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The Transformation and Division of Elliptic Functions.
By A. G. GREEKHILL.

Read 13th December, 1894. Received 4th February, 1896,
and in Recast Form 22nd April, 1896.

Two important papers, with the title * The Transformation of
Elliptic Functions,” have been communicated by Professor Felix
Klein to the London Mathematical Society, and published in’
‘Volumes 1x and x1 of the Proceedings.

Professor Klein has greatly honoured our Society by choosing its
Proceedings for the publication of such fundamental ideas in his
theory—ideas which have subsequently received their fullest develop-
ment in Klein and Fricke's Modulfunctionen.

" As the present communication is of the nature of a note or
commentary on these two papers of Professor Klein, in Vols. 1x
and x1, the same title has been adopted; and the object of the
present ‘paper is to show 'how to express the various pulametels
employed by Klein, Klepert Fricke, and others, for a glven trans-
formation, explicitly in terms of & single parameter.

Thence it is easy to construct numerical cases required in the
applications of elliptic functions; two such cases have been worked
out in the sequel, and the chief results stated.

Starting with the various modular equations given by Kicpert
and Klein, the object of the present paper is to express their para-
meters in terms of another, in such o manner that it is possible to
write down the various division values (Theil-werthe) of the second as
well ‘as of the first stage (Stufe), the parmmeters of Klein and
Kiepert being symmetric functions of these division values; and the
method is illustrated at length in its application to the simplest
cases.
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404  Mr. A. G. Greenhill on the Transformation and [Dec. 13,

1. In the second paper, in Vol. x1, a certain quantity is intro-
duced which Klein denotes by 2, ; expressed in the Jacobian notation
by the Eta-function, this z, is given by a division value (Theil-werthe),

in the form (-1)*z, = ¢ H(2aK%, ¢"), (D

for a transformation of odd order n; and Klein shows (Math. Ann.,
x1v, xv, and xvir) that the roots of the modular equation, for in-
stance, of order 5, 7, or 11, can be expressed in terms of z,. -

Professor Klein’s Note in Vol. X1 is a mere statement of the
principal results he had then arrived at; the theory is fully
developed in Vol. 11, Part v, of the Modulfunctionen (*“ M. F.”), and it
is there shown that these z, functions satisfy & number of biquad-
ratic relations, which can be derived from the well-known four-
part theta-function formula

6 (v+w) o(v;wj 6 (t+u) 0 (t—xu)
+6(w+u)b (w—u) 6 (t+v) 8 (t—v)
+0 (u+v)0(u—v)0(t+w) 0 (t—w)=0 (2)

(Brioschi, Annali di Mathematica, x11, 1883; xx1, 1893; xx1, 1894;
Rendiconti della It. A. dei Linces, 1893).

2. But in working with Halphen's y, function, defined in his
Fonctions Elliptiques, 1, p. 102, I have found that the relation connect-
ing Halphen's y with Klein's z, for a transformation of odd order =,

can be written (=1)z = flair-ry, 3)

where f is the function employed by Kiepert, defined in his article
“ Ueber Theilung und Transformation der Elliptischen Functionen,”
Math. Ann., xxvi1, p. 369, this f being connected with the r employed
by Klein by the relation

= A %)
where A denotes the discriminant, so that
'We find also that a= 91—279:' ()
: [ %%qm
raspeiE () o

in Kiepert’s notation (Math. Ann., xxx111, p. 7), a different r function
from that employed by Klein, but the reciprocal of Halphen’s
f function (F. ., ui, p. 216).
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As for ), it is a quantity defined by the relations

y " e " e
A= Y 1)’ As=7§(- sz'

ese 3

Yin-1) Yit-9)
and generally A#t = Yitnazn=n) | )
Yitn=2p+1)
with p=123, ... $(n=1);
and now the relation V=0 8)

is satisfied.

3. Klein's biquadratic relation (9), M. F., 11, p. 314, derived from
the four-part theta-function formula (2), is now seen to be the equi-
valent of Halphen's formula (Fonctions Elliptiques, 1, p. 102)

Ymsn¥m-n — ynnl'ym-l'Y?l—lel‘yu-l.yfn’ (9)

or - ‘/’muﬂl’m-n = Sl’moll”m—ll;b:_‘llnﬂ‘pn-l‘l’?n ) (10)
derivable at once from the defining relation
— d/mun " -n
pru—pmu = _—'f,.!tpll;‘.

= az‘ Yo .;.7.3 -n
YuYn

) (11)
and the identity
pru—pmnu = (pu—pmu)—(pu—gpnu), (12)
or of the relation (Halphen, F. E., 1, p. 104)
YmsnYm-nYpraYo-g t YnspVu-pYmeo¥mogt YoemYpomVuee¥n-g =0; (13)
of which (9) is a particular case, obtained by putting
r=1 and ¢=0.

4. The relation (8) can be treated as the equation of a curve, con-
necting Halphen’s z and y as coordinates ; and when « and y can be
expressed, rationally or irrationally, as funcuions of a puramieter ¢,
the quantities y, and 2, and the roots of the modular equation can
be expressed as functions of this parameter.

Moreover, the separate division values, of which Klein and
Kiepert's parameters are symmetric functions, can be disentangled
from each other aud written down,
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5. The formulas in the Modulfunctionen by which relation (3) can
be established are, in the first place, equation (8), M. F., 11, p. 282,

1 atl , 3(n-1)
(= = §a,0 H (., 0= 2,0) (14)

U.o

and equation (1), p. 281,

(=1yz = \/“" mo (w0 22)3 (15)

or, introducing Kiepert’s f function, defined in the Math. Ann., xxVI,
p. 388, by

s 8[A _ (=1)it-n
f - A"_ hﬁ”p'%_“’ (16)

A=l n .

then (108) may be written .
—1)'z = ]
(=12 = oumy (0 22). an
Changing then in formula (14) to the transformed modulus,

(-1ra= " (18)

S (P TR B Ceren

where, with the notation of the article on * Pseﬁdo-Elliptic
Integrals,” Proc. Lond. Math. Soc., Vol. xxv, p. 200,

‘P.._._."\'b‘-* l')’an')’.-x
TP = 8T = = T (19)
P 0 ﬁ’a.o by \l/fv,[/: y.yx
Plo= VS.=— % ; =—m;':’“ | (20)
Thence, from these relations,
2 2 9
(=1)yz%= Yo VoY  Yu¥g ot Y Vjamy .oo(@n
T Yae . Yar1Yem1+ YasaYaus oo Yiin-1+aYi(n=1)-s

The numerator N of this expression (21) is given by
N =92 (77 Yem1)! (Ver1Vess oo Yito-n)?
=y Ys Vi) (22)
while the denominator D is given by
D = 2y Yuc1VecaYaos oo YsV2 Y1+ V1Y3Ys oo+ Ya-1YaYost
o Yim-D—ac YartVar2 oor Y20-3Y2a-2Y2: 17204172043 «+¢ Viin-ee
Yitn-1)-a41Yi(n-0-a43 =+ Yien-D+e-1Yj(n-N+e

=" (717375 o+ Yau1)' Yo (Yar1 Va2 - oo Yl(u-l)—-)g) (23)
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-and this, from relations (7) and (8), reduces to
D=a" (Y)'Ys 7.-1)’ 7.(Y-+17-+2 eos Yitn=1)-e !

A Var=met1 Vi (a1 -evg ¢ Vin-1)’?

="My (1% - Vi)' (24)
so that, finally, (=122 = % ) (25)

a8 in equation (3); and thence Klein's function s, can be expressed
in terms of a single parameter ¢, when = and y, and therefore y, and
A, are given as functions of the parameter ¢, satisfying Halphen’s

relation — (26)

6. Using the notation o, and 7, to denote o (gs—" ) and 7 ( g(ﬂ), and
n
putting (Halphen, F. E., 1, pp. 102 and 198),

o= b, @
= -L-; = -—r"—_; : 28
=T T ey )
then (7) may be written
APl — %l!’l’?ﬂ‘” -1 (29)
d/i(u-2p+l)
w
B o(n+2p—1) n

q-tl(Zp-l)w-gvn(‘!p~l)

=
o(n—2p+1)—
n

= gl Nmin = Gp=Din g 2p-bin, (30)

in consequence of equation (9), F. E., 1, p. 170; so that

A= etritg gt (31)

A _ [aﬁi‘")] (32)

n

or, in Kiepert’s notation,
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Otherwise, writing v for 2o ,
. n

EALL) = ¢-v — zi wr-1) Yer (33)

(ov)”
¢(n—a)v_ ymupy,
T = 2 s (34)
and o(n—a)v = o (2u—an)
= 27 (=—a?) o (O.'U), (35)
so that le-en = 7 (B—0) ¥
nay
= (ov)®- - phnmareie Yoo (36)
Ya
or e(2e=)in(n-2a) ~(av)u (n=2a) zdn (n~2a) An-za’ (37)
e~ (gv)" = z=I\~1, (38)
e‘(?t-)lﬂ‘ P g‘f — ﬁ_!h—lln . (39)
n b
and Kiepert's function
T &l_"_’ = e‘2 (a/n)® ne o 2(‘!_(0 = (e—(Zn-)lul G’U)Q' 4’“ = w-iﬂiA;,-,,, 2D y.
n n
= gt A= Ya- (40)

7. A number of cases of this relation (8) or (26), for the simplest
values of n, have been worked out in my paper on “ Pseudo-Elliptic
Integrals,” Proc. Lond. Math. Soc., Vol. xxv, and by means of these
results the roots of the modular equations given by Prof, Klein in
Proc. Lond. Math. Soc., Vol. 1x, p. 123, can now be expressed in
terms of a single parameter.

