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Project Specification 
This project aims to build a memory allocation profiling on top of the popular dynamic analysis 
framework Valgrind, able to detect heap memory waste or misusage. The project is divided in 
several components: 

1. Track allocations / deallocations of the client program – create a Valgrind plug-in tool able 
to detect when the target program performs a heap memory operation (allocation / deallocation)  

2. Collect and store relevant information about the allocations / deallocations – for each 
operation keep the call parameters and other meta-information about its context.   

3. Implement compression on the output analysis data – the tool should provide an option to 
output compressed analysis data instead of plain text. 

The result of this project is a plug-in tool for Valgrind which creates memory usage statistics for 
any real-world application. This project aims to be part of Valgrind official repository. 
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Abstract 

The Large Hadron Collider (LHC) experiments produce a vast amount of data and its throughput 
is even increasing in time. Scalability is the main keyword and adding more hardware often solves 
the problem but is never the most cost efficient solution. Technology permitted us to build 
increasingly stronger CPUs and there are several tools that aid in understanding their utilization 
and suggest possible optimizations. The memory represents the main bottleneck since its bandwidth 
is limited and there are only few tools focusing on profiling memory efficiency. MemProf is a 
memory allocation profiling tool built on top of Valgrind, a very popular open source dynamic 
analysis framework, thereby taking benefit both from already existing components and high 
maintenance from its large number of contributors. Moreover, Valgrind’s architecture permits the 
tool to access more fine-grained features such as support for multi-threaded programs and memory 
access tracking. The tool has been run over several standard Linux programs such as unzip, telnet, 
netstat, evince and is currently optimized for analysing larger applications. This paper presents the 
development process of this project, the current status and potential future extensions.  

 



CERN openlab Summer Student Report  2016 

 

Table of Contents 
 

Contents 
 

1 Introduction ................................................................................................................ 5 

2 State of the Art ........................................................................................................... 6 

2.1 FOM-Tools ................................................................................................................... 6 

2.2 Valgrind ........................................................................................................................ 8 

2.2.1 Architecture ...................................................................................................... 8 

2.2.2 Execution flow .................................................................................................. 9 

3 Technical Implementation ........................................................................................ 10 

3.1 Creating a new tool .................................................................................................... 10 

3.2 Tracking allocations / deallocations ........................................................................... 11 

3.3 Meta-Information ........................................................................................................ 11 

3.4 Output ........................................................................................................................ 13 

4 Usage ...................................................................................................................... 16 

5 Results ..................................................................................................................... 17 

6 Further Work ............................................................................................................ 20 

7 References............................................................................................................... 21 

 



CERN openlab Summer Student Report  2016 

5 | P a g e  
 

1 Introduction 
 

The Large Hadron Collider (LHC) experiments produce on average 1Pb raw data per second and 
the majority of it describes background events collected by the sensors but that are irrelevant for 
research. The Data Acquisition Systems of LHC experiments perform intensive hardware and 
software filtering in real time so that only potentially interesting data is kept and sent further to 
offline analysis. After the last processing phase the resulting data is ~ 25 PB/year, which also 
represents the amount that is stored [1]. This data might lead to the discovery of new particles or a 
better understanding of the Standard Model so the two big requirements for the software behind 
online filtering and offline processing are correctness and speed. To achieve these targets, the 
current implementation sums up a few millions lines of code and with such a code base there is 
always room for optimization. Also, during the online analysis, processing introduces a latency of 
about 3 µs which becomes significant when compared to the frequency of the acquired data of a 
few nanoseconds [1]. 

One strategy to increase data-processing throughput is to add more hardware resources, however, 
this is often not the most cost efficient solution. Since the evolution to multi-core, CPU processing 
power has increased considerably technology now permits us to increase parallelism.  Additionally, 
a number of benchmarking tools exist, which aid in understanding application CPU utilization and 
give hints of possible optimizations. The greatest bottleneck we face is the memory. Unlike the 
CPU, there are few tools focusing on memory analysis and most of them target finding errors such 
as memory leaks or illegal memory accesses. In this project, however, we are mostly interested in 
inefficient use of memory. 

