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Background information 

Objectives of WP8 
ISBE Work Package 8, Modelling infrastructure and expertise, aims to provide the scientific and 
organisational foundation for a rapid and highly coordinated pan-European implementation of 
modelling as a service, for academia and industry across all major disciplinary fields of biology. 
 
Mathematical modelling is central in tying together theory and experiment, and interpreting and 
integrating data and model resources in the context of other commensurable data and models. 
Mathematical modelling has a proven capability of (i) connecting a comprehensive amount of 
empirical data into a functional whole, (ii) enforcing more explicit formulations of various 
hypotheses, (iii) increasing the prediction space of hypotheses, (iv) initiating and canalising 
experimental or empirical work by pointing out key questions and the type of data needed, (v) 
ensuring that models and ’ways of thinking’ are consistent with fundamental principles of 
physics, chemistry, and biology, and (vi) functioning as highly efficient intellectual meeting 
places for various disciplines. Modelling comes in many types, ranging from single-molecule 
stochastic modelling to organ level physiological modelling, and addressing some or all of the 
multiple dimensions of space, time, chemistry and the cellular control hierarchy. 

This document 
This document, Deliverable D8.1, marks the fulfilment of Task 8.1, set out as follows: 
 
Identify showcases illustrating the impact of modelling on biological discovery and the 
added-value of integrated theoretical-experimental research. 
 
The Description of Work for this task was as follows: 
• Illustrate the impact of modelling through existing showcases. This will be done by providing, 
for each of 6-10 existing modelling methodologies, two examples where they have led to a 
quantum increase in understanding of biology or medicine. 
• Show by 5 representative examples how experimental data have driven the development of 
new modelling approaches capable of delivering the required methodology. 
• Illustrate by 5 outstanding, representative, examples of the added value of integrated 
theoretical-experimental research programmes. 
• Document how modelling will have to guide the development of a mature phenomics discipline. 
 
We loosely define the term “modelling methodology” as the intersection of a mathematical 
framework, a law of nature (perhaps approximate), and a set of key assumptions. For instance, 
flux balance analysis is defined by the mathematics of ordinary differential equations and matrix 
algebra, stoichiometry (which ties in much “hard science” from biochemistry), and the 
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assumption of equilibrium and optimization of some relevant biological objective such as 
biomass production or nutrient uptake. 
 
An agreed-upon, structured classification of modelling methodologies does not yet exist, but will 
be needed to characterize and classify the competence in respective ISBE nodes. The 
showcases below exemplify many important modelling methodologies, and ISBE members are 
part of the recent MAMO (mathematical modelling ontology) initiative, 
http://sourceforge.net/p/mamo-ontology/wiki/Home. We will revisit the classification of modelling 
methodologies later in the planning of ISBE services. 

Showcases 
As we collected these showcases, a common theme was that success stories were formed by 
the complementary use of multiple mathematical models to study different aspects of a 
phenomenon. Therefore, rather than rigidly structuring showcases e.g. by mathematical 
formalism, we focus first on the biological story, then exemplify which modelling formalisms 
have proved useful, and in what way. We have aimed for a balanced selection of showcases 
with respect to modelling formalisms, as defined above. 

Heart modelling: From diffusing molecules to the electrically controlled, 
mechanical pump 
As familiar as the heart is, it takes a lot of different science to understand its function and 
failures. The heart is an electrically controlled, mechanical pump, built from the interaction of 
trillions of molecules. It performs its function of circulating the blood through the body by 
rhythmic muscle contractions, signalled by small electric impulses that originate in pacemaker 
cells, get propagated from cell to cell, and set off chains of events that trigger muscle proteins to 
shorten and eventually relax again. Your heart beats every second, yet people die from heart 
disease only once in their lifetime. Clearly, a thorough mathematical description of this wonder 
of nature must cover vastly disparate scales of size and time, and branches of physics from 
biochemistry to electricity and mechanics. 
Biological question: The underlying mechanisms of many heart diseases have been studied 
and mathematically modelled in great detail, at levels from the subcellular (e.g. ion channels, 
muscle proteins) to cells (action potential, contraction) to the whole organ. An important goal for 
such mathematical models is to suggest therapies, possibly tailored to each patient via patient-
specific parameters of heart geometry (Lamata et al., 2011) or ion channel function (Silva et al., 
2009). 
Mathematical methods: The heart is by nature a multiphysics system, being an electrically 
controlled mechanical pump (Plank et al., 2013). 

● The electrical activity of heart cells was modelled using ordinary differential equations by 
(Hutter & Noble, 1960)(Noble, 1960), building on (Hodgkin & Huxley, 1952)'s Nobel-
Prize-winning work with squid nerve cells. This mathematical framework has been 
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extended to include many ion channels (Fink et al., 2011) and multiple cellular 
compartments. 