In his paper * Elliptische Functionen und Gleichungen fiinften
Grades,” Math. Ann., x1v, Professor Klein continues his investiga-
tions, and expresses the roots of the modular equations of order
n=2, 3, 4, and b, in terms of a single parameter.

The degree of the modular equation of prime order n being n +1,
and the roots being denoted by

Ter Too Tis Ty o0 Taagy
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then for n = 2 (Math. Ann., x1v, p. 153), comparing

—1)3
J=§4L;7_r])_, (41)
and = 4(l—g+o"’

=" T" L 42
27 (1—a)* ’ (, )

the roots, r_, 7, 7,, for a given value of J, are expressed by Klein in

terms of o, the anharmonic ratio (Doppelverhiltniss), or squared

Legendrian modulus #*, by
\

y =_(1-0°
hd 4o
3
=—___9
T = Ia=o (43)
.= 1
v 40 (1-0) )

For n =3, Klein expresses the roots of the modular equation in
terms of z, : #;, which ratio he calls the tetrahedron irrationality, by
means of the relation

J= =D =1 o (@—22)° (44)
~6dr (8a}ay+a3)°
4
and he finds T, = —Twﬂ-—‘,
8z, 2y + 2,
_1 @erta) 45
Tr - " ~3 4 b
9 8ujmy+a; )
where e=e" r=0,1,2 (46)

For n = 4, the modular equation

= (+l4r+1)* (2 + 149+ 1)
= 1o8r (r—1)* ~ 108t (n*—1)* (47)

gives the six values of r as

in terms of », called the octahedron irrationality; and Legendre’s

1
modu us k= "2, r=«xl= q‘. (4'9)
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8. The next importaut extension is to the case of
n =3, .

where J= #—10r+5)°

—1728r (50)

and Klein expresses the six roots of this equation in r in terms of
the ratio

N =1 N (51)
which he calls the <kosakedron <rrationality, by means of the
thosahedron form f, defined by

f=mny (0’ + mymy—ny), (52)
8 ,.8
and the relations 7, = Ei-—;l—n’, , (53)
- 2 o 2
r, = (s, (54)
where e=el, p=0,1,238 4 (55)

So also for the roots of the quintic resolvent
J:J=1:1=(r-3)*(r'=11r+64) : r (©*—10r+45)* : —1728, (56)
or, putting » = 2 in Brioschi’s form,

2169, _
v(—a)

The values =3, 11, 19 make K'/K =./3, /(11), +/(19);

and lead to interesting numerical results ; thus, when r =19,

n— % =1[-1+i/(19)] = — .

28— 102 + 45z + 0. (G

(Lectures on the Ikosahedron, p. 60, by Felix Klein, translated by
G. G. Morrice, 1888 ; Math. Ann., x1v, p. 417; Modulfunctionen, I,
p. 649.)

9. Professor Klein passes on to the solution of the modular equa-

tion of order
n=71,

in the Math. Ann., X1V, p. 428, and xv, p. 251; also in the Modul-
functionen, 1, p. 692.
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The modular equation (Proc. Lond. Math. Soc., Vol. 1x, p. 124) is
J= (1 +13r+49)(r*+5r+1)°
17287 ’

and Klein shows how the eight roots of this equation may be given
in terms of three parameters

(58)

A pyov, or oz, 2y 2,

connected by the biquadratic relation

Nu+pbv4+\ =0, (59)
or 325+ 252,+ 242, = 0. - (60)
In the Modulfunctionen, 1, p. 701, we must take
A opyv=12z, 2, 2; (61)
and the biquadratic relation is
. Sn+an 422, =0. (62)

10. But it was shown in the Proc. Lond. Math. Soc., Vol. xxv,
P- 223, that these quantities can be expressed in terms of a single
parameter z, there defined, by means of the relations

A=z =2 (z—-1)}
p=z=—2 =1t} (63)
v=2z= 4 (z— 1)’
satisfying the relations (59) and (60) above.
Halphen’s « and y are given in terms of the parameter z by the

relations =2z (1 —-Z)’, y=z2 (1 —Z), (641)
and thus the relation
C 7n=@H—-2)z—y'=0 (65)
ig satisfied ; also
= Pro—pie
z= p%—w—p:}m' (66)

The roots of the modular equation (58) are then shown to be
expressible in terms of z by the relations
r o= 4.‘92 Z-,—].

® £457—8z+1
49

PER T S
1—z z

(67)
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,= _ (1+e-ral+€-2raa+€—dra‘)l

7, , (68)
b5+ o+ 21
l—-z 2
where e=¢e™ »=0,1238,4,5,6, (69)
and @y = -:L = -2 (a—1)"}, (70)
4
a=2 =z G-1)}, (71)
9
a=2= -1 (72)
z
Thus the irrationality
& (z—1)t = A}, (73)
where A=2e, M=oy =4 (l-z), (74)
7s Ys

plays the same part here as the ikosahedron irrationality n in equa-
tions.(53) and (54).

: —_— -0 3 )
Also e 2=l p______i( —Pr
a z pyo—prw
g‘_ — _1_ = — M@"
a: - z—1 g)-}w—m-}w [ - (75)
8, = _PIe—piv
o) pio—pijv)

This parameter z is seen to be intimately bound up with Gierster’s
Hauptmodul M (*Ueber Classenanzahl-relationen,” Math. Ann.,
xvit, p. 81) ; for ,

A
M="f=--2_, (76)

v z—1
and, as the values of r are unaltered by the group of substitutions
5T T (77)

Gierster’s M is equivalent to minus the reciprocal of our 2.
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Put g=—a——;
x

re 1—-8z+45+27

then (=2

_ b 52" =5z —112*— 52— Sz +1
z(@+1)(@+2+1)

, (78)
6 =x°+:é’+m‘+z’+m’+m+l
z(@+1)@F+z+1)

_ a—1
T2 (@+1)(P=1)’

T+
(79)

11. A straightforward algebraical verification of equation (58) by
the roots given by (67) and (68) would be very formidable ; but mean-
while Mr. T. I. Dewar has performed the verification for the special
numerical case corresponding to

=2
and he finds that this makes ’ ’
ro==38
® 13’
and 1728J = — 8478-4438756456985. (80)
Also, considering only the real seventh roots,
a, = —2F = —1-34590019263234
a, = — 2" = — 090572366 426391 |, (81)
a,= 27F= 4 0-82033535600764
and these make r, = — 0005323020754, (82)
and then 1728J = — 8478-443876. (83)

A similar numerical calculation makes
r, = — 3:555254192736 —2-7129854828137,

and 17987 = 30143-023137291471 -: 23001-895151881873¢
1

= — 847844387579 —0-000000001688045z, (84)

and these three values of J are suﬁicient{y close to serve as an
-arithmetical verification.
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Another numerical case can be constructed by taking
z=—2cos¥r, 1=-—6.

So also we m@y verify that the roots of Galois’ resolvent of the
seventh degree,

$7+7+7z~/7 35— 7z«/7

3 A'z—12¢,4' =0, (85)

are given by
$r=€z+e2'z’+e"‘l 1+M/7
r=1,23,4,5,6, 7 (86)

(Klein, Math. Ann., X1v, pp. 426, 458 ; M. F., 1, p. 754).

- -2
(6" 2,24+ € 5z, + € 2,2,),

12. The highest prime number for which Klem s modular equation
is rational in 7 is
. n=13;
and now (Proc. Lond. Math. Soc., Vol. 1%, p. 126)

_ (PH5r413)(r 4T £ 204 19741

1728~ (87)
and J', the transformed absolute invariant, is the same function of =,
where rr' =13, .(88)

It was shown, in the article Pseudo-Elliptic Integrals,” §50,.
that the relation — . ( 89)

can be satisfied when « and y are rational functions .of a paramcter
¢ and of /0, where

0=1+4c+6c"+2"+¢* +26° +¢°
= (1+42c——c*) +4c (1+¢)}, (90)
so that the curve of equation (89) has a deficiency 2.

13. Then v, can also be expressed as a rational function of ¢ and
+/0, and now we are able, from relation (3) and from the relation

a — %
i D

(Klein, “Ueber gewisse Theilwerthe der’ ©-Function,” Math. Ana.,
xvir, p. 569), to express the fourteen roots of equation (87), the
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modular egnation of the thirteenth order, in terms of ¢ and +/C, in
the form

. . 13
1+c ¢
a6 3
(1+ E l_j_a e,éleu'r)
L L S (93)
4o — T
1+¢ c
where e=et r=0,1,2 ..12, (94)

the 4’s being expressions such that A™ is a rational function of ¢
and +/C, and A being taken as the real thirteenth root, the various
imaginary roots being obtained by appropriate factors of powers of

e (Proc. Lond. Math. Soc., Vol. xxv, p. 256).