MemProf is a memory allocation profiling tool meant to detect possible memory waste and is built 
on top of Valgrind, a popular open source Dynamic Binary Analysis (DBI) framework. Relying on 
Valgrind as base technology permitted us making use of already implemented components and of 
continuous maintenance provided by its large number of contributors. A previous attempt has been 
made in this direction: FOM-Tools was developed at CERN in order to find unused memory 
allocations, lifetimes and patterns but it is not currently possible to track correctly memory 
allocations within multiple threads or analyze memory access patterns. MemProf solves these 
shortcomings and provides support for multi-threaded applications because Valgrind ensures 
correct thread serialization. Moreover, it can be extended to more fine-grained analysis such as 
memory access tracking.  

This paper presents MemProf, a new memory allocation profiling tool built on top of Valgrind. 
Chapter 2 describes the state of the art, namely a previous similar approach FOM-Tools and the 
base technology of this project, Valgrind. Chapter 3 we discuss MemProf’s design and 
implementation details. Chapter 4 presents some initial results obtained with MemProf Finally, 
chapter 6 summarizes the work done within this project and give some ideas about possible future 
development. 
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2 State of the Art 

2.1 FOM-Tools 

This chapter will describe the already existing technology FOM-Tools in order to provide 
a better understanding of how MemProf is different and what its advantages are. .  

FOM-Tools (Find Obsolete Memory) [2] aims to detect unused memory by finding pages 
from the process address space that move to swap and remain there. The objects contained 
in these pages are identified as being obsolete and could be released without affecting the 
execution. 

The workflow of FOM-Tools is summarized in Figure 1. A series of hooks are 
implemented for each memory allocation / deallocation operation which analyse the 
placement of the current object within the address space. The Linux Kernel feature Control 
Groups (Cgroups) [3] are used for a fine-grained control over the memory management 
which allows restricting jobs to run with much less memory footprint [4]. After each 
memory operation, the process is “frozen” and the virtual addresses of the objects are 
searched in the process address space in order to detect if they belong to a page in RAM or 
SWAP.  

 

Figure 1.  FOM-Tools analysis workflow. 
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The pagemap [5] is a set of interfaces in the kernel that expose to userspace programs page tables 
or other related information in the virtual file system /proc. In other words, each process has its 
own pagemap represented in an associated file: 

/proc/<PID>/pagemap 

The content of this file maps each virtual page to the corresponding physical address. For each 
virtual page there is an associate 64-bit value structured as follows: 

Table 1. Structure of a 64-bit entry in /proc/<PID>/pagemap 

Bits Role 

0-54 page frame number (PFN) if present 

0-4 swap type if swapped 

5-54 swap offset if swapped 

55 pte is soft-dirty 

56 page exclusively mapped 

57-60 zero 

61 page is file-page or shared-anon 

62 page swapped 

63 page present 

 

As can be seen both in in Table 1 and Fig. 1 the bits of interest are 62 and 63 which identify the 
location of the virtual page. Shortly, after each memory operation, FOM-Tools iterates over all 
heap addresses and reads the pagemap in order to detect the location of the objects (RAM vs. 
SWAP). 

Currently, FOM-Tools is not able to correctly track memory allocations in multi-threaded 
applications and is restrictive regarding extensions to more fine-grained analysis of memory 
allocation and accesses. These shortcomings are overcome in MemProf as we will elaborate in the 
following chapters. 
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2.2 Valgrind 
 

This chapter will describe the architecture and workflow of Valgrind, the base technology of this 
project. 

Valgrind [6] appeared as a novelty in Dynamic Binary Analysis (DBA) field as being a 
heavyweight tool by taking full advantage of Dynamic Binary Instrumentation (DBI) method 
unlike similar frameworks which focus on performance. It implements a unique technique of ‘value 
shadowing’ which requires doubling the memory size by keeping copies of every register and 
memory value and updating them at each change of state. Valgrind analysis add a slowdown of 10-
100% ut its capabilities cannot be reproduced with other DBI frameworks such as Pin, 
DynamoRIO. 

 

2.2.1 Architecture 
 

Valgrind’s architecture is modular which permits reusability of certain components in the 
development process as well as easy extensibility. The main component is the core (Coregrind) 
which performs the common tasks to all valgrind tools such as client program loading, instruction 
translation from ELF format to Valgrind intermediary representation (Valgrind IR), error handling, 
logging etc. A number of tools, which connect as plug-ins to the core and instrument the client 
accordingly, provide the required functionality for the different analysis types.  