● On the tissue and organ level, Peter Hunter introduced the application of continuum 
dynamics to heart function modelling in the 1970’s to enable multi-scale physiological 
modelling and vizualisation of whole organ function (Hunter, 1975; Hunter et al., 1975), 
and numerous methods such as operator splitting have been developed for the 
numerical solution of the resulting equations (Sundnes et al., 2006). 

● The coupling between heart electrophysiology and mechanics and deformation requires 
additional mathematical methods (Nordsletten et al., 2011). The same goes for 
integration across scales of space and time (chapter in (Coveney et al., in press)). 

Key insights: 
● The Hodgkin-Huxley model explained how cells can be excitable, that is, stable to a 

weak stimulus but responding to a stronger stimulus with a disproportionate positive 
feedback phenomenon, after which the cell is unsusceptible to further stimuli for a 
certain "refractory" period (well illustrated in Figure 1 of (Fitzhugh, 1961), which 
describes a two-dimensional simplification of the Hodgkin-Huxley model). 

● Similar analyses continue to be useful; for instance, (Tran et al., 2009) explained 
premature heartbeats (early afterdepolarizations) as a change in the stability properties 
of the dynamical system of the heart cell during the course of an action potential. 

● Tissue electromechanics models show how infarctions can cause arrhythmia: the normal 
propagation of an electrical wave can be slowed down in places, so that cells that have 
passed their refractory period get prematurely re-activated. Thus, the activation front can 
double over backwards and generate spiral waves and arrhythmia that prevents effective 
pumping. 

● Multiscale models of electrophysiology show how cellular action potentials give rise to 
the electrocardiogram (ECG) measured macroscopically on the surface of the body 
(Sundnes et al., 2006). 

● Markov models of ion channel function can explain how some genetic mutations cause 
abnormal action potentials and ECGs, e.g. prolonged action potentials (Clancy & Rudy, 
1999), changes in the duration and levels of ECG phases (called P, Q, R, S, T) such as 
long QT or ST elevation, or early afterdepolarizations (Zhu & Clancy, 2007). 

● Multiscale, multiphysics models can account for the effects of genetic mutations at levels 
from ion-channel structure, function, and macroscopic current; cell, tissue and organ 
function (Silva et al., 2009). 

 
Clancy CE & Rudy Y (1999). Linking a genetic defect to its cellular phenotype in a cardiac 
arrhythmia. Nature 400, 566–569. 
Coveney PV, Hunter PJ, Viceconti M, Noble D & Díaz V eds. (in press). Computational 
Biomedicine. Oxford University Press, Oxford. 
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Fink M, Niederer SA, Cherry EM, Fenton FH, Koivumäki JT, Seemann G, Thul R, Zhang H, 
Sachse FB, Beard D, Crampin EJ & Smith NP (2011). Cardiac cell modelling: Observations 
from the heart of the cardiac physiome project. Prog Biophys Mol Biol 104, 2–21. 
Fitzhugh R (1961). Impulses and physiological states in theoretical models of nerve membrane. 
Biophys J 1, 445–466. 
Hodgkin AL & Huxley AF (1952). A quantitative description of membrane current and its 
application to conduction and excitation in nerve. J Physiol 117, 500. 
Hunter P (1975). Finite element analysis of cardiac muscle mechanics. PhD thesis, University of 
Oxford, UK. 
Hunter PJ, McNaughton PA & Noble D (1975). Analytical models of propagation in excitable 
cells. Prog Biophys Mol Biol 30, 99. 
Hutter OF & Noble D (1960). Rectifying properties of heart muscle. 
Lamata P, Niederer S, Nordsletten D, Barber DC, Roy I, Hose DR & Smith N (2011). An 
accurate, fast and robust method to generate patient-specific cubic Hermite meshes. Med 
Image Anal 15, 801–813. 
Noble D (1960). Cardiac action and pacemaker potentials based on the Hodgkin-Huxley 
equations. 
Nordsletten DA, Niederer SA, Nash MP, Hunter PJ & Smith NP (2011). Coupling multi-physics 
models to cardiac mechanics. Prog Biophys Mol Biol 104, 77–88. 
Plank G, Prassl AJ & Augustin C (2013). Computational Challenges in Building Multi-Scale and 
Multi-Physics Models of Cardiac Electro-Mechanics. Biomed Eng Biomed Tech; DOI: 
10.1515/bmt-2013-4318. 
Silva JR, Pan H, Wu D, Nekouzadeh A, Decker KF, Cui J, Baker NA, Sept D & Rudy Y (2009). 
A multiscale model linking ion-channel molecular dynamics and electrostatics to the cardiac 
action potential. Proc Natl Acad Sci 106, 11102 –11106. 
Sundnes J, Lines GT, Cai X, Nielsen BF, Mardal K-A & Tveito A (2006). Computing the 
Electrical Activity in the Heart, 1st edn. Springer. 
Tran D, Sato D, Yochelis A, Weiss J, Garfinkel A & Qu Z (2009). Bifurcation and Chaos in a 
Model of Cardiac Early Afterdepolarizations. Phys Rev Lett; DOI: 
10.1103/PhysRevLett.102.258103. 
Zhu ZI & Clancy CE (2007). Genetic mutations and arrhythmia: simulation from DNA to 
electrocardiogram. J Electrocardiol 40, S47–50. 