14. In the general case, from (3) and (91),

A (c1yenom Y o Ve (95)
4, . Ya
on putting A= — et o (96)
AN S (—yeasse (2e)”

15. In the special case of n =13 it was shown (Proc. Lond. Math,
8Soc., Vol xxv, pp. 252-255) that the relation (89) is reduced to

P—(l—d—e) p—c (1 +0)* = 0, (98)
by means of the substitutions
z=y(l—z), y=z— —;;, z=c(p-1), (99)
1—c—4cf—¢® 1 l+¢
= = — 4 —_
and then r c(L+0) c+ l+c+ pat’ (100)
also A= Y71.— _ 3:3
Y ¢
’ , (101)
A= s = —y’z’ l.j._c
s cp

2v0—pv Sv—pv p3v—p2v 2w
a = Pv—pv = P=PU pov=pav LY (102
o P puv—pdu’ ¢ p3v—pv Plv—pdv 'T13 (102)
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Denoting i}' by a,, then we find
0

S _ L _P+evo \
1 T AT 94 (1+c)u’ .

P=14+4+11+4+29+70+86+69+84+100+4+68+35+27+19 +7 +c",
Q=144+124+10+14+4324+29+14+134+13+6+c",

P—@Q0 = —4c (1+0)";
a“ = 11_8 = M
3 A" T 20 (1+40)’

B=1+7+19+19—9—26+7+26—8—174+8+6—4—1+c",
S=1+5+8—-1-12—-1412-1-74+2+2-¢",

RB'—80 = 4¢" (1+¢); ’

2 and 8 being obtained from P and @ by writing —1-1'6—" for c;

a’" =

s_ 1 (Q{,)m= R—-8~0

AN 2¢ (1 +0)"’ !
13 Z‘B TJ“ U&/O
a’' = —_ = .- ————
‘ A° 28 (1 +¢)*’
T=1+15+100+388+9654-1604+1825+1482+960+581 + 334
+1554+ 50410 +c",

U=1+13+73+230+443 45374416 +216+83+27+74c",
T—-U'C = 4c"(1+0)7;
obtained from P and @ by writing — i%—; for ¢;

1 }f . P—@QvC
P —_ 27 1+ 6)6‘

B (1 +.c)“ __T-UVO
z 2¢* (1+¢)? |
(103)
1
Thence a,a,:-——c-,_- a,,a.,:ﬁ’-ﬁ, aa,=1+c; - (104)
so that a change of +/C into — +/C interchanges a, and ay, a; and ay,
a, and ag, but leaves r unaltered.
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So also it will be found that, while r is unaltered,

(i.) the change of ¢ into — ]% changes

a, into a,,
ag ” Qg

ag " M)

a‘ 1] a'lv
a  » Qg
) ” aa H
(ii.) the change of ¢ into — —1-3'—9 changes

a, into a,;,

2 9 Gy

ag ”» 7%
@ ”» ayy
a5 )

[+ ” Qg.

417

16. Various other relations connecting the a’s can be written down,

thus :—
R P

with similar expressions for
3 3 3 ) 3
Qg g,y aaah agau a.a,, asa’l H

pa =¥ oo
Np o y(+o)’
with similar expressions for aja, and a}a, ;
« v (l+e
%% =", ) !

. s . 4 4
with similar expressions for asa, and a,a, ;

da=h(2)

p
with similar expressions for aja; and aja, ;
3 3 (1+0)*
ERIED

with similar expressions for dsa; and a39;;
VOL. XXVIL—N0. 561. ' 2E

(105)

(106)

(107)

(108)

(109)
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5

o ey
ag
aﬁa a5 asa aﬂa 4
with similar expressions for 2% %% %% Gl GG, (110)
qO a.! a, ay ag

and so on.

These relations are important in showing that the irrationality of
the thirteenth root may be taken once for all.

17. A direct algebraical verification of equa,tlon (87) by the roots
given in (92) and (93) would be a task still more formidable than
that required for the corresponding case of » = 7; but here again
Mr. T. I. Dewar has performed the numerical venﬁca,tlon for the
special case obtained by taking in (90)

1426~c'—¢* =0, (111)
thus making VO =2c+2c (112)
Taking the positive value of . 4+/C, this makes
. p=d, ,
= (lmd) = o
s=—c(1 o’)—1+c, ‘
=_°c
(1+c)*
s—_0¢ .
N = arep’ (113)
and &= Qa _::_70)5
o = ot
T (4o
B¢
P A+ | (114)
ol =—=¢ 1+’
o= — ___l___
* C(+0)®
o = — gl-i‘-;)'f
J
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while the negative value of +/C would merely permute

. a; and a5 ay and a,, a, and a,

Writing equation (100) in the form

_142—c—¢¢
=it Y
then the roots of (111) make

and this value of r_, substituted in (87), makes

M 7x17x 238
e

= — 1075008-6252986.

17287, = —

The three roots of (111) a;re

2003273, 2cos%’—r,

6
2 cos ~7E ;
and we can thus put

c=2cosg7-r

7
= 1-246979603717467,

- M. Dewar now calculates -
a, = 1:212310485995257
a, = 0:829535995876051
a; = 0-668998253055627
—a, = 1:232994543430555
—a, = 0:661495338916045
—a, = 1'822375951044485 |
282

419

(115)

(116)

a17)

(118)

(119)

(120)
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* and thence 7o =—3 (1+a,+ay+0g+a,+a;+a,)'
= — 3 (—0006021232698252)*
= —0000012084542226 ; (121)

17287, = i—?’ +746+151457,+ 12485213 4 ...

= —1075008-6257122, (122)
a close agreement with the result of (117),
18. Mr. Dewar has gone on further to the calculation of the

imaginary root r,, and the corresponding value of J; and he finds in
a similar manner, from (93),

r,=—3(1+e¥a,+e"%a 4 .., +e"¥ra),
nn=—3 1+ +ea+ e“a.+¢::‘a. +etag+¢’a,)?

.= — 3521253401250 42:86124793802¢, (123)
r"; = + 4-212485752989 — 20°1503580671457, (124)
7 = + 42:821940684550 + 83-007483054998;, (125)
r = —388-291804015211—169-766192550990i, (126)

7} + 57, +13 = — 0-3943781253261 —5-8441183770457, (127)
7+ 7r} 4207} + 197, +1
= — 70-1902408787331 + 62-642738313476, (128)

and substituting these values in (87),

3785377-7728290—3075866-21026914
—3-52125340125 + 2:86124793802¢

= — 10750086257 — 000036754, (129)

17987, =

a close agreement with (117) and (122).

Mr. Dewar employed in these calculations the new multiplying
machine invented by Mr. Macfarlane Gray, which is capable of multi-
plying together two numbers of sixteen figures. '
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19. The special case of n=29

may be considered at this stage ; this is the case récei\'ring particular
attention in Joubert’s memoir “ Sur les équations ghi se rencontrent

dans la théorie de la transformation des fonctions elliptiques,” Paris,
1876.

The relation % =0,

or ¥’ (y—a—y")—(y—2)' =0, (130)

is satisfied by putting
a=p'(1=p)(A=p+p’), y=p (1-p) (131)

so that the curve (130) is unicursal; and now

A:h:l_i: —2, 132
v y PP (132)
. . :
With th 1 o
i ese values, al T —p)
(]
9 o .
: 1-p) 3, (133)
a’=-—1
s =
a® = §1—2)°
4 Ps )
and M aa40, = 1. (134)
Changing p into I lp changes

a, into a,, @, into a,, a, into q,;

and changing p into — 1-p changes
p

a, into a,, @, into a,, @, into a;;
also a,+a,+a,=0. (135)

As stated previously, we need only consider the real ninth roots of .
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20. It was shown (Proc. Lond. Math. Soc., Vol. xxv, p. 233) that

—3r= kg-%g%iﬂs; (136)

and therefore, to the complementary modulus,

, =3 - _=%d-p
-

o T - 1_6P+3p2+pa’ (137)

and now all the twelve roots of Gierster’s modular equation

_ (r=1)* {9 (r-1)*+8}}
7 {(r=1y'+1} (138)

can be expressed in terms of the parameter p.

The r employed here, distinguished as =, is connected with the
7 or ry employed in the modular equation of the third order by the

relation .
(79—1)8 = 75—1’

or =14 (=D Wt =1, (139)
and thence the twelve values of ry can be inferred from the four

values of r;.

If a denotes the tetrahedron irrationality x; : 2, in § 7,

r = 8a’+1,

L
1—1=(ri—1) =2a, rj=2a+1. (140)

For instance, in the Transformation of the Nineteenth Order
(Fricke, Math. Ann., XL)

19r=—2a, 19 =2,
2% = 4a®+(8z+19),

1 ’
Too = 55 a=4, m5,=>513;
poo =20 19
50 =790 Ta0=gms

L]
oo = 1"'("%) =} a==4 =9
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i v
With | ‘?/J—- _ m, |
ae= 4” or _§1
or 195047 =0, o=3H1EE,
and ro=9, =1
give the same value of J, and make’
M=l M=

and thus correspond to & multiplication by 3.