We enumerate 3 tools which Valgrind offers out of the box:  

• memcheck is a memory error detector which shadows the client program’s operations in 
order to encounter memory leaks, attempts of accessing undefined or unaccessible 
memory, mismatched allocations / deallocations, invalid address / size parameters. 

• cachegrind analyses the interaction with the machine’s cache hierarchy and, optionally, 
branch branch prediction 

• callgrind builds the call graph profiles the runtime behaviour by collecting data about the 
number of instructions executed, relationship caller / callee, optional branch prediction 

This architecture permitted the creation of a new plug-in tool for memory profiling by taking 
advantage of the facilities provided by the already implemented core. 

Valgrind instrumentation is started using the command: 

valgrind --tool=<tool-name> <client-name> [<client-parameters>] 

The client program can be any program whose image is an ELF executable. 
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2.2.2 Execution flow 
 

The previous command starts the Valgrind core which performs the general setup and then executes 
the tool within the same process. During the entire Valgrind instrumentation no child process is 
forked for the client program being instrumented. The client program is not loaded by the OS loader 
as a regular process but, instead, is mapped at a fixed address into Valgrind’s address space and its 
execution is emulated.  

 

The execution flow does not follow the standard path of a process since Valgrind does not link to 
the libc standard library. In normal process execution the entry point is the predefined function 
_start, which in turn calls the user defined main() function. Valgrind reimplements _start such that 
it first jumps to an architecture specific _start_<arch> function to perform additional setup before 
calling main(). Also, standard library functions such as open, close, malloc, or memcpy use in their 
implementation predefined addresses which are not cannot be used for two processes sharing the 
same address space. Consequently, they exist in two versions  both for Valgrind and for client code. 
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3 Technical Implementation 
 

This chapter will describe the key points of MemProf’s design and implementation, will describe 
its connection with the Valgrind core, the interception and handling of memory operations, and the 
collected data and the output format. 

 

3.1 Creating a new tool 
 

As mentioned above, MemProf is a memory allocation profiler built as a Valgrind plug-in tool 
taking advantage of the facilities provided by the core. Figure 2 presents conceptually where 
MemProf is placed within Valgrind’s architecture: 

 

Figure 2. Integrating MemProf into Valgrind architecture 

More concrete, each tool’s implementation is placed in a directory with the same name in the root 
of Valgrind’s source tree. The main implementation including the entry points must be placed in a 
specific file. In the case of MemProf this is mp_main.c. Of course auxiliary compilation files can 
be added for better code modularization. Four key callbacks are implemented in our tool: 

• pre_clo_init - entry point run before the processing of the command line options 
• post_clo_init - initialization done after processing the command line options 
• instrument - instrumentation of the client code 
• fini - callback for the end of instrumentation 

Adding a new empty tool and recompiling enables Valgrind to recognize: 

valgrind --tool=memprof <client-name> [<client-parameters>] 

as a valid command but no instrumentation will be done until the instrument function has been 
implemented. 
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3.2 Tracking allocations / deallocations 
 

Valgrind’s core offers support for replacing memory operations such as allocations and 
deallocations with custom defined callbacks in order to permit additional processing for these 
events.  

MemProf implements replacement wrappers for the following functions: 

• malloc 
• __builtin_new   - instantiating an object in C++ with new operator 
• __buitin_vec_new - instantiating a vector of objects in C++ with new operator 
• memalign  - basic allocation with extra parameter for custom alignment 
• calloc 
• free 
• __builtin_delete - free an object created with the new operator in C++  
• __builtin_vec_delete  - free a vector of objects created with the new operator in C++ 

MemProf implements generic allocation and deallocation wrappers (handle_alloc / handle_free) 
which record the desired analysis information and call the original function. The function realloc 
is a special case because it creates two records: one for the allocation and one for the internal 
deallocation at the original address, therefore it has its own specialized wrapper handle_realloc. 

 

3.3 Meta-Information 
 

As mentioned previously, within the allocation / deallocation wrappers, additional information is 
collected about these operations. This meta-information is gathered in a structure _MP_Record 
which is presented in Figure 3 along with its composing fields: 

 

Figure 3. MemProf structure describing a record 

The first field refers the memory address of the (de)allocated block. In case of an allocation, it’s 
the address is returned by malloc while at deallocation, it is the parameter passed to the free call. 
The second field represents the size in bytes occupied by the (de)allocated block. For allocations it 
is received by the wrapper as parameter but for deallocations an internal hashmap is kept in order 
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to determine the size of a block placed at a given address. The Valgrind core performs thread 
serialization and identifies the thread ID which is passed as parameter to the wrappers. 