Biological timekeepers 
Biological organisms have internal “clocks” that enable them to adapt their internal processes to 
the daily rhythm of night and day. Our understanding of these mechanisms is very much framed 
in terms of mathematical models and concepts, and has had applications e.g. in medicine 
(Goldbeter & Claude 2002; Altinok et al. 2009). Below, we describe a couple of other examples 
in some detail. 
 

Page 7 of 18 



 
Altinok A, Lévi F & Goldbeter A (2009). Identifying mechanisms of chronotolerance and 
chronoefficacy for the anticancer drugs 5-fluorouracil and oxaliplatin by computational modeling. 
European Journal of Pharmaceutical Sciences 36, 20–38. 
Goldbeter A & Claude D (2002). Time-patterned drug administration: insights from a modeling 
approach. Chronobiology international 19, 157–175. 

The daily rhythms of plants 
Circadian clocks enable biological organisms to adapt their internal processes to the daily 
rhythm of night and day. Properties like phase, period or amplitude are clearly systems 
properties and have no meaning on the level of individual molecular components. The 
investigation of circadian clocks speaks therefore for a combined experimental and theoretical 
approach. Circadian rhythms were first identified in plants, famous became the ‘flower clock’ of 
Carl von Linné. Andrew Millar et al. were the first who integrated disparate molecular results in 
mathematical models of the plant clock mechanism. The models revealed general operating 
principles, such as the flexible regulation of complex feedback circuits. Through an iterative 
experimental and theoretical work Millar et al. were able to show that the circadian clock of the 
model plant Arabidopsis thaliana consists of interlocked feedback loops, which includes a three-
component repressilator circuit in its complex structure. 
 
Locke, J. C. W., Millar, A. J. & Turner, M. S. Modelling genetic networks with noisy and varied 
experimental data: the circadian clock in Arabidopsis thaliana. J Theor Biol 234, 383–393 (2005). 
Locke, J. C. W. et al. Extension of a genetic network model by iterative experimentation and 
mathematical analysis. Mol Syst Biol 1, 2005.0013 (2005). 
Pokhilko, A. et al. The clock gene circuit in Arabidopsis includes a repressilator with additional 
feedback loops. Mol Syst Biol 8, (2012). 
Saithong, T., Painter, K. J. & Millar, A. J. The contributions of interlocking loops and extensive 
nonlinearity to the properties of circadian clock models. PLoS ONE 5, e13867 (2010). 

Understanding cell-cell synchronization of metabolic oscillations 

Glycolysis is a process of breaking down sugars to provide energy for other bodily processes. 
The rate of glycolysis has been found to oscillate markedly in yeast cells under certain 
conditions, a phenomenon that could not be explained merely through experiments. 
Mathematical modelling has been a driver towards key insights from early on, through decades 
of hypothesis generation and testing, and close interaction between theory and experiment. 
 
Initial discovery: Glycolytic oscillations were found in vivo and in cell extracts through 
intracellular NADH fluorescence (first demonstration Duysens & Amesz 1957; early 
developments reviewed in Hess & Boiteux 1971). 
Mathematical methods: 
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Glycolytic oscillations have been modeled extensively with various network mechanisms (e.g. 
Sel’kov). Most involve kinetic modelling and numerical analysis, but also graphical tools to help 
identify oscillophores in networks (Goldstein et al.). 
Key insights: 
In several of these mechanisms control over the oscillation was distributed over multiple 
network components (Teusink et al.). Ccetaldehyde mediates the synchronization (Richard et 
al.). Where experiments with populations of intact cells had been transient only, Richard et al. 
found conditions where the NADH oscillations are sustained, and this finding was consolidated 
in a flow-through setting (Dano et al.). Modelling cell-to-cell synchronization, raised the issue 
whether the cells effectively form one single oscillator or a synchronized set of oscillators (one 
for each cell) (Bier et al.; Wolf et al.; Dano et al.), and a combined modeling and experimental 
approach inspecting individual cells showed that the latter is the case (Du Preez et al.). 
 