So also, for n = 27 and 'z = 81, 243, ... (Math. Ann., xxx1, p. 67),

1-6p+3p+p’ P A=p)

p(=p) ' " 1-ptp’

= 1-6p+3p42°
2 (=p ) (e
g, = 1+3p—6p'+p' =3 1 —p+ph (p—p')}
1—6p+3p*+p*
L= QA—p+p)(p-p') -
1+3p—6p'+p° —3(1—P+p’)(1>—2>’)‘
w= A+P)(@=p)(A~2p) (p—p")
(A—=p+p)

21. The expressxon of z,y, and v, as functions of & single parameter
has been given in the paper on * Pseudo-Elliptic Integrals,” - Prog.
Lond. Math. Soc., Vol. xxv, for the odd numbers

: 08,5, 7,9, 11, 13, and 15.
As a verification, let us examine again the three simplest cases of
n='38, 5, and 7.
~ For n =3, the single z function is Dedekind’s n (w) (Brioschi,
Annali di Mathematica, x11, 1883). :

ip—3 = £,=

For . n =23y, and v, =0,
y=2a,
and A=Y= iz
7s

6 =—fat=—gV,

n= fla b t= gV,
go that ;:-: -\ = g, (141)
the ikosahedron irrationality (Proc. L. M. 8., xxv, p. 215).
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For n="17 and vy, =0,

z=z2(1-=2) y=2z1-—2),

N=R=y—o=2(1-2); (142)
mi (A= (2Yaodt mmrra-gr=d)
()= (&)= = sa-9r=qp 049
(212)7= - (j—:)7= —Ny= =2 (1)t =]

employing the relations (70), (71), (72).

The case of » =13 has already received a full discussion in
§§ 12-18.

22. The case of n=11
is important, as being the earliest number for which the relation
f(,J) =0, (144)

connecting the absolute invariant J and its transformed value J',
considered as the equation of a curve, is no longer unicursal, but has
a deficiency p=1 :

The equation connecting J with the parameter % employed by -
Kiepert (Math. Ann., xxxir, p. 97), or with Klein's parameter r
(Modulfunctionen, 11, p. 440), is, when rationalized, a quadratic in J,
and of the twelfth degree in n or ; and these are connected by the
relation

n+8= % (145)
The relation Yu=20 (146)

is reduced to
z(1—2) =p' (1—p),

or 2z = 14+ v {4p" (p—1)+1}, (147)
by the substitutions

e=y (-2, y=z(1-£-);
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so that A=Yo— Y —%7Y 2 -
Y y—x p
PUIE | P ) L 4—yzﬂL (148)
Vs )

and to agree with the notation employed in * Pseudo-Elliptic
Integrals,” p. 241, we must put

p=1l+c, z2=—4,
50 that q(g+1) =c(1+c)?
29+1=/C . (149)
0 =4c(c+1)’+1

23. Kiepert's f is given by (* Pseudo-Elliptic Integrals,” p. 243)
ZE\0 ’ % (150)

-2 =
1= Gommoy 77
and now, written in the order employed in the M. F., 11, p. 403,

5= —fr IAhy = —fipmix-d )

7= __fsm-%-}\—x'r.ys = ___fsw—h-r‘.wﬁ

g =—f2 I\ Hy ==z Y . (151)
= —fsa:_i)\"“'y,, = —f’w'*:\_“yz

= fariaHy, = femix H

Thence various relations ensue, which are independent of the
eleventh root of A; for instance,

z
—8 = —f° a+l a - x’

(152)
z a
= ~f° ;’E ;
which is true for all values of #; and
2323, = N,u A
" (153)
260 __ T Ysa
é = o 7;—3, &e.;
3 3 3
%, 250+ 200 10t Zaa%a = 0,
\ 5 Oa “4 3a (154)
2, Bgo g+ Zu 2. 200 — zgazkzg, =0;

'(Ma,th Ann., xvu, p. 567 ; M. F., 1, p. 409; Brioschi, dnnalz, xx1).
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Also the invariant of the third order (Modulfunctionen, 11, p. 410)

®(z) = z:z,+z:z,+z:z,+z:zd+z:z,

= AfY, (155)

after reduction; and the invariant ¥ (z,) on p. 411 can also be
expressed as a rational function of =, v, 3, p, f, and A ; and thence as
a function of the parameter p or c; but

¥ (z,)=0.

So also the roots of Galois’ resolvent of the Eleventh degree can be
written down in terms of ¢; this resolvent is

J:J-1:1

= {P48r+5-i/(D)} { P 2EELAD '5—i~2/§11)}“.
ey T2/ AD a6y )
N {T.+2r.+ 3'32’(11)#—[54-::\/(11)] . 15+3¢2\/(11)}*
11798, | '('156)'
or, putting o* = A {r+3r+5—i/(11)},

so that 12g, = {,s_,n_ 3+3; 5/(11) 1= ;/(11).} ,

the elimination of r leads to the resolvent in the form
M —2282F +11 {'9+'21:~/(11‘)} A%F—11. 129, %5 +88;/(11) A%?
+11 {8—i/(11)} 6g,0%—144g2A% = 0, (157)
the roots of which are given by (Modulfunctionen, 1, p. 428)

4o, = as::e"' (B=220) =} {1=E V(A1) } Ze~s0.z0,. . (188)
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24, Aga.in, as before,

a";(—;%)ll= zla.)ll=:_.(-E‘:-)ll=—xli- \

b A A

-

@Q-
=
Il
A~ S~

&
Il
P

Sl

with similar relations for 2% %% %% %%,

a Yz »p
with similar relations for %, & i, _@:
] ) a's ac

427

(159)

(160)

(ie1)

(162)

" These, and other similar relations, show that one éleventh root
will serve for the system; and thereby the appropriate power of

%" ig gottled in the case of the imaginary roots of the modular

equation (Klein, Math. Ann., xviy, p. 567).
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25. It was shown (“Pseudo-Elliptic Integrals,” p. 245) that
Klein's r is connected with the ¢ employed above by the relation

1-10r+7 14 4c+ 2858 —2¢4 4+ &°
X E= ¢ (1+0)° ’ (163)
go that
1 _10H+11+H
LAY - )
¢ (14+¢)(10+40c+ 31c*— 28¢°—9c +10c®)
— +(2+8+12+9’—c'—3c*—c) v (164)
2 (1+¢)(1+4c—9—27c~13c* +¢%) !
— —10H-11+H’
2H* .
—c*(14¢)? (104 400+ 316" — 28¢* — 9¢* + 10¢%)
— +c(1+0)(24+8c+12¢* +9c°—c*—3c*— °)J0 (165)
2 (1 +4c+26°— 56 —2c* + )’
where 0= 1+4c(1+c)}, (166)
and H* = 45 (H—11) + (10H +11)%, (167)
Also, we shall find that
dr _aH _ do _ %
Y OH V0 w’ (168)
where —rl——=E’+45+8+ —4~,.
= (P+484-8E4-4) (B 488+ 162 +16), (169)

8o that the above relation (163) is a quintic transformation of the
elliptic functions obtained by putting 7, = 11, or the ikosahedron
irrationality n = 1, in the Transformation of the Fifth Order.

26. We can put c=p (u; J; v, )—3 (170)
4 19 1
w =% =22 =_2 (7
here g =3 9 37 17287 i’ (171)

and then H and r will be given by

. , 14 ’ 2¢, 318
H=p(uw; 54, ¢)—-3, F==2th ()

r=—p(u g‘g) + 154 (173)
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. _ 2w 2
Thus, if we put  a=p (u— -2.5) -3, (174)
. _ _1+4a+24'—50°—20' +a°
we can write r= Tia (1) , (175)

and, for any given value of %, r, and H, the five roots of the quintic:
in ¢ or a will correspond to the group of arguments

u, uklo, ukio. (176).
27. Putting c= by | (177
_ a'—1 .
makes H= FETE=T) (178).
and therefore the roots of H=0 (179).
are given by
1
== —————, p=1,238,4,5. (180).
1+2 cos 27 .
11
The roots of H-11=0 (181)

correspond to the duplication of the argument in ¢,, so that, denoting
them by b,,

b,, = (cp+1)(§_c;_cp_‘l) ; (182)-
N
S_p3—p—
and the substitation ¢= (FD(® Bb’ b-1) (183).
reproduces the roots ¢, in the order ¢, ¢, ¢, €5, €5 (184).

