
Workload-Aware Self-Tuning Histograms
for the Semantic Web

Katerina Zamani1, Angelos Charalambidis1, Stasinos Konstantopoulos1,
Nickolas Zoulis1,2, and Effrosyni Mavroudi3

1 Institute of Informatics and Telecommunications,
NCSR ‘Demokritos’, Athens, Greece

{kzam, acharal, konstant}@iit.demokritos.gr
2 Computer Science Department,

Athens University of Economics and Business, Greece
3 School of Electrical and Computer Engineering,
National Technical University of Athens, Greece

Abstract. Query processing systems typically rely on histograms, data
structures that approximate data distribution, in order to optimize query
execution. Histograms can be constructed by scanning the database ta-
bles and aggregating the values of the attributes in the table, or, more
efficiently, progressively refined by analysing query results. Most of the
relevant literature focuses on histograms of numerical data, exploiting
the natural concept of a numerical range as an estimator of the volume
of data that falls within the range. This, however, leaves Semantic Web
data outside the scope of the histograms literature, as its most promi-
nent datatype, the URI, does not offer itself to defining such ranges. This
article first establishes a framework that formalises histograms over arbi-
trary data types and provides a formalism for specifying value ranges for
different datatypes. This makes explicit the properties that ranges are
required to have, so that histogram refinement algorithms are applicable.
We demonstrate that our framework subsumes histograms over numer-
ical data as a special case by using to formulate the state-of-the-art in
numerical histograms. We then proceed to use the Jaro-Winkler metric
to define URI ranges by exploiting the hierarchical nature of URI strings.
This greatly extends the state of the art, where strings are treated as cat-
egorical data that can only be described by enumeration. We then present
the open-source STRHist system that implements these ideas. We finally
present empirical evaluation results using STRHist over a real dataset
and query workload extracted from AGRIS, the most popular and widely
used bibliographic database on agricultural research and technology.

1 Introduction

Query optimizers in query processing systems typically rely on histograms, data
structures that approximate data distribution, in order to be able to apply their
cost model. Histograms can be constructed by scanning the database tables and
aggregating the values of the attributes in the table; and similarly maintained
in the face of database updates.

This histogram lifecycle, however, cannot be efficiently applied to large-scale
and frequently updated databases, such as, for example, stores of sensor data.
An alternative approach is taken by adaptive query processing systems that
update their histograms by observing and analysing the results of the queries that
constitute the client-requested workload, as opposed to maintenance workload
only for updating the histograms. The relevant databases literature focuses on
numerical attributes, exploiting the concept of an interval as a description of a
set of numerical values that is succinct and that has a length that can be used to
estimate the cardinality of many different intervals that have roughly the same
density.

In the work described here, we investigate how to extend adaptive query
processing so that it can be applied to the domain of strings, typically treated
as purely categorical symbols that can only be described by enumeration. This,
however, disregards the fact that there are several classes of strings that have
an internal structure and that can be handled in a more sophisticated man-
ner. Specifically, we use string prefixes to expresses ‘intervals’, i.e., sub-spaces
of the overall string space that are interesting from the point of view of pro-
viding query optimization statistics. Although weaker than regular expressions,
prefixes can be very efficiently applied and can capture interesting ranges in
hierarchically-structured string domains, such as that of URIs. We also experi-
ment with describing a string range as a volume of strings similar to a central
string, quantifying similarity in a way that favours similar prefixes.

This attention on URIs is motivated by their prominent position in the in-
creasingly popular Semantic Web and Linked Data infrastructures for publishing
data. In fact, these paradigms motivate adaptive query processing for a further
reason besides the scale of the data: distributed querying engines often concen-
trate loose federations of publicly-readable remote data sources over which the
distributed querying engine cannot effect that histograms are maintained and
published. Furthermore, the URIs of large-scale datasets are not hand-crafted
names but are automatically generated following naming conventions, usually
hierarchical. These observations both motivate extending adaptive query pro-
cessing to Semantic Web data stores and also present an opportunity for our
string prefix extension.

In the remainder of this article, we first review self-tuning histograms (Sec-
tion 2) where we identify STHoles as our starting point, a very successful algo-
rithm for multi-dimensional histograms of numerical data. We proceed to for-
malize the key concepts in STHoles in a way that subsumes STHoles as its
specialization for numerical intervals (Section 3) and to provide two alterna-
tives for an extension that covers URI strings (Section 4). We then proceed to
present experimental results using our prototype implementations (Section 5)
and conclude (Section 6).

2 Background

In their simplest form, histograms describe an attribute a. The range of possible
values of a is divided into non-overlapping ranges. A histogram is a set of buckets
where each bucket is associated with a range and holds the number of tuples
where the value for a is within the bucket’s range. Self-tuning histograms are
progressively refined from query feedback after each selection on a, using the
actual result count to update the statistics in the bucket of a. In order to manage
memory usage, some error is tolerated and buckets with similar statistics are
merged into a single bucket with a wider range. In workload-aware self-tuning
histograms, frequently used buckets (in a given workload) are split into narrower
and more accurate buckets, while less frequently used buckets are more likely to
be merged with more dissimilar buckets and produce a larger error when used.

Workload-aware self-tuning histograms have been successfully used in rela-
tional databases as a way to avoid the costly creation of static histograms of
massive datasets. These techniques are memory efficient as they are focused to-
wards the current workload, providing more accurate statistics for data regions
that are being queried more frequently. Furthermore, they efficiently adapt to
changes in the data distribution or the focus of the workload as they exploit
query feedback collected from the production workload and do not impose any
maintenance workload.

2.1 Histograms of numerical attributes

In one of their earliest instances [1], such one-dimensional histograms of numer-
ical attributes were used to hold statistics on intermediate tables (SIT), where
each SIT corresponds to an intermediate node of the query plan. Adjacent buck-
ets shared their ranges’ edges and the ranges of all the buckets together covered
the entire range of values of the attribute. In order to estimate the cardinal-
ity of arbitrary select-project-join (SPJ) queries, statistics are estimated for the
individual patterns and then propagated through the query plan. Consider, for
instance an SPJ query of the form:

(R.x = S.y) AND (S.a < 10)

The histograms of tables R and S are used to estimate the selectivity of R ./ S
ignoring S.a < 10 and then the histogram of S.a is used to estimate the selectivity
of S.a < 10 over the result of R ./ S.

To avoid the propagation of errors through a sequence of operators, SITs
cat also match intermediate sub-expressions of the query. That is to say, we
would use statistics that are built on the result of the query expression R ./
S specifically on ranges of S.a values, rather than estimates derived from the
isolated statistics of R.x, S.y, and S.a. A workload-driven technique was used
to identify the SITs that maximized the benefit to the query optimizer.

These ideas are relevant to the Learning Optimizer (LEO) framework [2] used
in DB2. LEO monitors query execution and accordingly adjusts the cardinality

estimates and statistics used by the query optimizer. By comparing estimated
and actual cardinalities, LEO gives positive or negative feedback to the statistics
and the cardinality model used. Correlations can be also detected when estimates
for individual predicates are known to be accurate but some combination of them
is not. LEO does not modify statistics, but saves separately adjustment factors
such that the product of the adjustment factor and the estimated selectivity
derived from the DB2 statistics yields the correct selectivity. Stillger et al. [2]
demonstrated that LEO improves cardinality estimates by orders of magnitude,
changing plans to improve performance by orders of magnitude, while adding
less than 5% overhead to execution time when collecting query feedback.