Bier et al. (2000) How yeast cells synchronize their glycolytic oscillations: a perturbation analytic 
treatment. Biophys J. 78: 1145-1153 
Dano et al. (1999) Sustained oscillations in living cells. Nature 402: 320-322 
Duysens LNM & Amesz J (1957). Fluorescence spectrophotometry of reduced phosphopyridine 
nucleotide in intact cells in the near-ultraviolet and visible region. Biochimica et biophysica acta 
24, 19–26. 
Hess B & Boiteux A (1971). Oscillatory phenomena in biochemistry. Annual review of 
biochemistry 40, 237–258. 
Richard et al. (1994) Yeast cells with a specific cellular make-up and an environment that 
removes acetaldehyde are prone to sustained glycolytic oscillations. FEBS Lett. 341, 223-226 
Richard et al. (1996) Acetaldehyde mediates the synchronization of sustained glycolytic 
oscillations in populations of yeast cells. Eur. J. Biochem. 235: 238-241 
Sel'kov (1968) Self-oscillations in glycolysis. 1. A simple kinetic model. Eur. J. Biochem. 4: 79-
86 
Teusink et al. (1996) Control of frequency and amplitudes is shared by all enzymes in three 
models for yeast glycolytic oscillations. Biochim. Biophys. Acta 1275: 204-212 
Wolf et al. (2000) Transduction of intracellular and intercellular dynamics in yeast glycolytic 
oscillations. Biophys J. 78: 1145-1153 

Signal transduction 
Signal transduction refers to cascades of biochemical reactions that enable a cell to respond 
appropriately to its state or environment. For example, conditions outside the cell can trigger a 
chain of events that eventually tell the nucleus to start expressing appropriate genes. The 
seminal mathematization by Goldbeter & Koshland (1981) spawned a large research program 
on mathematical modelling hand-in-hand with experiment. 
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Goldbeter A & Koshland DE (1981). An amplified sensitivity arising from covalent modification in 
biological systems. PNAS 78, 6840–6844. 

Pump priming of signal transduction as a general principle 

Biological question: 
The common way of looking at signal transduction was that of activation of a receptor, which 
then activates an enzyme that modifies a second enzyme, which again covalently modifies 
another enzyme, and somewhere down the chain a modified protein is a transcription factor. 
Although in some cases physical movement is involved, e.g. because the receptor resides in the 
plasma membrane and the DNA in the nucleus, the process has often been described, analysed 
and understood in terms of time dependence only. Key signalling systems properties like 
physical displacement, recruitment and active transport, were unaccounted for. 
Mathematical methods: 
Kinetic modelling; numerical analysis. 
Key insights: 
EGF induces signalling through the MAP kinase cascade essentially by causing the EGF 
receptor to accumulate SOS near the plasma membrane where RAS is located and thereby 
activated (Kholodenko and Westerhoff). Endocytosis of EGF-bound EGF receptor and 
movement towards the nuclear membrane may be the more important for signalling than 
diffusion of components of the MAP kinase cascade (Kholodenko and Brown). Circulation into 
and again out of the nucleus is crucial for JAK-STAT signalling (Klingmüller and Timmer). Signal 
transduction from hydrophobic signal molecules to transcription depends on a conveyor belt-like 
system in and out of the nucleus transporting the nuclear receptor plus or minus hormone 
(Kolodkin et al.). Such conveyor belt-like mechanisms also operates in lipid-mediated signalling 
(Bastiaens and coworkers). Trafficking of vesicles in cells contributes to signal transduction 
(Zerial and colleagues). Gibbs free energy hydrolysis is commonly driving the process, such that 
it can be described as a pumping of a relevant signalling molecule to a certain position in space, 
rather than covalent modification (like phosphorylation through ATP) that triggers the next step 
in the pathway. 
 
Kholodenko et al. (2000) Why cytoplasmic signalling proteins should be recruited to cell 
membranes. Trends Cell Biol. 10: 173-178. 
Kolodkin et al. (2010) Design principles of nuclear receptor signalling: How complex networking 
improves signal transduction. Mol. Syst. Biol. 6: 446 
Rocks et al. (2010) The palmitoylation machinery is a spatially organizing system for peripheral 
membrane proteins. Cell 141: 458-471 
Swameye et al. (2003) Identification of nucleocytoplasmic cycling as a remote sensor in cellular 
signaling by databased modeling. Proc. Natl Acad. Sci. USA 100: 1028-1033 
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Zerial & McBride (2001) Rab proteins as membrane organizers. Nat. Rev. Mol. Cell Biol. 2: 107-
117 

Reconciling in vivo and in vitro 

Much of our understanding of biochemical pathways and their components derives from in vitro 
experimentation. It is an important issue whether the situation in vivo reflects the one in vitro. 
For one, concentrations of pathway components tend to be much higher in vivo than in most 
studies in vitro. Also concentrations of other components may be much higher. This may lead to 
enhancement of association reactions – particularly through macromolecular crowding – and to 
metabolite channeling. 
Mathematical methods: 
Kinetic modelling; stochastic modelling (Monte Carlo); numerical analysis. 
Key insights: 
There are substantial effects of molecular crowding for the glucose uptake system of E. coli 
(Rohwer and colleagues). With nonlinear kinetics channeling can enable chemical reactions that 
are otherwise impossible because of the second law of thermodynamics (Astumian et al.). The 
intracellular medium tends to differ from that in enzyme assays and this can significantly 
contribute to differences between in vitro data and in vivo observations (Van Eunen et al.). 
 