This has been verified numerically by Mr. T. I. Dewar ; he finds
¢ =—037278, b, =— 1241098
c; = —054620, b, =— 0754925
¢y = — 139788, by = + 14856874 ¢ ; (185)-
¢ = + 322871, b, =+ 0346486
= +108815, b, = — 0207337
we can thus take the correspondence
6= by, by by by 0, by, € Cy by =1, by, ¢ (186)
to the arguments ' ‘
% = 2, 4, 6, 8, 10; 12, 14, 16, 18, 20, 22, 24) 235, (187).
where c=pu—i. (188).
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28. The corresponding Transformation of the Twenty-fifth Order

pl (e, 1)®

b7 (c+1)(*—2c*—56°+ 2¢* + 4c+ 1) (189)
X (f—18¢*—27c*—9c* 4 4c+-1)*
will be given by taking Gierster’s (Math. Ann., X1V, p. 543)
1
=1 M= % (190)
.equivalent to two quintic transformations, with
,_ 185
=11, n= 11
1 ,
=g S 1375 ;
the first being that given in (163), and the second
14, 11 12,112, 11, 10.11
P=E+y+momytaatet @
with P* = 4P°—G,P—G,
G,= 4 x 2%x 809’ G, = 61 x471281. (191)

27

1t is curions that the special pseudo-elliptic integral considered by -
Abel (Buvres, 1, p. 142),

j' S5z—1 dz

V{@+1)'—4a}
=2chiz,/("+2*+82-1)
=2sh (@ +2+2)/(2-1),

introduces elliptic functions of the same modulus and invariants, as
‘i8 seen when we substitute -

z—1=1/e.
Also, in § 8, Klein’s ikosahedron irrationality » = 1, and
r.———ll T =1_2_§ 7=i ’r=%
T T T
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29. To change from the argument u to the argument
V=Uu— gﬂ |
25’

we must take

2ab(a+b)+8ab+2(a+b)+1 VAVE
2 (a—b)’

{(2b’+4b+1)a+b‘+4b’+3b+1}JA
—{@a+%+hb+a+h43mH}¢B

V0= @=b)°
20 2 1
where bh=p——F = —
-7 25 3 orn’
] 142 cos =——
+2 cos 1
and then vB =~/{4:b (d+1)y’+1}
_ 2bt—8b2—6b,—1
- 2b,+1
= — 2bby,—4b,—~1;
1 bo=b L
also ) r == Uy bdr—' (2b+1)(2bg-2b_1)$
=_1_ 1
ba.— = A b+1 "' &c-’

481

(192)

(193)

(194)

(195)

(196)

(197)

and now 7 assumes the form in equation (175); and the division

values (Thetlwerthe)

p (1,23 4, 5)2“"

will presumably essume more symmetrlca,l forms than those given in

“ Pseudo-EIhptlc Integrals," p- 243.

30. The next odd number for which the deficiency of Kiepert’s or

Klein’s modular equation is not zero is

"(‘:15,;

and the division values in this case have been worked out, in terms
of a single parameter ¢, on p. 260 of “ Pseudo-Elliptic Integrals.”
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Equation (97) can now be written
5 43 5._' — a) ~a® 7_2_0 s
a,,—(Ao) = (=1)A ‘(%), (198)

and A=L=(c+1)y
Y7

_clet 1) (a4 8043) (0 —20—c+1)

2(*+80+3) +(c*+28—3c—1)/0}, (199)
0= (c’—c—l)(c’+3c+ 3)‘ (200)
s0 that
oo L (@ +80+3)(c4+0-2¢'~c+1)—(c'+ 26 +0—3c—1) v/C
: y ~ 2c (c+1)°
= 1 ‘=
6= W ( ~ (c+1)*
- l s N Y
{="3 ( o (7:)
1
@=

R R ORE SR R xR

1 B
a::r.—ﬁ( =—1
1 s __ v
o = )’\a_e( —”(_-i)
5 1 ] Alﬂ
T |
(201)
and aua.2,=(—l)“h‘°'1‘_', a, a5, = A2 Y2Vee g
Y ' YoY%
Thence aya, =—1 \
A 1
Qo =—— =—c—l=—
“ y o ag |
wo= Lt =d=otlivop @D
Ny 2(+)D)
a= Yo detliO
e BT 2@+l )
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31. We can also express the ¢ parameters employed by Kiepert
for n = 15 (Math. Ann., xxx11, p. 121) in terms of c.

Starting with Kiepert’s relations, for any odd number =,

L(n) = Q*' f (n), (203)
Q¥ =4, - (204)

ORIl (205)

asl n

(Math. Ann., xxv1, pp. 394, 427), then

g = LAB _ ,_fasy

"TLGYLE)Y T fG’FE)Y

_ A _ A

TR 2w 4w 8w _ ldu’ (206)

Pi5P 5P 5% 15

&= LASYL@B) _ ,f(15)'f(3)"
"=TLeY fer

, (207)
so that .
Ii&:’ /24_(‘)
€8=AB 5 5
! pﬂazi’pﬂ@ 28w 28w 9100 120 g ldw 2w
B BP B B P Y 5%
Al .
" 8,8,8,8:8,

-A8.8.8.8.16.8
= SNy

T e Th
_ 8y

a:l') AJS

(208)

2.,4.3
g =0T, (209)

wﬂ,\lu
while

4.4, 4 4
AnvYr

)= 4
C XYY Ys Vs
3.3
=8y (210)
xﬁAll

VOL. XXVII.—N0. 562,

[ &)
L}
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SO that f‘ = ﬁ'. = )ﬁilz
] 75
= @_+D_;QL_—Z) , (211)

reducing to a rational expression (“ Pseudo-Elliptic Integrals,” p. 258)

. (e+1)
4= +5:43) (212)

Making use of this value of £, in Kiepert’s equation (448), we find
g = —=5c(c+1?(+3c+3)+(c+1)(c+2)(2+3c+3) /0O (213)

2¢ (¢+3c+3)(c*+ 3%+ 4¢* +2¢+1) ’
£ = & =5 (c+1)(+30+3) +o (c+2)(2+3c43) /O (214)
T 2 (c+1)(c¢*+ 36+ 4+ 2c+1) ’

and so forth ; thence the values of 2, y, » in terms of ¢ in Kiepert's
equations (620) Math. Ann., Xxxvi1, p. 390, can be inferred.

32. In the preceding cases of Transformation the order % has been
taken as an odd number, and the resolution of the cubic

4"~ gop—9; =0, (215)
or of the associated form, employed in * Pseudo-Elliptic Integrals,”
4s(s+x)'—{(y+1)s+ay}*=0, (216)

is not required ; and the associated elliptic functions are of the First
Stage (Brster Stufe).

Bat in most dynamical applications this resolution must be effected,
and elliptic functions of the Second Stage (Zweiter Stufe) must be
employed; so that we shall find it uscful, for the purpose of
mechanical problems, to follow Kicpert, and to determine .the
modular functions corresponding to an c¢ven order.

(Brioschi, Annali di Mutematica, xx11, 1894.)

33. Referring to Kiepert’s paper “Zur Transformation der
Elliptischen Functionen,” Math. Ana., xxx11, p. 1, for an explanation
of the notation, and for the meaning of his parameters denoted by &,
the following table of results shows the expression of the &'s in terms
of a single paramecter, as defined in * Pseudo-Elliptic Integrals” :—
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n =2 (Math. Ann., Xxx11, p. 55).
E= L(2)% = Af (2% = — 64r,
16

=l6%, 165, or — 34 (217)
n = 4
(Math. Ann. xxx11, p. 55 ; and “Pseudo-Elliptic Integrals,”jp. 211).
10
&= L-E—Ej))“ =1-16z =r,= 7'
H=L4y = 1218 .o (218)
X

=L _fO _,
L@ f@F

n=6 (p. 83; and p. 216).

= LO SO _,_  —o
LEFLEr - FOf @) (@—0)(1—20)
b LG __fO _ y _ e

TLEYLE FGF/@ 1-y 20—oy
£ = 1-95 _1—9y _ (li’)2

T 1= 1—y 1—c . (219)
_ 8, _1-9y _ ,(1+0)? r’
&= = =2
L1=4 ) —¢
£ 8 =1-y = 2 (1—c¢)?
9§, (2=c)(1—2¢)
8¢, 2 (1+c)®
= 2 =1—-9y=__=""1"
b=y % @-0(—2) J
and (Math. Ann., xxxvii, p. 385)
- u=E+ %, where & = -%:—
v =+ —1-, where g =11 (220)
v E:sEo
9 &
w=/{+ -, where =L
ARV (=5

2F 2
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n=28 (p.57; and p. 226).

_f@ _  z2(l=2) _e(l—c)(1—2c)

%“'f(m“" 1-22) = (1-2:+2¢%)°
_1—4f _ (1—4o+28)2
h=ira= 1—8z+8z‘_(—-1_2cg
_ 1 o [1=2+26%)
1—od—z| (221)
_ & 1 o c(l=c)(1—2
T A TP S e
L= 1 - (1-2)° _(1—2c+2c")’
Y148 1-8:487 \1—de+2
E = L z(1—2) _ ¢(1—c)(1—2¢)
T4 18487 (1—4c+26)° )
n=10 (p.86; and p.235).
t= AQ0 == (222)

T @ T Ima-a

because  f(10) = g ¥ AT Tt o oy Yo YoV YaYo
f(2)?: = e D e s ; (223)

f(s)ﬂ — m-{ )\—;’;(zuvveum Y5YaYeYs

and these values lead here, as elsewhere, to the resnlt, employing the
values of y given on p. 204 of “ Pseudo-Elliptic Integrals.”