STGrid [3] extends these ideas to multidimensional self-tuning histograms
that use query workloads to refine a grid-based histogram structure. These self-
tuning histograms are a low-cost alternative to traditional histograms with com-
parable accuracy. However, since the splitting (or merging) of each bucket entails
the splitting (or merging) of several other buckets that could be far away from
and unrelated to the original one, overall accuracy is degraded in order to satisfy
the grid-partitioning constraint.

To alleviate the poor bucket layout problem of STGrid, STHoles [4] allows
buckets to overlap. This more flexible data structure allows STHoles to exploit
feedback in a truly multi-dimensional way and is adopted by many subsequent
algorithms [5, 6], including the one presented here. STHoles allows for inclusion
relationships between buckets, resulting in a tree-structured histogram where
each node represents a bucket. Holes are sub-regions of a bucket with different
tuple density and are buckets themselves. To refine an STHoles histogram, query
results are used to count how many tuples fall inside each bucket of the current
histogram. Each partial intersection of query results and a bucket can be used
to refine the histogram by drilling new holes, whenever the query results diverge
from the prediction made through the bucket’s statistics.

In order to maintain a constant number of buckets, buckets with close tuple
densities are merged to make space for new holes. A penalty function measures
the difference in approximation accuracy between the old and the new histogram
to choose which buckets to merge. Parent-child merges are useful to eliminate
buckets that become too similar to their parents; sibling merges are useful to
extrapolate frequency distributions to yet unseen regions in the data domain
and also to consolidate buckets with similar density that cover nearby regions.

ISOMER [5] is a more recent feedback-based algorithm for building and
maintaining multidimensional histograms. ISOMER uses the histogram struc-
ture of STHoles and the information-theoretic principle of maximum entropy to
refine the histogram based on query feedback records (QFR). QFRs are 〈q,N(q)〉
records that match queries against the size of the query result. Once ISOMER
obtains a consistent set of QFRs, the algorithm computes the ‘simplest’ (in terms
of entropy) histogram that is consistent with all QFRs added so far. The result
is a maximization problem under a system of constraints, solved with iterative
scaling. Furthermore, to meet a space budget ISOMER discards QFRs merges
buckets in a way similar to STHoles.

Except for storing cardinalities, another useful statistic for selectivity esti-
mation of queries with equality or LIKE selection predicates is the number of
distinct values. Kaushik and Suciu [7] presented the first self-tuning histogram
modelling cardinalities and distinct value counts, which was based on the same
entropy maximization (EM) principle as ISOMER but with a different proba-
bility space. Due to the computational complexity of the resulting EM problem,
they minimize instead the squared distance between the histogram’s estimates
and the query feedback viewed as vectors. However, their method can only con-
struct one-dimensional histograms on numerical or categorical data.

Markl et al. [8] address the problem of combining complementary selectivity
estimations from multiple sources (estimations which are computed using ISO-
MER histograms) to obtain a consistent selectivity estimation using the idea of
maximum entropy. Similar to the approach in ISOMER, this work exploits all
available information and avoids biasing the optimizer towards plans for which
the least information is known [9].

Khachatryan et al. [10] note that like traditional index structures such as R-
Trees, STHoles fails in high-dimensional data spaces and is sensitive to the order
of tree construction. As far as the latter is concerned, they argue that if the first
few queries define a top-level bucket structure that is bad, the subsequent tun-
ing is unlikely to correct it. They propose an initializing with subspace buckets
which are derived from a subspace clustering algorithm. They use the MineClus
cell clustering algorithm, which outputs a set of clusters with an assigned im-
portance. Each cluster consists of tuples and has dimensions d1, d2, ..., dk. The
corresponding bucket is the minimal rectangle containing these points-tuples
and spans the entire length of every dimension not in d1, d2, ..., dk. They showed
that the new initialization improves estimation quality and, in some situations,
reduces the number of buckets.

2.2 Histograms of categorical attributes

STHoles and, in general, workload-aware self-tuning histograms have been suc-
cessfully used in relational databases as a low-overhead alternative to statically
re-scanning database tables. The resulting histogram is focused towards the cur-
rent workload, providing more accurate statistics for data regions that are be-
ing queried more frequently. Furthermore, they are able to adapt to changes in
data distribution and thus are well-suited for datasets with frequently changing
contents. They are, however, for the most part targeting numerical attributes,
since they exploit the idea that a value range is an indication of the size of the
range. Turning our attention to the Semantic Web, the Resource Description
Framework (RDF) is the dominant standard for expressing information. RDF
information is a graph where properties (labelled edges) link two resources to
each other or one resource to a literal (a concrete value). The relevance of this
discussion to self-tuning histograms is that RDF uses URIs as abstract symbols
that denote resources. Given this prominent role of URIs in RDF data, extend-
ing self-tuning histograms to string attributes can have a significant impact in
optimizing querying of RDF datasets.

There has been relatively limited amount of work around string selectivity
estimation in the field of relational databases. Chaudhuri et al. [11] proposed to
collect multiple candidate identifying substrings of a string using, for example,
a Markov estimator and build a regression tree as a combination function of
their estimated selectivities, in order to alleviate the selectivity underestimation
problem of queries involving string predicates in previous methods, which used
independence and Markov assumptions. In 2005, Lim et al. [12] introduced CX-
Hist, which is a workload-aware histogram for selectivity estimation supporting
a broad class of XML string-based queries. CXHist is the first histogram based
on classification that uses feature distributions to summarize queries and quan-
tize their selectivities into buckets and a naive-Bayes classifier to capture the
mapping between queries and their selectivity.

Within the Semantic Web community itself, the SWOOGLE search engine
collects metadata, such as classes, class instances and properties for web docu-
ments and relations between documents [13]. LODStats computes several schema-
level statistical values for large-scale RDF datasets using an approach based on
statement streams [14]. More closely related to our work is RDFStats [15], which
is a generator for statistics of RDF sources like SPARQL endpoints. They gener-
ate different statistical items such as instances per class and histograms. Unlike
our approach, they generate different static histograms (i.e. that must be rebuilt
to reflect any changes in the RDF source) per class, property and XML data
type. For range estimations on strings, RDFStats mentions three possibilities:
(a) one bucket for each distinct string, resulting in large histograms; (b) reducing
strings to prefixes; or (c) using a hash function to reduce the number of distinct
strings, although no appropriate general-purpose hash function has been iden-
tified. However, as Harth et al. [16] have also noted in relation to Q-Trees for
indexing RDF triples, hashing URIs is a purely syntactic mapping from URIs
to numerical coordinates and fails to take into account the semantic similarity
between resources; and no universally good function has been identified.

As URIs are the most prominent datatype in the Semantic Web, the absence
of an extension that can naturally handle URI strings leaves Semantic Web data
outside the scope of many developments in self-tuning histograms.

3 Self-Tuning String Histograms

In this section we establish a new histogram structure that extends the structure
of the STHoles algorithm with the ability to cover strings. We also present the
algorithms that construct and refine this new structure.

In our treatment, we first defer defining how string ranges are specified.
Instead, we construct a framework of preliminary definitions where we specify
the properties that must be satisfied by any compliant definition of string ranges.
We then proceed to construct two alternative string ranges: the first one is based
on prefixes and is a slight re-formulation of previous work [17] so that it complies
with this framework. The second definition of string ranges is based on string
distance.