Astumian et al. (1987) Can free energy be transduced from electric noise? Proc. Natl Acad. Sci. 
USA 84: 434 438 
Garcia-Contreras et al. (2012) Why in vivo may not equal in vitro-new effectors revealed by 
measurement of enzyme activities under in-vivo-like assay conditions. FEBS J. 279: 4145-4159 
Kholodenko & Westerhoff (1995) The macroworld versus the microworld of biochemical 
regulation and control. Trends Biochem. Sci. 20: 52-54 
Rohwer et al. (1998) Implications of molecular crowding for signal transduction and metabolite 
channeling. Proc. Natl Acad. Sci. USA 95: 10547-10552 
Van Eunen et al. (2010) Measuring enzyme activities under standardized in vivo-like conditions 
for Systems Biology. FEBS J. 277: 749-760 

Non-equilibrium thermodynamics of living systems 
- trade-offs between efficiency, yield, rate, regulation; reversibility, irreversibility, active 
versus passive transport 
Through evolution, life has addressed a great number of challenges, including life under 
extreme circumstances like at high temperatures or high acidity levels. Limitations that could not 
be fundamentally solved have often been worked around by evolution, like for instance 
limitations imposed by thermodynamics. Famous is the apparent violation of the second law of 
thermodynamics, apparently creating order out of chaos, hence reducing entropy. The 
workaround is being an open system that increases entropy, yet locally decreased by exporting 
more than is being produced. Metabolic systems are good at this (Westerhoff and Van Dam). It 
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remains an issue, however, how efficient living systems are thermodynamically, i.e. how much 
of the free energy that they absorb they actually fix on their biomass or other tasks. Even today 
many scientists assume that living systems are optimal vis-à-vis efficiency. This is in fact the 
basis of the third phase of flux balance analysis (see above). Stucki and Van Dam and 
coworkers have shown that, if anything, biology is not much after efficiency, but much more 
after growth or production rate, or a combination between rate and yield. Yet flux balance 
analysis predictions based on assumed maximal yield appeared to be validated experimentally 
(Edwards et al.), although a constant maintenance metabolism was assumed here. Baker’s 
yeast does not choose the most efficient growth option unless there is glucose limitation 
(Simeonidis et al.). There appears to be a trade-off between efficiency or yield, rate and perhaps 
other functionalities. One such functionality is that of robust control. It may be useful to expend 
free energy (and thereby to reduce efficiency) by making certain transitions irreversible, such as 
is done in the cell cycle (Novak et al.). Or to expend free energy to activate a pathway by 
accumulating certain intermediates to high enough levels to drive the subsequent steps 
(Teusink et al.). The thermodynamic argument can be important in deciding on proposed 
structure-based model, for instance the proposal that ammonium transport into cells is passive, 
based on structure models of the transporters. Systems biology computation have shown that 
this would neither be feasible thermodynamically nor kinetically (Boogerd et al 2011). 
 
Boogerd et al. (2011) Hypothesis. AmtB-mediated NH3 transport must be active and as a 
consequence regulation of transport by GlnK is mandatory to minimise futile cycling of 
NH4+/NH3. FEBS Lett. 585: 23-28 
Edwards & Palsson (2000) The Escherichia coli MG1655 in silico metabolic genotype: its 
definition, characteristics, and capabilities. Proc. Natl. Acad. Sci. USA 97: 5528–5533 
Edwards et al. (2001) In silico predictions of Escherichia coli metabolic capabilities are 
consistent with experimental data. Nat. Biotech. 19: 125-130 Simeonidis et al. (2010) Why does 
yeast ferment? A flux balance analysis study. Biochem. Soc. Trans. 38: 1225-1229 
Novak et al. (2007) Irreversible cell-cycle transitions are due to systems-level feedback. Nat. 
Cell Biol. 9: 724-728 Teusink et al. (1998) Intracellular glucose concentration in derepressed 
yeast cells consuming glucose is high enough to reduce the glucose transport rate by 50%. J. 
Bacteriol. 180: 556-562 
Stucki (1980) The optimal efficiency and the economic degrees of coupling of oxidative 
phosphorylation. Eur. J. Biochem: 109, 269-283 
Westerhoff et al. (1983) Thermodynamic efficiency of microbial growth is low, but optimal for 
maximal growth rate. Proc. Natl. Acad. Sci. USA 80: 305-309 