1-54, _ 144a—d")

Thence &= =g, S
—_ 1—51 . _—a
b= T
_ 4 _l+t4ae—-d’
& — 1I-¢ T " (224)
f = 4 — 1'—(1.2 ‘
P 5—¢  l—a—a
&= 4¢, —1+4a—0d
*T5—¢ l—a—a* J
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Thence (Math. Ann., Xxxvi1, p. 385)

u,;=¢gi742, where ¢=¢&4 |
b5 =yakL, where n=7y | (225)
' v’ XN :
w,’l7!=\/5:l:—‘—/%, where {'=—§:—J
and putting 1-b% =—,_Cll- +1+4a
=1 _piucpe 926
1—p, %w—pw’ ( )
s o (4B )
SR ¢ 3T xa))
1= g = (GH20E) L 297
V=Y S rA-hG) [ (227)
o (4—8b=bY
Y A=b)(4+b) )

The eighteen values of Gierster's r,, (Math. Ann., X1v, p. 452) can
now be exhibited as a group of substitutions, involving the parameter a.
Passing on bere to the case of n =20 (Math. Ann., xxx11, p. 105),

w =y {& (&+1)(4E+1)]
— /(4+b) /(1=b)
bi

—(1+a)vA4
(1_ 2): ?

=—a+a’+d;

m = { ‘/(4+b2)—bz\/(l—D } :

_ {1+aﬁ—2¢A}*’

1-a®

ne = (1—a—a")(1—6a—a)—5(1+a’) V4
8 (I—a—-d®)(1+4a—d’) ’

and similarly the values of n, n;, 14 15 can be written down.
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n=12 (p. 103; and p. 248).

Beginning with §;, as it does not introduce A, we find

f_ _fO _ _—a
TTFBN (2P ltatd
_ 1-3,4 _144a+a’
and thence &= 17 = ita
— 14§ _ 1+a)’
& 3—-¢ - (l—a
E = l—fl - __1 ) (228)
' 4 T 1+4a?
1+¢ (1+a)?
= 2 1 =.
& 1-¢ —a
¢ = 1+¢ _ (14a)?
8 2 T 1+4a®
Jo—plo

and thence the twenty-four values of Gierster's r, in terms of a can
be exhibited by a group of substitutions.
n=14  (p.87; and p. 257).
Beginning with £, we find

g LA fasy
S 10U O OFION

-1 - k4
= g YA N1Y3Ys --- Y1aYs
-3)- “Ia-% 7
z7IA 26727476787107]2 RPN s’p'y-/

= V1Y3YsY5¥sYnY1s
ASy;

24,22
= a5 - (230)
s

£ =)\ YYsYs — Yn Y1¥s¥s _ Ye¥u
L F s T .3
77 73 7',' 77

3_ .3 ]
=P—(°58_i1;7+°_. (231)
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Putting, as in p. 257 of * Pseudo-Elliptic Integrals,

—Tte
PET
_7r=dr+c+c __e(l+c)?
b= l+4¢ T 1+2 (232)

a rational function of
— pSv—pv p3v—p2 v =
P3v—pv P -pdv’

With this value of £, Kiepert’s equation (290), p. 90, for £ becomes

. (233)

3t

14c¢—2¢—¢° c(1+c)sg ¢ (1+¢)* (1—6c—16¢*—8c*)
Tz ot e b (15 20)° =0,

and thence
8= 2 (1 4+2c)(1+c—28—c)

where C =c (14+2¢)(4+5c+2c), (235)
& = —T7c(14+¢)(1+2¢) + (1 +3c+4c") JO
b= I 2 (L+c)(A+c—28—c%) (236)
52 1+2c 2
=R =" ¢,
a'ud Sl f‘ c (1 +G)2 fs (237)
_8(1+c)(1+3c+4c%) /0
= (145 . (238)
1 _Tc(14+¢)’ A+2¢)+ (A +c)(1+3c+4c) JC
Also gs 26 (1406)(1—60— 165 —82%) (239)
and thence (Math. Ann., xxxvii, p. 385), for n = 14,
‘U2 2 = 77+ l = +£3
n fs

— 7 (1+2¢+ 454+ 226" + 44c* + 326° 4 8¢")
2+ c—2c—c*)(L—6c—16¢'—8c%)

4 (143c+4¢®) (1 + 40— 4c* — 32¢° — 48c4—326°—8¢°) /O (240)
2c(14¢)(1+2¢)(1 +c—2c°—¢*) (1 ~6c—~16¢' —8c") ’

and (Math. Ann., xxxvir, p. 386)

; R (241)
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1_&_ 70+ (1420 +(1+0)(L+30+4) /T 940
L7 & 2 (1 +2¢)(1—6c—16¢'— 8c") '

where

and thence we find that Kiepert’s relation

‘ z=y—7=1v"~9 (243)
is satisfied.
n=16 (p.59; and p. 262).

Converting Kiepert’s expression for £ into one involving A and y,

YsYs YoYa 71.075

£ = T MY, YL s _ Yevh @)
v v v veve A
s Ta%s T8
YiYs vy s :
and this reduces finally to
_ a,_l 3
f=Tma
1—- —a
8o that b= 2&5‘ =a=1
po 12, _d+2-1
! 1+2¢ a’*—2a—1
&= €s = —a
"= 142 ~ @—2a—1
3 -_—
§= 1-26 =*EED
. . (245)
&= 1-2§, _d'+2a—1
fa —a
_/0+48) _  a*+1
*=T11%,  @—2—1
t= & _d+2a—1
(] f, ai+ 1
= & o=l
’ fz a@+1
¢ = & =—2
10 fs ad+1 J

Referring to “ Pseudo-Elliptic Integrals,” p. 263, and Math. Ann.,
X1V, p. 542, we see that Gierster’s

T =—¢ ‘ . (246)
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n=18 (p.- 126 ; and p. 265).

To agree with the notation of the Modulfunctionen, 1, p. 685, we
must put Gierster’s

Ty = —2—2, (247)

M= y+3, (248)

and then (Méth. Ann., x1v, pp. 540, 541) .
2rg+9 = (ry—3)' = 4, (249)

2ro+8 = (rg+2) = @, (250)

o = —elv=plo 3'/: = pu—ple (pu—piw)
pu—pzo pu-piu. (pu—pd)(pu—pu’)
80 that " dyt=1 (251)

Changing the sign of the z on p. 269 of * Pseudo-Elliptic Integrals,”
we now find that the relation connecting this # with Kiepert’s & is

=—¢—¢+2%+1+/Q
4q (¢ +1) T (252)

1-2¢,

3 , |

_¢—3¢'—6g—1+vQ 053
23+’ (253)

H=1-2§

_ @ +3¢+0-1—vQ 054
- 2¢(g+1) ’ (254)

_ 4

f’_1-;-63, _
43¢ +0—1—vQ .
= == (255)

.80 that &L=

= T

_1-2¢
& 1+4
— —9'—9*—6¢+1+3v@Q
2@—3g-1) .
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_ 1
Eﬂ—l'f'fs
_¢'—3¢"—69—1++v@Q ' ke
= 2(q‘—3q—1) , _ (257)
&L _ & ¢ —3q¢—1
that | R T P 4t
50 Haa & & q(g+l)
1 1
=g=1— 258
q PR (258)

n=22 (p.91; and p. 274).

34. Expressed in terms of our A and y, we find that Kiepert's.
three parameters ¢, £, §, are given by

£ LI f(22) ()

L(11)® @1y

-7y 21 k-
=AZ R Y1YeYs -+ YooY - & A qu
2N "y - Vis¥n

A 3
= 2B NYsYsY7YeY Y13V 15Y 7YY

= ;.%ﬁ,(vﬂwmwm)’, (259)
e =L@ _ _fE2)
'TILQAL (2T FALF (@)

=\l (71')’;’7571')’0 )‘, (260).
73Y4Y6Y8%10

p=_ L@ _ . f(22
TTLAN'L(2)* T FADF@F

=& Onr¥sypye)®
A (7’51')‘4)'«')’37’10)2

(261)

and we have to express these quantities as functions of a single

parameter ¢ by means of the relations on p. 274 of “ Pseudo-Elliptic-
Integrals.”
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35. Judging by analogy with preceding cases, the parameter g
" seemed likely to assume the simplest form, because it did not in-
volve the discriminant A ; and now we shall find that, expressed in
terms of the g and ¢ of p. 274, *“ Pseudo-Elliptic Integrals,”

._.08!1’ (Q"'l'-ﬁ—ci)Sl (q+]_+c)5 (q_ 02) |
h= A+c)g—1¥(g+c) (g—c—c*F (262)

where ¢ is given as a function of ¢ by the quartic equation

(g+0)g—o=c) for'—(1+20+0+¢) g+ +2} |
—cq(g—1—c—c")(g—c")(g+1+¢)’ =0, (263)

which can also be written, according to the calculations of Mr. St.

Bodfan Griffiths, of University College, Bangor, in a form ready
for solution,

{21 40) g —(2c+5c + 46+ 2¢*) g—c* (1 +¢)}?
= (4c+80"+4c*+¢*) {(1+2c) q—c* (1 +0)}?, (264)
or¢ {cq"‘—-(2+4c+c’+cs)q+26’ (1+0)}* .
= (4c+8 +4c*+¢*) ¢* (g—c~c*)> (265)
Thus, from (263), we can also write
_ ¢ (g+1+el(g—1—c~) {og— (1 + 20+ P +¢") g+ + ¢}
- T+o)(g+o)(g—1F (g=o=0) ’

(266)

and the elimination of ¢ between this and (263) will lead to a quartic
equation in £, which is discussed in the sequel.