3.1 Preliminaries

Let D be a dimension, any subset of D be a range in D, and P(D) the set of
all possible ranges in D. A range can be defined either implicitly by constraints
over the values of D or explicitly by enumeration. Note that D ∈ P(D), meaning
that a range does not need to impose a restriction but can also include the whole
dimension. Let H be a histogram of n dimensions D1, . . . Dn. Let V(H) be the
set of all possible n-dimensional vectors (r1, . . . rn) where ∀i ∈ [1, n] : ri ∈ P(Di)

A histogram is represented as an inclusion hierarchy of buckets; we shall use
BH to denote the set of buckets of a histogram H.

Definition 1. Each bucket b ∈ BH is an entity of histogram H such that:

– b is associated with a box(b) ∈ VH , the vector that specifies the set of tuples
that the bucket describes.

– b is associated with a size(b) which indicates the number of tuples that match
box(b)

– b is associated with n values dvc(b,Di), i = 1 . . . n which indicate the number
of distinct values appearing in dimension Di of the tuples that match box(b)

We define the density of a bucket b to be the quantity

density(b) =
size(b)∏

i:ri∈box(b)

dvc(b,Di)

Definition 2. Every histogram implicitly includes a bucket b> such that box(b>) ≡
(D1, . . . Dn) that is, the bucket that imposes no restrictions in any of the dimen-
sions of H and includes all tuples. We call this the top bucket b>.

The implication of Definition 2 is that the overall size of the dataset and
the number of distinct values in each dimension should be known (or at least
approximated) regardless of what query feedback has been received. In our im-
plementation we assume the root bucket (the top-most bucket of the hierarchy)
as an approximation of the top.

Let QH be the set of all possible queries over the tables covered by H.
Regardless of how they are syntactically expressed, we perceive QH as the set
of all possible restrictions over the dimensions of H; thus:

Definition 3. Each query q ∈ QH is an entity of histogram H such that:

– q is associated with a box(q) ∈ VH , the vector that specifies the restrictions
expressed by the query

– q is associated with a size(q) which indicates the number of tuples that are
returned by executing q

As pointed out earlier, in our preliminary constructions ranges are simply
defined as any subset of D, without making any requirements on how these are
specified; in fact they may even be specified by enumeration. However, in order

to realize the memory efficiency of workload-aware histograms, ranges should
be specified intensionally, so that their representation consumes a memory unit
regardless of how many elements match the specification. We shall present below
the definitions we propose for string ranges; at this point, it suffices to define a
range as follows:

Definition 4. We define a range r ∈ P(D) of dimension D of histogram H to
be an entity of H with the following properties:

– There is a membership function memberr : D → {true, false} that can
consistently decide for any t ∈ D whether it is or is not inside r.

– There is an intersection function e : P(D)×P(D)→ P(D) that returns the
range resulting from the intersection of two ranges.

It should be noted that we do not make any claims on the intersection function,
although it is advantageous if such a function is approximately (if not exactly)
the same as a function that would output a range that has as extension the
intersection of the ranges’ extensions. However, it should be possible to oper-
ate in instantiations of the framework where the (strict) intersection cannot be
computed or syntactically represented for all pairs of ranges. In such instan-
tiations, our relaxed definition of e provides the flexibility to define operators
that roughly (but not exactly) correspond to producing a representation for the
intersection of the extensions of its operands.

We use range intersection to also define multi-dimensional box intersection
as follows:

Definition 5. Given two boxes v1, v2 ∈ VH from the n-dimensional histogram
H, let v1 = (r1,1, . . . r1,n) and v2 = (r2,1, . . . r2,n). We define box intersection:

v1 e v2 = (r1,1 e r2,1, . . . r1,n e r2,n)

Definition 6. Given two boxes v1, v2 ∈ VH from the n-dimensional histogram
H, let v1 = (r1,1, . . . r1,n) and v2 = (r2,1, . . . r2,n). We say that v1 encloses v2 iff
∀i ∈ [1, n] at least one of the following holds:

1. r2,i ⊆ r1,i ⊂ Di, that is, none of the ranges is the complete dimension and
r2,i is contained within r1,i

2. r2,i = Di and r1,i ⊂ Di, that is, if one of the ranges is the complete dimen-
sion then it is enclosed by the one that is not.

3. r2,i = r1,i = Di, that is, both ranges are the complete dimension.

It should be noted that we have defined an unrestricted dimension as being
enclosed by (rather than enclosing) a restriction. The rationale behind this will
be explained in conjunction with bucket merging (Section 3.4).

Definition 7. Given two boxes v1, v2 ∈ VH from histogram H, v1 tightly en-
closes v2 iff v1 encloses v2 and there is no u ∈ VH such that v1 c u c v2

Definition 8. Given a query q ∈ QH , we associate with q the best fit, the set
of buckets bf(q) ⊆ BH such that

∀b ∈ bf(q) : box(b) tightly encloses box(q)

Lemma 1. For every query there is always a non-empty best fit.

Proof. There is always at least one bucket that encloses any box(q), the top
bucket b> (Definition 2). If there is no other bucket that encloses box(q), then
b> tightly encloses box(q) (Definition 7) and thus bf(q) = {b>}, which is non-
empty. If there are other buckets that enclose box(q), then there is also at least
one that tightly encloses box(q), so bf(q) is non-empty.

3.2 Cardinality Estimation

Being able to predict the size of querying results is important input for query
execution optimizers, but the specifics of how this optimization is performed is
outside the scope of this paper. We will here proceed to define metrics over the
values associated with the buckets of H in order to predict size(q), q ∈ QH , the
number of results returned by q.

In the literature, numerical intervals are used to succinctly define ranges and
to efficiently decide if a query is enclosed by a bucket or not. The numerical
difference between the interval’s starting and ending value is sometimes used
to define range length and, in multi-dimensional buckets, bucket volume: an
estimator of the number of tuples in a bucket. We, accordingly, define range
length as follows:

Definition 9. Given a histogram dimension D and a range r ∈ P(D) we define
the function length : P(D)→ R as follows:

1. Unrestricted ranges that span the whole dimension have length 0.
2. If r is an extensionally defined range of any type, then length(r) = |r|, the

number of distinct values in the range.
3. If r is a numerical range defined by an interval [x, y], then length(r) =

y − x + 1.

The addition of the unit term guarantees that the length cannot be zero even if
x = y, i.e., even if the numerical range is a single point. This makes the third
clause of the definition consistent with the second one, since for any number n
we would expect the length of the singleton {n} according to clause 2 to be the
same as the length of the range [n, n] that can also only include a single distinct
value. It should also be noted that this is the only situation in which the length
of a range can be 1. This property is important for Definition 10 below.

We will revisit this definition in Section 4 and complete it with the definition
of length for URI ranges. Regardless of how length is defined for numerical, URI,
or other types of ranges, we propose the following function as an estimator of
the number of tuples that lie inside q, given a histogram:

Algorithm 1 Refinement of a histogram H given a set of queries W .

procedure Refine(H,W)
for all queries q ∈W do

if q is not contained in H then
expand H’s root bucket so that it contains q

for all buckets bi such that q e bi 6= ∅ do
(ci, Tci , dci)← ShrinkBucket(bi, q)
if estimation is not accurate then

DrillHole(bi, ci, Tci , dci)

while H has too many buckets do
Let b1, b2 in H with the lowest penaltyH(b1, b2)
Merge(b1, b2)

Definition 10. Given a histogram H and a query q, let box(q) = r1, ...rn. We
define the function estH : VH → R as follows:

estH (box(q)) =
∑

b∈bf(q)

size (b)∏
i:length(ri)=1

dvc (b,Di)

The intuition behind this definition is that we identify a best-fitting bucket
(cf. Definition 8) and assume that tuples are uniformly distributed among the
distinct values in each dimension. Since the query might have bindings for some
of its dimensions, we use this assumption to apply simple division to estimate
the fraction of the bucket’s tuples that will be selected by the query dimensions
that are unbinded variables. Naturally, this also assumes that the length of the
range of the query’s box can only be 1 for binded dimensions and is greater than
1 otherwise. This property is guaranteed by the definition of categorical and
numerical length (Definition 9), and should also be observed by any extensions
for other types.