Next the type of the memory operation is given by the index stored in the field allockind. The 
mapping is presented in Table 2: 

Table 2. Indexes of memory operations 

Operation Index 

malloc 0 

calloc 1 

realloc 2 

new 3 

new vector 4 

free 5 

delete 6 

delete vector 7 

 

The fields begin_t, end_t and stack_t are timestamps of the beginning of memory operation, end of 
memory operation and end of generating the context stacktrace. Implementing a function for 
calculating the timestamp in nanoseconds has been one of the requirements of this project.  

In order to determine the location of a certain memory operation it is important to keep its context 
callstack. However, since some instruction pointers (IPs) from different stacktraces may coincide, 
it is space consuming to keep them for each record they appear in. Therefore, an additional hashmap 
is introduced to associate the instruction pointers (IPs) with an index. When an instruction pointer 
is encountered for the first time, it is assigned an unique index and the pair <IP, INDEX> is inserted 
into the hashmap. The _MP_Record’s ips field represents the series of indexes corresponding to 
the IPs from the callstack and not the actual IPs. The fields nips gives the exact length of this array. 

As can be seen in Figure 3, Valgrind has a number of internally defined data types. This was done 
both for better control of the variable sizes as well as for ease of readability. Valgrind types map 
standard types as follows: 
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Table 3. Mapping between Valgrind internal defined types and standard types 

Valgrind type Standard type Size (bits) 

Addr unsigned long 32 / 64 (arch dependent) 

SizeT unsigned long 32 / 64 (arch dependent) 

ThreadId unsigned int 32 

UShort unsigned short 16 

UInt unsigned int 32 

ULong unsigned long long int 64 

 

From table 3 we see that two size fields exist and the choice is architecture dependent. Considering 
that these fields refer to the address and size in bytes of the (de)allocated block it seems logically 
correct to differ for 32 and 64 bit architectures. In any case, note that the structure _MP_Record is 
64-bit aligned on any architecture, thus there is no added padding. Records are not kept in memory 
but, within each wrapper they are serialized and added to a global buffer of fixed size. When the 
buffer reaches the limit size, it is flushed into the statistics file. The absence of padding enhances 
the serialization to be done optimally. 

 

3.4 Output 
 

The allocation data is written to a statistics file during the execution and has the following structure: 
a file header (Table. 4) and the serialized records. The file format of the statistics file is compatible 
with FOM-Tools so some of the fields, such as compression related ones, are present although they 
are currently unused for this version of MemProf. 
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Table 4. Structure if statistics file header 

Field Type Role 

key HChar* 4 character identifier of the statistics file created by 
MemProf 

ToolVersion UInt Number indicating the version of the tool 

Compression UInt Compression ratio. Currently 0 because MemProf does 
not yet support compression 

NumRecords SizeT Number of records stored in the file 

MaxStacks SizeT Maximum depth of the captured stacktrace 

BucketSize SizeT Size of the compressed buffer. Currently 0 because 
MemProf does not yet support compression 

NumBuckets SizeT Number of compressed buffers stored in the file. 
Currently 0 because MemProf does not yet support 

compression 

Pid UInt Process ID 

StartTime ULong Process start time 

StartTimeUTC ULong Process start time UTC 

CompressionHeaderSize ULong Size of the compression header. Currently 0 because 
MemProf does not yet support compression 

HeaderSize ULong Size of the header (including the variable size field - 
CmdLine) 

CmdLength SizeT Size of CmdLine field 

 

Following the file header, the statistics file contains the serialized records. Consider the following 
basic example: 
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Figure 4. Basic C program with 4 records 

The program shown in Figure 4 contains 2 allocations and 2 deallocations, therefore 4 records. The 
corresponding records MemProf creates based on this program: 

0x051fa040 8   0 11  1 0       107695  114958:   0 1 2 3 4 5 6 7 8 9 10 

0x051fa090 20  0 4   1 518081  519268  520944:   0 11 9 10 

0x051fa040 8   5 6   1 954447  955285  957171:   12 13 14 15 16 17 

0x051fa090 20  5 6   1 1096294 1097552 1099088:  12 18 14 15 16 17 

The field order is block address, size in bytes, operation type, number of IPs from stacktrace, thread 
ID, timestamps for beginning / end of memory operation and end of stacktrace generation and the 
indexes of the IPs from the stacktrace. 