Subtlety in biology: distributed control and regulation and high robustness 
Biological question: 
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A persistent misunderstanding in biochemistry is that pathway function is controlled by a single 
rate-limiting step, being the first committed and non-equilibrium step in the pathway. This notion 
abounds in textbooks and science communications, but has been proven wrong in multiple 
cases and for various phenomena in models, experiment-based models and experiments. How? 
Mathematical methods: 
Theory development: metabolic control analysis, sensitivity analysis, hierarchical regulation 
analysis; implementation in kinetic modelling. 
Key insights: 
The fundamental principle is not that a single step has all the control, but rather that total flux 
control can be distributed over all steps in the pathway (Kacser, Burns, Heinrich, Rapoport, and 
others). For flux control, the distribution is determined by the relative kinetic properties of the 
pathway enzymes (the so-called elasticity coefficients) (Kacser and Burns). Also for 
concentrations in metabolic, signal transduction and gene expression pathways, control tends to 
be distributed over pathway steps (Westerhoff, Chen and Kahn). In addition to flux and 
concentrations, this notion also holds for membrane potential; DNA supercoiling; frequency and 
amplitude of metabolic oscillations; amplitude, rate, efficacy and duration of signal transduction; 
and cell cycle progression. Metabolic control analysis mathematically combines models, 
experiments, discoveries and natural laws based on the established organization of biochemical 
networks. Applied to signal transduction, for instance, the approach revealed that phosphatases 
are equally important as the kinases for the amplitude of the transduced signal, but that 
phosphatases are more critical for the duration. Development of methodology to determine the 
extents to which an organism regulates a flux through a process metabolically, through signal 
transduction, through transcription or through translation (hierarchical regulation analysis) (Ter 
Kuile and Westerhoff) again showed regulation to be subtle, i.e. distributed over these four 
modes (Daran-Lapujade et al), varying between steps in the same pathway (Ter Kuile and 
Westerhoff; Rossell et al.) with challenges that cause the organism to regulate (Rossell et al) 
and with time after the challenge (Van Eunen et al.). These properties bestow biochemical 
networks with much higher robustness than single metabolic reactions would have (Quinton-
Tulloch et al.). 
 
Daran-Lapujade et al. (2007) The flux through glycolytic enzymes in Saccharomyces cerevisiae 
are predominantly regulated at posttranscriptional levels. Proc. Natl Acad. Sci. USA 104: 15753-
15758 
Groen et al. (1982) Quantification of the Contribution of Various Steps to the Control of 
Mitochondrial Respiration. J. Biol. Chem. 257: 2754 2757 
Jensen et al. (2000) Extensive regulation compromises the extent to which DNA gyrase controls 
DNA supercoiling and growth rate of Escherichia coli. Eur. J. Biochem. 266: 865-877 
Kacser & Burns (1973) The control of flux. Symp. Soc. Exp. Biol. 27: 65-104 Heinrich et al. 
(1977) Metabolic regulation and mathematical models. Progr. Biophys. Mol. Biol. 32: 1-82 
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Quinton-Tulloch et al. (2013) Trade-off of dynamic fragility but not of robustness in metabolic 
pathways in silico. FEBS J. 280: 160 -173 
Rossell et al. (2006) Unraveling the complexity of flux regulation: a new method demonstrated 
for nutrient starvation in Saccharomyces cerevisiae. Proc. Natl Acad. Sci. USA 103: 2166-2171 
Ter Kuile & Westerhoff (2001) Transcriptome meets metabolome: hierarchical and metabolic 
regulation of the glycolytic pathway. FEBS Lett. 500: 169-171 
Van Eunen et al. (2009) Time-dependent regulation analysis dissects shifts between metabolic 
and gen-expression regulation during nitrogen starvation in baker’s yeast. FEBS J. 276: 5521-
5536 
Westerhoff & Arents (1984) Two completely rate limiting steps in one metabolic pathway? The 
resolution of a paradox using control theory and Bacteriorhodopsin liposomes. Biosc. Rep. 4: 
23-31 
Westerhoff & Chen (1984) How do Enzyme Activities control Metabolite Concentrations? An 
additional theorem in the theory of metabolic control. Eur. J. Biochem. 142: 425 430 
Westerhoff & Kahn (1993) Control involving metabolism and gene expression: the square-matrix 
method for modular decomposition. Acta Biotheor. 41: 75-83 
Westerhoff et al. (2009) Systems Biology towards Life in silico: mathematics of the control of 
living cells. J. Math. Biol. 58: 7-34 

The dangers of activated metabolism 
- turbo explosions, their prevention, and new drug targets 

Biological question: 
Most catabolic pathways are activated by an investment of ATP-free energy in their beginning to 
yield a substantial return on investment later on in the pathway, a so-called turbo design. How 
are these core metabolic systems properly controlled? 
Mathematical methods: 
Kinetic modelling 
Key insights: 
Turbo design could lead to metabolic explosions in terms of continued accumulation of hexose 
phosphates. Yeast growing at high glucose concentrations can prevent such explosion from 
happening in through a regulatory feedback loop via trehalose phosphate with hitherto 
unidentified function (Teusink et al.). In trypanosomes the compartmentation of part of glycolysis 
into a special compartment would also protect the organism against turbo explosions (proposed 
and computed by Bakker et al.), which was subsequently confirmed experimentally (Haanstra et 
al.), providing a novel drug target in trypanosomes. The principle is under active investigation as 
to the involvement of other parts of the network and a possible anti-tumour network target. 
 