3.3 Histogram Construction and Refinement

The construction of the histogram follows the same high level steps as the
STHoles algorithm. In particular, we start with an empty histogram. For each
query q in the workload, we identify candidate buckets bi that intersect with q.
For each candidate bucket bi we compute bieq and these intersections constitute
candidate holes ci. We then shrink each candidate hole to the largest sub-region
that does not intersect with the box of any other bucket, we count the exact
number of tuples from the result stream that lie inside the shrunk hole and the
distinct values count. Then, we determine whether the current density of the
candidate bucket is close to the actual density of the candidate hole. If not, we
‘drill’ the candidate hole as a new histogram bucket and we move all children of
bi that are enclosed by ci to the new bucket (Algorithms 1 and 2).

A point of divergence from STHoles is when shrinking candidate holes. Let
X be the set of all buckets that partially intersect with a candidate hole ci.

Algorithm 2 Drilling a hole in bucket b, given a candidate hole c and the
counted cardinality Tc and distinct values Dc(i) for each dimension Di.

procedure DrillHole(b, c, Tc, dc(·))
if box(b) = box(c) then

size(b)← Tc

dvc(b,Di)← Dc(i) ∀i ∈ attributes
else

Add a new child bn of b to the histogram
box(bn)← c
size(bn)← Tc

dvc(bn, Di)← dc(i) ∀i ∈ attributes
Migrate all children of b that are enclosed by c
so they become children of bn

Algorithm 3 Shrink a bucket that is enclosed by the intersection of b and q
and does not partially intersect any other bucket.

function ShrinkBucket(b, q)
c← box(q) ∩ box(b)
P ← {bi ∈ children(b) | c ∩ box(bi) 6= ∅ ∧ box(bi) 6⊆ c}
while P 6= ∅ do

Get first bucket bi ∈ P and dimension j
such that shrinking c along j by excluding bi results
in the smallest reduction of c.
Shrink c along j
P ← {bi∈children(b) | c ∩ box(bi) 6=∅ ∧ box(bi) 6⊆c}

Count from the result the number of tuples in c, Tc

for all attributes i do
Count from the result the number of
distinct values of the ith attribute in c, dc(i).

return (c, Tc, dc(·))

STHoles selects at each step the pair 〈x, j〉 that comprises bucket x ∈ X and
dimension j such that shrinking ci along j by excluding x has as a result the
smallest reduction of ci. Instead of checking for the optimal 〈x, j〉 our method
selects the first pair where shrinking ci along j by excluding x results in the
smallest relative reduction of ci’s length in that dimension, the intuition being
that often excluding x will give similar relative reduction along all dimensions.
We then shrink ci, we update participants and repeat the procedure until there
are no participants left (Algorithm 3). This may result in a suboptimal shrink,
but we avoid examining all possible combinations at each step. Furthermore, in
STHoles the number of tuples in this shrunk subregion is estimated assuming
uniformity; instead, we measure exactly the number of tuples and distinct values
per dimension.

3.4 Bucket Merging

In order to limit the number of buckets and memory usage, buckets are merged
to make space for drilling new holes. Following STHoles, our method looks for
parent-child or sibling buckets that can be merged with minimal impact on the
cardinality estimations. We diverge from STHoles when computing the box, size,
and dvc associated with the merged bucket as well as in the penalty measure
that guides the merging process towards merges that have the smallest impact
on estimation accuracy.

Let b1, b2 be two buckets in the n-dimensional histogram H and let H ′ be
the histogram after the merge and bm the bucket in H ′ that replaces b1 and b2.
In the parent-child case, the parent bucket, let that be b1, tightly encloses the
child bucket. In this case, we merge b2 into b1, so that box(bm) ≡ box(b1). Any
children that b2 had become children of bm.

In sibling-sibling merges, let bp be the common parent bucket that tightly
encloses both siblings b1 and b2. The merged bucket bm is a child of bp and the
parent of all children of b1 and b2. The box of bm must be such that it encloses
the boxes of b1 and b2, without partially overlapping with any further siblings.
Different implementations might achieve this either by defining checks that block
sibling merges or by defining the box of bm in such a way that it also encloses
any further siblings that partially overlap with the extended box that encloses
b1 and b2.

The size of bm is estimated by adding the sizes of b1 and b2; the distinct
values count of bm is estimated by the maximum distinct values count among
the merged buckets:

1. box(bp) tightly encloses box(bm)
2. box(bm) tightly encloses both buckets b1, b2
3. box(bm) tightly encloses the boxes of all children of bp that partially intersect

either of b1, b2. That is, box(bm) encloses box(bc) for all bc such that:

(a) bp tightly encloses bc; and
(b) box(b1) partially overlaps box(bc) or box(b2) partially overlaps box(bc)

4. size(bm) =
∑

k=1,2,c1,...

size(bk)

5. dvc(bm) = max
k=1,2,c1,...

dvc(bk)

It should be noted that the procedure that constructs the merged bucket bm is
deterministic and thus bm can be uniquely determined by b1 and b2. In Point 3
above, it should be stressed that the partially intersecting buckets bc are not
merged into bm, but that the latter is expanded so that it can assume bc as its
children. This is because in some algorithms (including STHoles), box(bm) can
become larger than box(b1) ∪ box(b2) in order to have a succinct description
with a single interval in each dimension. As a result, it might cut across other
buckets; box(bm) should then be extended so as to subsume those as children. In
order to avoid, however, dropping informative restrictions, STHoles only extends
box(bm) along dimensions where the boxes of bc do have a restriction. In order to

capture this, we have defined the encloses relation (Definition 6) in a way that
makes unrestricted dimensions enclosed by (rather than enclosing) restrictions.

In order to decide which is the optimal merge at any stage of histogram re-
finement, we need to balance between merges of buckets with similar statistics
(minimizing the error introduced by discarding the statistics held in the merged
buckets) and buckets with similar boxes (minimizing the error introduced by
generalizing boxes beyond what was warranted by hole drilling, i.e., query feed-
back). To achieve the latter, we first define a distance function that evaluates

Definition 11. Given a histogram H and any two of its boxes v1 and v2, we
define the distance between v1 and v2 as any function distanceH : VH ×VH → R
that has the following properties:

– distance(v1, v1) = 0
– If v1 encloses v2 then distance(v1, v2) = 0

We can now define the penalty function that evaluates a possible merge:

Definition 12. Given a histogram H and any three of its buckets b1, b2 and
bm, we define the penalty function penaltyH : BH ×BH → R of merging b1 and
b2 into bm as follows:

penaltyH(b1, b2) =

1

2

(
|density(b1)− density(bm)|
density(b1) + density(bm)

+
|density(b2)− density(bm)|
density(b2) + density(bm)

)
+
∑
i

(
|dvc(b1, i)− dvc(bm, i)|
dvc(b1, i) + dvc(bm, i)

+
|dvc(b2, i)− dvc(bm, i)|
dvc(b2, i) + dvc(bm, i)

)
+ distance (box (b1) ,box (b2))

The first two terms of this function represent the error in the statistics introduced
by the merge while the third term increases the penalty for bucket pairs that are
more distant as defined in Definition 11. Therefore, a sibling-sibling merge must
have a small enough statistics-based penalty to be preferred over a parent-child
merge, so that it can counter the fact that parent-child merges always have 0
distance-based penalty (since a child is always enclosed by its parent).