Additionally, there is one auxiliary file containing the mapping between indexes and actual 
instruction pointers used to restore the allocation context. This is useful for example to determine 
the location in the code of a certain memory consuming allocation. 

The naming scheme for the output files is default <PID>-stat.log and <PID>-hash.log but the prefix 
is customizable via a command line parameter. 
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4 Usage 
 

The usage of MemProf follows the pattern of all other Valgrind tools: 

valgrind --tool=memprof <client-name> [<client-parameters>] 

There are three accepted command line parameters: 

Parameter Use Default 

--uncompressed-buf=<number> size of the uncompressed output 
buffer 

64000 

--stacktrace-depth=<number> depth of the captured stacktrace 30 

--log-basename=<string> basename of statistics filename 
and hash filename 

<PID>-stat.log / <PID>-hash.log 
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5 Results 
 

MemProf is currently under development and has been tested over a number of sample cases among 
which we can enumerate a few standard Linux programs: unzip, telnet, netstat, evince and one 
CERN application cl_forward. Based on MemProf’s output, we can perform several analyses for 
the client program such as memory access times, object lifetimes, locality, we can create statistics 
about the thread consumption, build memory allocation patterns.  

Following graphs are built using GNUplot and matplotlib based on MemProf’s output resulted in 
cl_forward analysis: 

 

Figure 5. Object Lifetime 

Figure 5 presents the relation between object lifetimes and allocation times in cl_forward. This kind 
of graph is a representation of the structure of the program and gives us hints about possible 
memory usage optimizations. For example, the two parallel lines visible around moment 1e+09 
suggest that we have two series of objects allocated simultaneously but with different lifetime. We 
can deduce that this portion is mapped in the code to a loop instantiating objects with long lifetime 
and creating short lifetime auxiliary ones. 
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Figure 6. 2D Histogram of Allocation Lifetime vs. Size 

Fig. 6 represents a 2D histogram between the object lifetimes and their sizes. This kind of graph 
offers a statistic of the number of objects for each combination of values <allocation lifetime, size>. 
We can deduce that most of the objects have a short lifetime and their sizes vary around two main 
values highlighted by the green dots. The graph is auto-scaled so there are few objects with longer 
lifetime but they are not visible in the plot. 

The graphs resulted from testing other applications, such as standard Linux programs, are shown 
in Fig. 7. The test cases were the following: extracting a ~ 400 MB archive with unzip, performing 
a GET request for a resource on a web server via telnet, and printing network connections and 
interface statistics with netstat. For unzip, we observe that there are a series of object allocated at 
the beginning of the program (allocation time 0) that have the biggest lifetime which represent 
general auxiliary objects in the extraction algorithm and then a series of objects with very short life 
time corresponding to each extracted element. Similarly, telnet has a set of objects with longer 
lifetime holding the details of the connection and then short-lifetime objects are allocated for data 
exchange. On the other hand, as a network interrogation tool, netstat uses mostly short-lifetime 
objects. 

For further testing or development, MemProf’s code is public and available at the following 
address: 

https://gitlab.cern.ch/cmoraru/MemProf 

https://gitlab.cern.ch/cmoraru/MemProf
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Figure 7. Results of testing standard Linux programs with MemProf 
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6 Further Work  
 

Collecting memory allocation meta-information allows us to analyse many aspects of the memory 
usage of a program but the drawback is that the created statistics file is quite large, even for common 
applications. Therefore, the first step in the further work is adding support for compressing the 
output data with an algorithm such as BZIP2 / GZIP / LZO. Secondly, MemProf is currently able 
to track memory allocations but Valgrind’s capabilities permit the extension to more fine-grained 
analysis. Tracking memory accesses would provide a deeper understanding of the memory usage 
by identifying objects that remain in memory longer than they are needed. The Valgrind framework 
offers the possibility of tracking read / write operations so this feature will be available in a next 
MemProf version. 

MemProf is an easy-to-use Valgrind tool for memory allocation profiling, suitable not only for the 
software within CERN experiments but also for any data-intensive real-world applications. Due to 
its high applicability, we hope to integrate it into the public Valgrind repository to be available for 
larger use. 
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