Bakker et al. (2000) Compartmentation prevents trypanosomes from the dangerous design of 
glycolysis. Proc. Natl Acad. Sci. USA 97: 2087-2092 
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Haanstra et al. (2008) Compartmentation prevents a lethal turbo explosion of glycolysis in 
trypanosomes. Proc. Natl Acad. Sci. USA 105: 17718-17723 
Teusink et al. (1996) The danger of metabolic pathways with turbo design. Trends Biochem. Sci. 
23: 162-169 

Immunology 

The “population dynamics” of white blood cells 
 
den Braber et al. 2012. Maintenance of peripheral naive T cells is sustained by thymus output in 
mice but not humans. 
Biological question: Mature T cells emerge from the thymus where they are selected for 
recognition of the body’s MHC molecules and against recognition of self-peptides. The thymus 
progressively degenerates after puberty, and it has been a long-standing question of how long 
during life the pool of naïve T cells is replenished by thymic output. Among other implications, 
this question is relevant for understanding the aging of the immune system. 
Mathematical methods: To answer this question, the lifetime of naïve T cells in the intact 
organism and influx from the thymus need to reliably estimated from multiple experimental data 
sets. Population-dynamic models based on ordinary differential equations have been 
developed and fitted to the data. 
Key insights: Aging affected naive T cell maintenance fundamentally differently in mice and men. 
Whereas the naive T cell pool in mice was almost exclusively sustained by thymus output 
throughout their lifetime, the maintenance of the adult human naive T cell pool occurred almost 
exclusively through peripheral T cell division. 
 
Buchholz et al. 2013. Disparate individual fates compose robust CD8+ T cell immunity. 
Biological question: During the immune response, naïve T cells develop into short-lived effector 
cells that fight an invading pathogen and memory cells that protect against subsequent 
infections with this pathogen. The underlying developmental program has been controversial. 
This question has implications for vaccination as well as cell therapy of immunodeficiency and 
cancer. 
Mathematical methods: Stochastic modeling of cell proliferation and differentiation, 
statistically-based inference of model topology (‘developmental program’) that accounts for 
the experimental data. 
Key insight: Precursors of memory T cells arise early during the immune response and serve as 
stem cells for both primary and memory responses, giving rise to derived effector and effector 
memory cells. 

Regulatory networks in immunology 
T cells can discriminate between antigens of similar affinity, largely independent of ligand 
concentration. This exquisite specificity cannot be explained by mass-action receptor-ligand 
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binding. It is thought that the T cell receptor and its associated signal transduction machinery 
recognize the dwell time of the antigen at the receptor by a kinetic proofreading mechanism. 
Mechanistic understanding is relevant for rationalizing the pathogenesis of autoimmune 
diseases. 
 
Key reference: Altan-Bonnet & Germain 2005. Modeling T cell antigen discrimination based on 
feedback control of digital ERK responses. 
Mathematical methods: Detailed ordinary differential equation model of signal transduction 
downstream of the T cell receptor that accounts for the combinatorial complexity of protein 
complex formation and multi-site phosphorylation by rule-based modeling. Used to rationalize 
experimental data by semi-quantitative comparisons. This study made extensive use of 
automated model generation via BioNetGen. 
Key insights: The results combining computation and experiment reveal that ligand 
discrimination by T cells is controlled by the dynamics of competing feedback loops that 
regulate a high-gain digital amplifier, which is itself modulated during differentiation by 
alterations in the intracellular concentrations of key enzymes. 
 
Altan-Bonnet G & Germain RN (2005). Modeling T Cell Antigen Discrimination Based on 
Feedback Control of Digital ERK Responses. PLoS Biol 3, e356. 
Buchholz VR, Flossdorf M, Hensel I, Kretschmer L, Weissbrich B, Gräf P, Verschoor A, 
Schiemann M, Höfer T & Busch DH (2013). Disparate Individual Fates Compose Robust CD8+ 
T Cell Immunity. Science 340, 630–635. 
Den Braber I, Mugwagwa T, Vrisekoop N, Westera L, Mögling R, Bregje de Boer A, Willems N, 
Schrijver EHR, Spierenburg G, Gaiser K, Mul E, Otto SA, Ruiter AFC, Ackermans MT, Miedema 
F, Borghans JAM, de Boer RJ & Tesselaar K (2012). Maintenance of Peripheral Naive T Cells Is 
Sustained by Thymus Output in Mice but Not Humans. Immunity 36, 288–297. 

Further examples of medical modelling 

Regulatory networks and cancer: Analysis of the Wnt pathway 

Lee et al. 2003. The roles of APC and axin derived from experimental and theoretical analysis of 
the Wnt pathway. 
Biological question: Wnt signaling plays an important role in both cancer formation and normal 
development. Although the key molecules required for transducing a Wnt signal have been 
identified, a quantitative understanding of this pathway has been lacking. 
Mathematical methods: Ordinary-differential equation model of the core Wnt pathway, 
sensitivity analysis, quantitative comparison with experimental data. 
Key insights: Clarification of the role of the scaffold proteins APC and axin. The dependence of 
axin degradation on APC is shown to be an essential part of an unappreciated regulatory loop. 
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By applying control analysis to the mathematical model, tumor suppression and oncogenicity is 
quantified. 
 