This penalty function allows us to rank the candidate bucket pairs and select
the one with the minimum penalty. It should be noted though that not every
bucket pair can be candidate for merging. The following merging constraints
apply:

– The new box(bm) should not intersect with any other box, otherwise we
would result in an inconsistent histogram

– The new box(bm) should not cover more than the half volume of its parent.
This constraint is significant in order to control over-generalization in the
early stages of an histogram when distant siblings might not be blocked from
merging by the previous clause

– If the new box(bm) encloses the boxes of other buckets, bm assumes these
buckets as as its children.

The specifics of how to calculate the box of the merged bucket are left to be
defined for each dimension type.

3.5 Extending for further types

We have deliberately avoided binding the discussion so far to specific data types,
in order to define a general framework for histograms. The only exception is that
the length of numerical ranges is already defined (Definition 9), in order to ensure
backwards compatibility with numerical ranges in STHoles.

In order to specify the histograms of a new data type, which we shall here
call newtype, one needs to provide the following:

1. A function newtype member that satisfies the definition of the generic mem-
ber function (Definition 4).

2. A function newtype intersection that satisfies the definition of the generic
intersection function (Definition 4).

3. A function newtype length that satisfies the definition of the generic length
function (Definition 9).

4. A function newtype distance that satisfies the definition of the generic dis-
tance function (Definition 11).

5. A procedure for calculating the box of the resulting bucket in sibling merging.
This procedure must satisfy the merging constraints in Section 3.4.

In the following section we will proceed to present two alternative specifications
for URI histograms within this framework.

4 URI Ranges

As a first approach to expressing ranges of URIs, we have looked at prefixes.
Prefixes can naturally express ranges of semantically related resources given
the natural tendency to group together relevant items in hierarchical structures
such as pathnames and URIs. We have also experimented with exploiting a
geometrical analogy where we express a range as the volume around a central
URI; again, we have defined distance in a way that prefixes weigh more, in order
to preserve the bias towards hierarchical structures but offering more flexibility
by comparison to exact prefix matching.

4.1 Prefix Ranges

In this approach we assume string prefixes as the description language for im-
plicitly defining string ranges.

Definition 13. Let H be a histogram and D be a string dimension of H. We
define a prefix range r of D to be a set of strings, denoted as Pref(r). The strings
in Pref(r) are to be interpreted as the prefixes of the elements of D that are in
r. For any string s ∈ D we define prefix membership as follows:

memberr(s) =

{
true, ∃p ∈ Pref(r) : s starts with p
false, otherwise

In order to satisfy the requirements set in Section 3.5, we need to define the
functions prefix intersection, prefix length, and prefix distance over prefix ranges,
as well as the procedure for sibling merging.

Definition 14. Let H be a histogram, D a string dimension of H, and r1, r2 ∈
P(D) two prefix ranges over D. The range intersection r1 e r2 is defined as:

1. If r1, r2 are string ranges defined by sets of prefixes, then r1er2 = {p|(p1, p2) ∈
Pref(r1)×Pref(r2)∧ (p = p1 = p2∨ one of p1, p2 is a prefix of the other and
p is the longest (more specific) of the two)}

2. If one of the ranges is a string range defined by sets of prefixes (say r1 without
loss of generality) and the other is an explicit set of strings (say r2), then
r1 e r2 = {v|v ∈ r2 ∧ ∃p ∈ r1 : p is a prefix of v}

3. In any other case, r1 e r2 = r1 ∩ r2

Definition 15. Given a histogram dimension D and a range r ∈ P(D) we
define the function length : P(D)→ R as follows:

1. Unrestricted ranges that span the whole dimension have length 0.
2. If r is an extensionally defined range of any type, then length(r) = |r|, the

number of distinct values in the range.
3. If r is a numerical range defined by an interval [x, y], then length(r) =

y − x + 1.
4. If r is a string range defined by a set of prefixes Pref(r), then length(r) =

1 + |Pref(r)|

It should be noted that no prefix range can ever be guaranteed to be equivalent
to an extensional singleton range, since any valid URI prefix can be extended into
a longer valid URI subsumed by the prefix. Therefore, all and only extensional
singleton ranges can have a length of 1, which satisfies Requirement 3.

Definition 16. Let r1 and r2 be prefix ranges. We define the prefix distance
between r1 and r2 to be a constant 0 for any r1, r2.

That is to say, in this setup there is no bias in sibling merges towards more
similar prefixes and candidate merges are evaluated only on the basis of the
similarity of the statistics in the buckets.

Box of merged siblings Suppose that sibling buckets b1 and b2 are to be
merged. The box of the merged bucket bm is calculated as the union of the
prefixes in each:

Pref(box(bm)) = Pref(box(b1)) ∪ Pref(box(b2))

4.2 Similarity Ranges

In this approach we use the Jaro-Winkler similarity metric [18] to define the
distance between two strings. This metric is suitable for URI comparison since
it provides preference to the strings that match exactly at the beginning. Based
on this, we define URI ranges as spherical volumes around a characteristic central
URI, so that a range is specified by a URI (the center) and the radius around it
that is within the range.

Definition 17. Let H be a histogram and D be a string dimension of H. Let
JW : D × D → [0, 1] be the Jaro-Winkler metric that assigns a similarity to
an unordered pair of strings from D. We define similarity range rd as a tuple
rd = 〈c,R〉 where c is a string called the center of r denoted as center(r) and
R ∈ R is called the radius of r and denoted as radius(r). For any string s ∈ D
we define similarity membership as follows:

memberr(s) =

{
true, if 1− JW(s, center(r)) ≤ radius(r)
false, otherwise

In order to satisfy the requirements set in Section 3.5, we need to define the
functions similarity intersection, similarity length, and similarity distance over
similarity ranges, as well as the procedure for sibling merging.

Definition 18. Given two similarity ranges of the same dimension r1, r2 ∈
P(D) their similarity intersection is defined as r1 e r2 = 〈c′, R′〉 where:

c′ = center(ri) where i = argmaxi=1,2 radius(ri)
R′ = max{0, radius(r1) + radius(r2)− distanceH(r1, r2)}

Definition 19. Given a histogram dimension D and a range r ∈ P(D) we
define the similarity length function length : P(D)→ R as follows:

1. Unrestricted ranges that span the whole dimension have length 0.
2. If r is an extensionally defined range of any type then length(r) = |r|, the

number of distinct values in the range.
3. If r is a numerical range defined by an interval [x, y], then length(r) =

y − x + 1.
4. If r is a similarity range then length(r) = 1 + radius(r)

It should be noted that range 〈u, 0〉 has u as its single member and is equivalent
to the extensional singleton range u. The similarity range length is 1 in both
cases, which satisfies Requirement 3.

