necessary. A simple example is given by supposing

If the series 2an is summable (Ck) it follows that

2

(a-\-nx)$

is uniformly summable (Ck) in any interval (0, £). Thus, e.g.,
v (-)wn '

(a+nx)"

* L.c, p. 85.
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where 0 < t < k, is uniformly summable (Gk) and is a continuous func-
tion of re for x =• -f- 0- In order to deal with this by my former theorems
it was necessary to suppose s>k-\-l, while Mr. Bromwich's theorem
required s > k—the series being then convergent except for s = 0.

Even in. the theorem here proved, however, it must be observed that
fn is what Dr. Moore has called a convergence factor: its introduction into
the series 2a n makes that series, if not convergent, at any rate more
summable. The series

in which/„ is a divergence factor, and 2anfn less summable than 2a n ,
falls outside the scope of any theorem hitherto proved, though, of course,
it may be dealt with easily enough by special devices.

The Theorems A, B, however, seem to me interesting less on account
of any of their applications than, as a contribution to the abstract theory
of divergent series, and as marking something like the limit of what may
reasonably be expected to be proved concerning the introduction of con-
vergence factors into series summable by the method of mean values.