36. To connect up these values of ¢ and ¢, which may be distin--
guished when required by gs; and ¢y, with the ¢,, and ¢,, employed
in the Transformation of the Eleventh Order in § 22, we notice that

6w_ 4w

_ . _ PuTfq
911——211——m
| PriTfn
12w 8w

R s

12w 4o

P32 P
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Y3
_T
YsYs
YeYs

= — ._Y_"L
‘Ys')'i

+ —c—c’ '
== (@ 21(362;2 . ) ’ (267)
l+en= pn

. 8w 4o
_ PPy
T 20w 4o

P2 P2
— Y

7"'7573

_ (g +o)(g—o—c)’
=Tt =" (268)

50 that. I — _ i _gqtlte (269)
l+¢y Pu g—c—2c’

l+en+qn - =@ +0)°
146, g—c—=c

. (270)

and these are true in general when z,, py, ¢u, ¢ are replaced by
Zny pm sz Cape

37. In Kiepert’s notation (Math. Ann., xxx11, p. 96)

—:—= 7+8 = P+4£+8+i§—,

’
T

3 = w =(£+2_‘2£-2)w’

-

W= (E+ 48 48+ 4) (5488 4+ 16£+16),

50 that -5 %‘—‘,2 (E+2-28),.
14
and dr_ _2d¢ en)

T w
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Again (Math. 4nn., xx3v11, p. 386), putting

- 2
u, w=V{x —,
v= Vs
4 e S8,
vE
20 _ . udu
=du ———‘/(u’_s) ,
while %’— = wd—dul4-4,
so that, from (168),
dc — dr = du _ wdu
VO 7T -0+ /{0 —8) (P~ 4t 4)}
. . 1 ’
. 2 — o
Put u = a_"'__l_l ’
‘du _ —3da
then J@—r T8 J4
A = da (a+1)*+1.
: —_ 5 11
Put w=u 8—b——_u,
then uwdu —3db

@B (w—titd)] VB’
B = 4b* (b—11) + (10 +11)?,
the same function as H™ in (167), § 25.

dc —3da | 1db
Th —_— = 4 2
e V0= VA T /B

and 4b can be reduced to the form of -£=

d
vB v

445

(272)

(273)

(274)

(275)

(276)

(277)

(278)

(279)

(280)

(281)

by means of the quintic transformation (163), so that the preceding
relations conceal an elliptic function relation, the interpretation of

which is given hereafter, in § 61.
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38. In Kiepert's notation, distinguishing this new 5 by an accent,
2/n =v+v, 2/¢=w+w,

s0 that -%=4/wg=@+am+@. (282)
Also 2Yn =/ (v4+2)+ ./ (v—-2),
2L =/ (w+22) + v/ (w—22),
5%5{J@+%+¢@—%Hvﬁﬂ4%+/m—%n

=2 (§+3) v/ (8+88+166+16) +2 (§+5) v/ (£ + 48 +85+4).
(283)

These relations seem to show that u, v, w should be determined, as
the simplest functions of a single parameter c.

n=26 (Math, Ann., xxx11, p. 98),

39. We notice here that Kiepert’s ¢, is the same as Klein's ryy, s0

that we can put ; _ 1—¢—dei—c* o8
= loipe, (@84)
and thus £ can be determined as a function of ¢ by the solution of
Kiepert’s cubic equation (333).
To obtain the &'s as explicit functions of a parameter, we should
have to discuss Halphen’s relation

Y =0; (285)

but this leads to difficulties not yet surmounted.

40. The connexion between Kiepert's ¢ parameters and the func-
tion p, employed by Abel in the expression of the square root of a
quartic in the form of a continued fraction is remarkable (Abel,
@uvres, 11, p. 157).

Expressed by Halphen’s y functions, we find that Abel’s

G =— 2:.;! Ym;)’nn—z , (286)

7m +1
and p=p=—4da; (287)
thence »n= % » (288)

p
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3ﬂ;l’ld, Since pmpm-l = 2%», (289)
= Lo Tn-2 s ) — 4 (VaVeVg oo Vo )‘ Y2as2 290
Pro G2a-1 GQ2.-38 9 P ('Yl'Ys')’u oo Y2a-1 72“1’ ( )
p, =2 Laxt Qamy 98 D — (')’1'}’575 ‘Yz..u) 'ana')’zns (291)
farl Q2 Qa2 Qa2 P YsY4Y6 oos Y2as2

ertten in Halphen's notation (Fonctions Elliptiques, 11, p. 582)
Abel’s continued fraction expression is

v {(@*+az+b)* +pa}

= (a®+az+b)+1: 2 (a;+g)+1 . 2("’;'.‘11) +1:
) .

( gm) + 1
Pm

= (@+taz+bd)+p:2(z+g)+pp 2 (@+a)+pps ¢ ...
. 2 (m+gm—l) +pm-)Pm : 2 (w +gm) +Pmpmﬂ H seey (292)

= pm+nwwv
and we find g = »} o (m+D) o= 60’0 (293)
W'ith Pri-1 P = —q'n =4 {6’7 (m+ 1) ‘U—P’U}; (294)

so that the continued fraction is readily written down when it is
iodi d
periodic, an ya=0, (295)

leading to a pseudo-elliptic integral. A

41. But without having recourse to the transformations of the
even orders, we can obtain the resolution of the cubic

S =4ds(s+af— {(y+1) s+ay}® (296)

by means of Halphen’s expressions for his # and y in terms of a and
v on p. 377, t. 11, Fonctions Elliptiques,

{a'—2ay (2¥'—3y+2) ++'}*
2 (a=1Py' (y=1)* ’

(297)

T = —

= (=)' =2y+a)(y’—2ay+a)
VT T R G Dy =1 @9
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Now, if s,, s,, 5, denote the roots of the cubic (1), we can put

5. = M (v'—2y+a),, - (299)
5o = M ('—2ay +a), (300)
5, = M (y'—a)’, (301)
where M=""207@ =3y + D +y" (302)

Za(a—1)y' (v—1)"

42. But, if we put

I l—g” 7'-1__92’ (303)
then s.=N(1+p'~¢") (304)
ss = N*(1—p*+¢%?, (305)
5, = N* (1—p*— ¢)%, (306)
where N= 1-2 (P +) + (pz—q’\)ﬂ (307)
lepiqa ; 4
and then
po =2+ + =)
282)4q4
= et )Utp=9)U-pt)@=p=a)' (5
2%
1 3 —0%) (1 —p? 2 (1 —pi—q?
y = — 1P =)( 23;;;«1)( P9 (309)

43. In the poristic problem of the polygon of = sides, inscribed in
a circle of radius B and circumscribed to a circle of radius 7, the
centres being a distance ¢ apart, we may put

—enZK__7
P= n  R—c
310
q = sn (K— 2—K) =_"7 , 10
n R+c
2—q? 4Rc
and x’=1—a=],0 %,:
P—p'  (B+c)y—*
f . (311)

v =dn’ (1{_._ %:S)= (%}z 3
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44. Putting

then

and then, putting

then

and

Division of Elliptic Functions.

dp = 1—(p+q)2}

v =1—(p—9q)?
N=—F,
(p—v)*
o= — 16p™°
(p=r)*’
y=— & +v)(p+v—4dwy)

(u—»)?
ptv="=2a, pv=24,
(p=2)=4(—-0),

B
@B
Yy=— (’%‘::‘%é)' ]
__ B
N=1wm
a3

449

(312)

(313)

(314)

(315)

(316)

(317)

(318)

(319)

(320)

45. We shall find it convenient to use the symbol s, to denote the
value of s corresponding to the aliquot purt 2rw/n of the period; it
also simplifies the expressions to put

and now

and we find, after

VOL. XXVII,.—NO.

. 3= ma H
N m3a
) (a—m)*’
y= (1—2m)a
a—in
2a—1)m
y+l= (2 o ;
a—m
reduction

563. 2

(321)

(323)
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mia

s5,—s =s+2x = Tt | (324)

§,—5 =8, = Zaln—’(:n_z)’ . (325)

5= 54—y = GaL_"%:M (326)

50 that iy (327)
= (i), o
it =
v = o e} (30

_ {(1—2m+2m’)(1—2m)a—m(l—m)(1—3m+3m’)}’»
2 (1—-m)(1—2m) a—m (1—m)*
(331)

(1-2m)?a®—m (1 —m)(1—2m)(2—3m) a+m? (1—m)*) ?
s (T—m)(1—2m) (1—3m) a—m* (l—m)’} + (332)

m?