Definition 20. Let r1 and r2 be similarity ranges. We define the similarity
distance between r1 and r2 using the Jaro-Winkler similarity of their centers:

distanceH(r1, r2) = 1− JW(center(r1), center(r2))

Box of merged siblings Suppose that sibling buckets b1 and b2 are to be
merged. The box of the merged bucket bm is calculated for each dimension i
that is URI dimension, where r1 is the range of b1 in dimension i, r2 is the range
of b2 in dimension i, and rm is the range of bm in dimension i. We assume that
for every range ri we can assign consistently an id and without loss of generality
let r1 be the range with the smallest id.

1. If radius(r1) = 0 and radius(r2) = 0, then :

center(rm) = center(r1)
radius(rm) = distanceH(r1, r2)

2. If radius(r1) 6= 0 ∧ radius(r2) 6= 0, then :

center(rm) =

{
center(r1), if radius(r1) ≥ radius(r2)
center(r2), otherwise

radius(rm) =

{
distanceH(r1, r2) + radius(r2), if radius(r1) ≥ radius(r2)
distanceH(r1, r2) + radius(r1), otherwise

3. otherwise,

center(rm) =

{
center(r1), if radius(r1) 6= 0
center(r2), otherwise

radius(rm) = distanceH(r1, r2)

That is, the center of the merged range is that of the range with the greater
radius, and the radius of the merged range is large enough so that the merged
range also encloses the range with the smaller radius. The intuition behind this
definition is that by assuming the larger of the two ranges as the basis for the
merged range, a smaller expansion will be needed in order to enclose the other
range, reducing the risk of over-generalizing.

4.3 Discussion

We have defined a multi-dimensional histogram over numerical, string, and cat-
egorical data. The core added value of this work is that we introduce the notion
of descriptions in string dimensions, akin to intervals for numerical dimensions.
This has considerable advantages for RDF stores and, more generally, in the
Semantic Web and Linked Open Data domain, where URIs have a prominent
role and offer the opportunity to exploit the hierarchical structure of their string
representation.

Initially, we propose prefixes as the formalism for expressing string ranges,
motivated by its applicability to URI structure. We then relax this formalism,
using similarity ranges to describe string ranges based on string distances. This
is no loss of generality, since it is straightforward to use more expressive pattern
formalisms (such as regular expressions) without altering the core method but

at a considerable computational cost. The only requirement is that membership,
intersection and some notion of length can be defined. Length, in particular, can
be used in the way STHoles uses it as an indication of a bucket’s size relative
to the size of its parent bucket. If a metric of distance or dissimilarity can be
defined, this is also exploited to introduce bias towards merging similar ranges,
but this is not required.

What allows us to relax the definition of length by comparison to STHoles,
is that for range queries we return the statistics of the bucket that more tightly
encloses the query, instead of returning an estimation based on the ratio of the
volume occupied by the query to the volume of the overall bucket. In other
words, we use length more as a metric of the size of description, rather than
a metric of the bucket size (the number of tuples that fit this description). To
compensate, we exactly measure in query results (rather than estimate) bucket
size when shrinking buckets, compensating for the extra computational time by
avoiding examining all combinations of buckets × dimensions (cf. Section 3.3).
For point queries (with unit length), we also take into account statistics about
distinct value counts in a bucket, increasing the accuracy of the estimation.

A limitation of our algorithm is that when we merge two sibling buckets we
assign to the resulting bucket the sum of the sizes of the merged buckets and of
the children of the resulting bucket, which is an overestimation of the real size.
Furthermore, we also assign as distinct value count the maximum of the distinct
value counts of these buckets, which is an underestimation of the real distinct
value count. These estimations will persist until subsequent workload queries
effect an update of merged bucket’s statistics and will be used in cardinality
estimations. We try to compensate for these possibly inaccurate estimations
by carefully selecting buckets for sibling-sibling merging and defining a sibling-
sibling merge penalty which favours the merging of buckets which not only have
similar statistics, i.e. densities and distinct value counts, but their central strings
are also similar. Besides empirically testing and tuning these estimators, we are
also planning to extend the theoretical framework so that estimated values are
represented as ranges or distributions, and subsequent calculations take into
account the whole range or the distribution parameters rather than a single
value.

In general, and despite these limitations, our framework is an accurate the-
oretical account of STHoles, a state-of-the-art algorithm for self-tuning multi-
dimensional numerical histograms, and an extension to heterogeneous numeri-
cal/string histograms that is backwards-compatible with STHoles.

5 Experiments

To empirically validate our approach, the algorithm presented above has been
implemented in Java as the STRHist module of the Semagrow Stack [19], an
optimized distributed querying system for the Semantic Web.4 The execution

4 STRHist is available at https://github.com/semagrow/strhist

For more details on Semagrow, please see http://semagrow.github.io

flow of the Semagrow Stack starts with client queries, analysed to build an op-
timal query plan. The optimizer relies on cardinality statistics (produced by
STRHist) in order to provide an execution plan for the Semagrow Query Execu-
tion Engine. This engine, besides joining results and serving them to the client
application, also forwards to STRHist measurements collected during query ex-
ecution. STRHist analyses these query feedback logs in batches to maintain the
histogram that is used by the optimizer. The histogram is persisted in RDF
stores using the Sevod vocabulary [20], which expresses the in-memory tree of
bucket objects that is the internal representation of STRHist.

5.1 Experimental Setup

We applied STRHist to the AGRIS bibliographic database on agricultural re-
search and technology maintained by the Food and Agriculture Organization
of the UN. AGRIS comprises approximately 23 million RDF triples describing
4 million distinct publications with standard bibliographic attributes.5 AGRIS
consolidates data from more than 150 institutions from 65 countries. Bibliogra-
phy items are denoted by URIs that are constructed following a convention that
includes the location of the contributing institution and the date of incorpora-
tion into AGRIS. As scientific output increases through the years and since there
is considerable variation in the scientific output of different countries, there are
interesting generalizations to be captured by patterns over publication URIs.

We define a 3-dimensional histogram over subject, predicate and object vari-
ables. Subject URIs are represented as strings6 while predicate URIs are treated
as categorical values, since there is always a small number of distinct predicates.
Each bucket is composed of a 3-dimensional subject/predicate/object bounding
box, a size indicating the number of triples contained in the bucket, and the
number of distinct subjects, predicates and objects.

We experiment on a real query workload extracted from the logs of the user
evaluation of the Semagrow Stack [21]. We separated the workload into a training
set that is used to refine of a histogram H over D and an evaluation set that
is used to compare the statistics reported by the histogram against the actual
dataset. Specifically, we measure the average absolute estimation error and the
root mean square error of histogram H on the respective workload W :

errABS
H,D (W) =

1

|W |
∑
q∈W

|estH(q)− actD(q)|

errRMS
H,D (W) =

1

|W |

√∑
q∈W

(estH(q)− actD(q))
2

5 Please see http://agris.fao.org for more details on AGRIS. The AGRIS site men-
tions 7 million distinct publications, but this includes recent additions that are not
in end-2013 data dump used for these experiments.