Lee E, Salic A, Krüger R, Heinrich R & Kirschner MW (2003). The Roles of APC and Axin 
Derived from Experimental and Theoretical Analysis of the Wnt Pathway. PLoS Biol 1, e10. 

Using mathematical models to characterise effects of blood cancer drugs 
Chronic myeloid leukaemia is a cancer of the white blood cells, which are an important part of 
the body’s immune system. To quantify the effects of drugs, it is useful to fit mathematical 
models to observe disease progression with and without drugs. The parameters in this 
mathematical model then form a very relevant and concise summary of the drug effects. 
 
The clinical success of the ABL tyrosine kinase inhibitor imatinib in chronic myeloid leukaemia 
(CML) serves as a model for molecularly targeted therapy of cancer, but at least two critical 
questions remain. Can imatinib eradicate leukaemic stem cells? What are the dynamics of 
relapse due to imatinib resistance, which is caused by mutations in the ABL kinase domain? 
 
Key reference: Michor et al. 2005. Dynamics of chronic myeloid leukaemia. 
Mathematical methods: Population-dynamic model of hematopoiesis and development of 
leukemia (‘compartment model’). 
Key insights: The model suggests that imatinib is a potent inhibitor of the production of 
differentiated leukaemic cells, but does not deplete leukaemic stem cells. It provides a 
quantitative framework for understanding the timescale at which therapy resistance emerges. 
 
Michor F, Hughes TP, Iwasa Y, Branford S, Shah NP, Sawyers CL & Nowak MA (2005). 
Dynamics of chronic myeloid leukaemia. Nature 435, 1267–1270. 

Diseases with complex causes are systems-biology phenomena 

Mankind has had appreciable success in treating unifactorial ailments, such as infectious 
disease and some inborn errors of metabolism (e.g.phenylketonuria). However, a one-gene 
one-disease type of paradigm has not worked well for understanding the major disorders that 
plague modern society, including diabetes, obesity, cancer, heart disease, and atherosclerosis. 
Mathematical methods: 
Kinetic modelling; topological modelling. 
Key insights: 
Cancer is a typical systems biology disease, with multiple systems biology studies showing that 
network functions depend on many factors and go awry upon changes in a number of 
alternative sets of simultaneous losses of molecular function (e.g. Hornberg and colleagues). 
Similar conclusions hold for other multifactorial diseases (e.g. Rehman et al.). 
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Hornberg et al. (2005) Control of MAPK signalling: from complexity to what really matters. 
Oncogene 24: 5533-5542 
Hornberg et al. (2006) Cancer: A Systems Biology Disease. BioSystems 83: 81-90 
Moreno-Sanchez et al. (2010) Metabolic control analysis indicates a change of strategy in the 
treatment of cancer. Mitochondrion 10: 626-639 
Rehman et al. (2011) Dupuytren’s: a systems biology disease. Arthritis Res. Ther. 13: 238. 

Network-based drug design, and a new drug target 

Most drug design has been either empirical (testing a battery of drugs in a high throughput 
experimental model of the disease) or through focusing on the binding of an inhibitor to a 
macromolecular target, such as an enzyme or receptor. Target selection is commonly based on, 
for example, its position at the beginning of a pathway, a suspicion that something would be the 
rate limiting step, or some correlation of its expression with disease occurrence. Since systems 
biology has shown that multifactorial diseases are network phenomena and that therefore one 
should target network function rather than single-component activity, the question was whether 
there is a more efficient and objective approach towards drug target selection in the parasite 
Trypanosoma brucei that causes sleeping sickness. 
Mathematical methods: 
Bakker and colleagues developed a systems biology methodology to identify the best target in a 
network comparing the action of that target between parasitic cells to be removed and healthy 
cells of the host. The studies involved a combination of computer simulations deploying ODE-
based kinetic models and metabolic control analysis, and experimental studies of glycolysis in 
bloodstream-form T. brucei. 
Key insights: 
Applying the methodology to glycolysis in T. brucei it was found that (i) the traditionally used 
drug targets are unlikely to be effective when the metabolic network is taken into consideration, 
(ii) the glucose transporter is the much better target, and (iii) this is even more so when 
accounting for natural adaptation of the parasite to the low glucose conditions in the tsetse fly. 
 
Bakker et al. (1999) What controls glycolysis in bloodstream form Trypanosoma brucei? J. Biol. 
Chem. 274: 24552-24559 
Bakker et al (2002) Network-based selectivity of antiparasitic inhibitors. Mol. Biol. Rep. 29: 1-2 
Haanstra et al. (2011) A domino effect in drug action: from metabolic assault to parasite 
differentiation. Mol. Microbiol. 79: 94-108 
Bakker et al. (2010) The silicon trypanosome. Parasitology 137: 1333-1341 
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