6 We use the canonical string representation of URIs as defined in Section 2, IETF
RFC 7320 (http://tools.ietf.org/html/rfc7320)

Similarity ranges Prefix ranges
Training Error Merges Error Merges

Batch RMS Abs PC SS Total RMS Abs PC SS Total

01 0.283 2.14 0 0 0 0.283 2.14 0 0 0
02 0.414 2.58 3 3 6 0.457 2.67 5 12 17
03 1.728 9.26 23 6 29 1.562 6.61 8 30 38
04 1.758 9.84 19 8 27 2.350 11.55 11 28 39
05 0.899 7.89 13 6 19 2.711 15.13 12 30 42
06 4.483 40.84 9 13 22 5.856 26.36 9 23 32
07 4.691 44.66 31 0 31 6.844 32.58 11 28 49
08 4.762 46.08 44 1 45 6.724 38.20 5 44 49
09 4.735 45.58 31 21 52 6.911 41.52 5 42 47
10 4.787 46.57 20 4 24 7.968 46.96 11 28 39
11 4.794 47.07 25 3 28 10.444 60.59 11 28 39
12 4.814 47.07 15 6 21 12.153 70.67 13 27 40
13 4.814 43.56 23 6 29 13.883 81.95 13 28 41
14 4.608 43.56 23 8 31 14.201 85.07 12 27 39
15 4.608 47.58 28 6 34 14.201 85.07 11 28 39
16 4.841 47.58 29 4 33 19.365 110.09 14 28 42
17 4.841 47.58 35 4 39 23.147 131.65 14 28 42
18 4.841 47.58 24 5 29 23.415 134.37 13 27 40
19 4.841 47.58 24 4 28 23.792 137.85 10 28 38
20 4.841 47.58 41 1 42 23.792 137.85 15 28 43
21 4.841 47.58 32 5 37 27.048 157.13 13 28 41
22 4.841 47.58 14 2 16 27.048 157.13 14 28 42
23 4.841 47.58 27 2 29 27.567 162.20 13 28 41
24 4.841 47.58 14 1 15 27.567 162.20 2 8 10

Table 1. Estimation error (RMS and absolute) versus training batch and merges
(parent-child (PC) and sibling-sibling (SS) merges) using prefixes and similarity ranges.
Configured for a maximum of 50 buckets.

where estH(q) is the cardinality estimation for query q and actD(q) is the actual
number of tuples in D that satisfy q.

The expected behaviour of the algorithm is to improve estimates by adding
buckets that punch holes and add sub-buckets in areas where there is a difference
between the actual statistics and the histogram estimates. Considering how client
applications access some ‘areas’ more heavily than others, the algorithm zooms
into such critical regions to provide more accurate statistics. Naturally, the more
interesting observations relate to the effect of merges as soon as the available
space is exhausted, so we have allocated to STRHist unrealistically small memory
(50 and 100 buckets).

5.2 Results

The AGRIS workload queries follow the same template: Both subjects and pred-
icate URIs are defined by the query, leaving the object dimension unrestricted.

As it represents a real scenario, we may have duplicate queries in the workload.
To generate the workload we randomly select a set of queries for refinement and
another set for evaluation. Therefore, we create 24 batches of 55 training queries,
totalling 1320 training queries, followed by a set of 100 evaluation queries used
to compare the estimations against the actual size of the query results and the
estimated ones. We experiment with different system configurations. Specifically,
we set a maximum of 100 and 50 buckets. Moreover, we evaluate both reported
representations for string ranges (i.e. prefix ranges and similarity ranges). Ta-
bles 1, 2 depict the average errors of the evaluation queryset and the number
of merges performed during each training batch.

One can note that the similarity range approach produced more accurate
estimations, especially when the maximum number of buckets is very limited
causing more merges. Using this observation we can infer that the similarity
range approach makes better merging decisions than the prefix range one. The
reason that prefixes cannot create as good merged buckets as in the similarity
ranges is that (a) prefixes as a succinct description is more restrictive and (b)
the AGRIS URIs have a hierarchical structure, but this structure is not that
deep that it would make strict prefixes expressive. Notice that the total merges
performed per batch are fewer in the similarity range case. This is due to the
fact that more training queries are already accurately estimated and thus the
histogram refinement algorithm discards them without drilling new holes. More-
over, this observation is also consistent even after considerable merges have been
applied to the histogram, deducing that merged buckets are not introducing sig-
nificant error to the estimations.

The histogram stabilizes after a certain number of training batches, as evi-
denced by the fact that the error remains constant. A significant difference can
be seen in the type of merging preferred by the two approaches: the number of
the parent-child merges is higher in similarity range approach, while the prefix
range approach prefers the sibling merging. This demonstrates the bias towards
parent-child merges encoded by the distance-based penalty in similarity merging.

6 Conclusions

In this article we have presented an algorithm for building and maintaining
multi-dimensional histograms exploiting query feedback. Our algorithm is based
on STHoles algorithm, but extends it to also handle URIs. One significant con-
tributions of the article is that it establishes a framework that formalises his-
tograms over arbitrary data types and identifies the specification of a language
for specifying data ranges as a key element of histograms. Building upon this, we
have identified the properties that any such language should have for histogram
refinement algorithms to be applicable.

This led to the second major contribution, that of proposing the Jaro-Winkler
similarity metric as an appropriate basis upon which to build a formalization of
histograms over URI strings. This metric has the advantage of accommodating
the hierarchical nature of URI strings by placing more importance on the be-

Similarity ranges Prefix ranges
Training Error Merges Error Merges

Batch RMS Abs PC SS Total RMS Abs PC SS Total

01 0.283 2.14 0 0 0 0.283 2.14 0 0 0
02 0.259 1.73 0 0 0 0.259 1.73 0 0 0
03 0.259 1.73 0 0 0 0.259 1.73 0 0 0
04 0.408 2.56 10 4 14 0.259 1.73 7 8 15
05 1.688 8.88 20 10 30 0.259 1.73 6 30 36
06 1.768 10.94 15 9 24 0.259 1.73 10 24 34
07 4.581 32.96 24 4 28 0.259 1.73 13 28 41
08 5.886 40.53 23 11 34 0.472 2.48 9 33 42
09 8.236 76.94 37 19 56 1.919 5.91 1 52 53
10 8.236 76.94 22 3 25 2.687 8.87 13 29 42
11 6.654 50.75 17 5 22 4.624 12.11 11 27 38
12 6.136 43.52 12 9 21 4.960 13.79 13 28 41
13 5.921 40.84 18 5 23 5.528 15.23 12 28 40
14 5.530 35.94 13 3 26 5.537 15.53 13 27 40
15 5.740 35.92 7 5 12 5.537 15.93 13 28 41
16 5.740 35.94 9 4 13 5.806 16.92 13 27 40
17 6.190 41.42 16 4 20 5.955 17.72 10 28 38
18 5.623 34.68 13 5 18 5.955 17.72 11 27 38
19 5.623 34.68 10 2 12 9.658 25.56 8 22 30
20 5.623 34.68 6 0 6 10.846 28.44 15 28 43
21 5.623 34.65 12 7 19 10.846 28.44 11 27 38
22 6.102 37.50 12 11 23 12.453 33.24 11 28 39
23 6.182 38.47 21 0 21 12.872 35.16 13 27 40
24 10.137 98.79 11 0 11 12.876 35.56 8 17 25

Table 2. Estimation error (RMS and absolute) versus training batch and merges
(parent-child (PC) and sibling-sibling (SS) merges) using prefixes and similarity ranges.
Configured for a maximum of 100 buckets.

ginning of the string, while being more flexible than strict prefix matching. This
gives our system a great advantage over the state of the art, where ranges are
only defined over numerical data and strings are treated as categorical data that
can only be described by enumeration: by having the ability to succinctly de-
scribe ranges of related URI strings, finer (and thus more accurate) histograms
can fit a given amount of memory.

As future work, we will experiment with a more sophisticated estimation
of the size of a bucket based from the radius of its box. One idea would be
to dynamically adapt a conversion ratio parameter to the observed query feed-
back, so as to better fit each given dimension in a dataset. This will improve
multi-dimensional volume calculations, since it will lift the assumption that the
breadth of a URI description and the size of the data that fits the description
grow uniformly. An even more ambitious goal is to define the length of URI
string ranges in a way that it can be combined with numerical range length, so
that multi-dimensional and heterogeneous (strings and numbers) buckets can be
assigned a meaningful volume.

Another strain of future research will experiment with finer representations
of clusters of URIs than the radius around a single central URI. This would
allow us to improve sibling merging, as our current approach is prone to over-
generalizing and making the histogram sensitive to the query feedback it receives
when it is first constructed.

With respect to the software development, we plan to develop a more scalable
implementation of the algorithm which will be able to efficiently serve histograms
from databases and not from in-memory Java objects. Although the unavoid-
able delay is not critical for the refinement phase, it can be unacceptable for the
run-time usage of the histogram by query optimizers. To keep such delays man-
ageable, a caching mechanism will need to be integrated in the implementation
so that the most frequent accesses to the histogram are served from a memory
cache.

Acknowledgements The research leading to these results has received fund-
ing from the European Union’s Seventh Framework Programme (FP7/2007-
2013) under grant agreement No. 318497. For more details about the SemaGrow
project please see http://www.semagrow.eu and about the Semagrow system
please see http://semagrow.github.io

References

1. Bruno, N., Chaudhuri, S.: Exploiting statistics on query expressions for optimiza-
tion. In: Proceedings of the 2002 ACM International Conference on Management
of Data (SIGMOD ’02), New York, NY, USA, ACM (2002) 263–274

2. Stillger, M., Lohman, G.M., Markl, V., Kandil, M.: LEO - DB2’s LEarning opti-
mizer. In: Proceedings of the 27th International Conference on Very Large Data
Bases. VLDB ’01, San Francisco, CA, USA, Morgan Kaufmann Publishers Inc.
(2001) 19–28

3. Aboulnaga, A., Chaudhuri, S.: Self-tuning histograms: Building histograms with-
out looking at data. In: Proceedings of the 1999 ACM International Conference on
Management of Data (SIGMOD ’99), New York, NY, USA, ACM (1999) 181–192

4. Bruno, N., Chaudhuri, S., Gravano, L.: STHoles: a multidimensional workload-
aware histogram. In: Proceedings of the 2001 ACM SIGMOD International Con-
ference on Management of Data (SIGMOD ’01. (2001) 211–222

5. Srivastava, U., Haas, P.J., Markl, V., Kutsch, M., Tran, T.M.: ISOMER: Con-
sistent histogram construction using query feedback. In: Proceedings of the 22nd
International Conference on Data Engineering (ICDE ’06), Washington, DC, USA,
IEEE Computer Society (2006)

6. Roh, Y.J., Kim, J.H., Chung, Y.D., Son, J.H., Kim, M.H.: Hierarchically organized
skew-tolerant histograms for geographic data objects. In: Proceedings of the 2010
ACM SIGMOD International Conference on Management of Data. SIGMOD ’10,
New York, NY, USA, ACM (2010) 627–638

7. Kaushik, R., Suciu, D.: Consistent histograms in the presence of distinct value
counts. Proc. VLDB Endow. 2 (2009) 850–861

8. Markl, V., Haas, P.J., Kutsch, M., Megiddo, N., Srivastava, U., Tran, T.M.: Con-
sistent selectivity estimation via maximum entropy. The VLDB Journal 16 (2007)
55–76

9. Bruno, N., Chaudhuri, S., Weikum, G.: Database tuning using online algorithms.
In Liu, L., Özsu, M.T., eds.: Encyclopedia of Database Systems. Springer US
(2009) 741–744

10. Khachatryan, A., Müller, E., Stier, C., Böhm, K.: Sensitivity of self-tuning his-
tograms: Query order affecting accuracy and robustness. In: Proceedings of the
24th International Conference on Scientific and Statistical Database Management
(SSDBM ’12), Berlin, Heidelberg, Springer-Verlag (2012) 334–342

11. Chaudhuri, S., Ganti, V., Gravano, L.: Selectivity estimation for string predicates:
Overcoming the underestimation problem. In: Proceedings of the 20th Interna-
tional Conference on Data Engineering (ICDE ’04), Washington, DC, USA, IEEE
Computer Society (2004)

12. Lim, L., Wang, M., Vitter, J.S.: CXHist: An on-line classification-based histogram
for XML string selectivity estimation. In: Proceedings of the 31st International
Conference on Very Large Data Bases (VLDB 2005), Trondheim, Norway, 30 Au-
gust – 2 September 2005. (2005) 1187–1198

13. Ding, L., Finin, T., Joshi, A., Pan, R., Cost, R.S., Peng, Y., Reddivari, P., Doshi,
V., Sachs, J.: Swoogle: A search and metadata engine for the semantic web. In:
Proceedings of the Thirteenth ACM International Conference on Information and
Knowledge Management. CIKM ’04, New York, NY, USA, ACM (2004) 652–659

14. Auer, S., Demter, J., Martin, M., Lehmann, J.: LODStats – an extensible frame-
work for high-performance dataset analytics. In: Proceedings of the 18th Interna-
tional Conference on Knowledge Engineering and Knowledge Management (EKAW
’12), Berlin, Heidelberg, Springer-Verlag (2012) 353–362

15. Langegger, A., Wöss, W.: RDFStats – an extensible RDF statistics generator
and library. In: 23rd International Workshop on Database and Expert Systems
Applications, Los Alamitos, CA, USA, IEEE Computer Society (2009) 79–83

16. Harth, A., Hose, K., Karnstedt, M., Polleres, A., Sattler, K.U., Umbrich, J.: Data
summaries for on-demand queries over linked data. In: Proceedings of the 19th
International World Wide Web Conference (WWW 2010), Raleigh, NC, USA, 26-
30 April 2010. (2010)

17. Zoulis, N., Mavroudi, E., Lykoura, A., Charalambidis, A., Konstantopoulos, S.:
Workload-aware self-tuning histograms on string data. In: Proceedings of the 26th
International Conference on Database and Expert System Applications (DEXA
2015), Valencia, Spain, 1–4 September 2015. (2015)

18. Winkler, W.E.: String comparator metrics and enhanced decision rules in the
Fellegi-Sunter model of record linkage. Technical report, Proceedings of the Section
on Survey Research Methods, American Statistical Association, pp. 354–359 (1990)

19. Charalambidis, A., Troumpoukis, A., Konstantopoulos, S.: SemaGrow: Optimizing
federated SPARQL queries. In: Proceedings of the 11th International Conference
on Semantic Systems (SEMANTiCS 2015), Vienna, Austria, 15-18 September 2015.
(2015)

20. Charalambidis, A., Konstantopoulos, S., Karkaletsis, V.: Dataset descriptions for
optimizing federated querying. In: Companion Proceedings of the 24th Interna-
tional World Wide Web Conference Companion Proceedings (WWW 2015), Poster
Session, Florence, Italy, 18-22 May 2015. (2015)

21. Celli, F., Keizer, J., Jaques, Y., Konstantopoulos, S., Vudragović, D.: Discovering,
indexing and interlinking information resources. F1000Research 4 (2015) Version
2; referees: 3 approved.