%= T=2m) (a—m)’

(1-2m) a®—m (1—m) (1 —2m)® (l+2m—2m’) a
{(1 2m) a—m (1—m)}
x {(1-2m)a—m (1—m)(1—2m+2m?) }

Mr. G. H. Stuart is engaged on the calculation of the succeeding
equations, and he has found

m a
— bt Ya¥m YaYwn

R ——f =
Y0 T a—m Y,

(334)

_(l—m)’a{ a—Bu’-{-Ca-—D}’
T a-m Pa®— Qa*+ Ra—S8 ) ’
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where A = (1—2m)* (1—2m+4m?) \
B = 2m (1—m)(1 —2m)* (1—3m + 5m?)
C =m® (1—m)? (1 —2m)(1—4m +7m?)
D=m*(1—m)®

_ . (335)
P = (1—2m)® (8—6m +4m?)
Q = 2m (1—m)(1 —2m)* (3 —Tm +5m?)
R =’ (1—m)’ 1—2m)(4—10m+ Tm?)
S=n(1—-mf J
by = T
v 10 = (a—m)’
X[ Aa‘—_Basi-Ca’—Da-l-E _ _\_]s
{(1—2m)a—m(1—m)'} {(1—2m)a—m*(1—m)} (Pa’—Qa + )
where
A= (1—2m) ' .

B =2m(1—m)(1—2m)* (2=Tm+Tm?)
0 = 2m® (1—m)? (1 —=2m)® (83—11m +13m* — 4w +2m*)
D = m®(1—m)® (1 —2m)(4—17m +27m*—20m® + 10m?)

L. (336)
E =m* (1—m)* (1—5m+10m*—10m® + 5m*)
P = (1-2m)* _ " ’
Q = m (1 -m)(1—2m) (1 —6m+6m?)
BR=—m(1—m)® ‘ 7

So also for §,— 8y $,— 8y, &e.

The form of the denominator of

§,—S,

can be inferred by putting
8,=Sp = 8,—Sup,
and of the numerator by putting
(5—5)(8,=84-p) = (.—5,) (55—5)) 5 (337)

and these relations serve as a check upon the preceding results.

2462
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These equations, (324) to (337), ..., provide a simple method of
determining the division values of elliptic functions of the second
stage in terms of a single parameter ; for putting

8—8,=0, or s—s =8§=—58.u A (338)

gives a relation by which it is possible to express a and m in terms
of a single parameter.

Thus, for instance, from the relation
5,— S = §,— 8 - (339)
we obtain the elliptic functions, sn, cn, and dn, of the nineteenth
part of a period.
46. Expressed by a linear and quadratic factor,
8 =4s (s+2)*— {(y+1) s+ay}®

= {s— ( mﬁa!)s} {43,-*_ 4(1—2m) a_lm’s+ md (1—2471.)’1;’} ,
a—m

(a—m)* (a—m)*
(340)
so that, denoting the roots of the quadratic factor by s, and s, we find
4 2 —_
(s.=8) (5= = T Lm0, (341)
_ppl=8(—2ma :
(.?,‘—,‘sﬂ)s =m 16 (a_m)‘ , (342)

and, according to the order of magnitude of s,, s,, s; we may put

Aj l"‘ . 2.1
L or A:, or KK

_ (=) (555

(6“,—'85)2
_qpd(a—m)(a—m+1) ;
=16 1-8(1—2m)a (343)

We may also determine Kiepert's function T' (Math. Ann., Xxxii,
p: 26) by the rclation
=TT (344,

ral 5,8
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47. According to Halphen (F. E., 11, p. 407) 2 and y are given as
functions of v by the relations

_ _ o*3vey
= ‘Y: ()= 059, ! (345)
advaty
y=70@) = —;,2—‘:’ . (346)

Denoting the values when v is changed into pv by =, and y,, then
(F. E., 1, p. 106)

Y57} y—5,)3
T, = _;J:ll.’ = %"ﬂl , (347)
P
= Y—Z"” 7‘ = §'11.’
yl’ ygp Sp 3 (348)

and now the substitution

s—s,, = M®, (349)
or s—s, = M} (t+=,), (350)
where Mz, = 55,5,
=l L2, 351
2, (351)
2 7
or M=z, 352
VoY (352)

changes 8(s; 2, y) = ds(s+a)— {(y+1) s+ay}?
into MS(t; 2, y,),

Mds - dt .
J{S(s;m, y)} ‘\/{S(t;wpa 3/.-)}’

and makes

(353)

in this way the various permutations of the division-values of argu-
ment pv are obtained.
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48. Thus, for instance, when » = 11, and

i =0’

we find 1—z,=ﬁ-=L:
I A
; z (y—z—y')°
v {e (y—z—y")—(y—2)"}
_ 2 (1—2)
" (=2 (I—2-p)
—__9¢0+9
(I+c+9)* (g—0)

_ cq(l+o)?
N O]

_ de (1+0)' (VO-1)* -
= 0F%+ V0 (=1=2c+ V0)

_(A4e)(1+2+28—+0)
- 2¢ ’

_142—0
=T 7

_1483c+4+E—(1+c) VO
= = ,

But, if

V0,

so that l—z = iqz’il-,

- M
while 1mg = YCO+1
. 2
and z, is thus changed into 2, by changing ¢ into

142— VO
2 ’

and the same substitution changes z, and y, into M.’z and M; ’y,,
where

3 g .
—aY, _ (142:+ ~/0)
B Tee



1894.] Division of Elliptic Functions. 455

Similarly, a change of
—1—4c—2— ~v0
2 (1+c)?

. -2 -2
changes Dy Yiy iy oee  A0t0 M as, My Y 24y aee;

¢ into

and so on.

Calculating the division-values

#1284 5) QT"’I-

for e=x, y=1u,
2w,

we find, with V= -—f )

24 (14c)pv =—24 2+278+ 42¢8+18¢'~— 25—2¢°

+( 6e+13c+ 8+ 2¢') VO,
24 (1+c)'p20 = —2—-10c—383c*— 66¢*—66¢' ~26¢°—2c°

4 (—60—23— 28— 10¢%) +/C,
24 (14¢)'p3v = —2—10c—33c*—~ 30c*— 6c'— 2c°—2c°

+(-6c+ &+ 8+ 2 V0,
24 (14+¢) pdv = — 2—22c—69c*— 102¢*— 78¢* — 26¢° — 2¢°

+( 6c+13c+ 8¢+, 24 /0,
24 (1 +¢)pdSv = —2—10c—21c*— 18c*— 6c'— 2¢°—2¢°

+(—6c—-118— 4+ 2¢%) VO,
so that

reb
24 (1+¢)* @, = 24 Elpfrv
= — 10—=50c—129¢*—174¢* — 138¢* — 58¢° — 10¢®
+(—6c— 7c'— 88— 2¢*) V0,

and the preceding group of substitutions merely permutes these
division-values, and changes the homogeneity factor M.
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49. The value of &’ =, may be derived from = =, in the
following manner :—

Put 8 =ds(s+2)'~ {(y+1) s+ay}*
= 4 (s—5)(s—35)(5—5,),
80 that Satspts, =} (y+1)'—2a,

848, +5,5,F 5.5, = & —Fzy (y +1),

8,558, = —a™y?;
doat (£)=s () = o=
and pu s " s n) Ty = T
w
$ (;’) - @211 - a’y
w
so that A s (51—1) =g—z
Then from the formnls
” W 3
sy
© 2n
2s (%) +s (%)—s,-—sp—s, =1 e )
2

where s é‘:—% =4 (x—a'—s,) (x—a" —s5) (— 2" —s,),

”
98

WL = (o—tf—s,) (0= —3)

v
2n
+ (@—&'—s,)(x— 2" —s,)
+(@—2'—s,)(x—a" —s,),
we obtain, after reduction, the equation

at—z (y+1) a"~20%' —a® = 0,

’ w
U]
r

,=@=s(g¢;—u)_3(%)’
S

"+ 2+ (y+1) P —2=0.

or, putting - x
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To solve this quartic equation, write it in the form
(P +r+8) = 2t—y) *+2r++a;
when the right-hand side will be a perfect square if
(F+2)(2t—y)—£=0,

or 28— (y+1) + 2te—ay =0,
or - 4 (B +2)’— {(y+1) '+ay}* =0,
so that we can take, from (321), (322), (325),
. P
t=+s= a—"_i‘i;,

Ct—y) P42+t 4z = a—j—m (r+m)?, .
and thus the quartic for r or 2" may be resolved.
As a preliminary verification, take 2# = 6; then we can put
=y, t=y
(Proc. Lond. Math. Soc., Vol. xxv, p. 216) ; then
@P+r+y) =y (r+1)3
P—r(Vy—1+ vy (vVy—1) =0,

(7_ vy—1)2=(vy—1)(—3¢y—1) o A= VN(A+3Vy)
2/ 4 : )

This quantity y = y, is found to be connected with the parameter
a = a,y by the relation

9

=% .
y A +a+a?)?’

and ta,king .\/y = — 1_-}%.*-_02,
‘ 1+a)*
1— Wy= < ,
Y= 1+vatra
1—a)?
1434y = (=0
+Ivy l1+a+d
so that r=— _ata’
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and this agrees with the value of

y—2
2 1 —z+zv— s
p= T 8jw—sfu _ ¥ _y—z—y
‘ Ty Stw—slw z
z a+a?

. p—% l+a+a*

Pagsing on to the case of 2» = 10, we have (Proc. Lond. Math,
Soc., Vol. xxv, p. 236)

. a (1+a)
TEMNE T A A—a—a)"
y=1y —a(l4a)
(1 —a)(1—a—2a¥)’
t=va =42 a)(l a—a)’
3 —a. 1 3
{”” a- a,)(l p aﬂ)i g a—a=(’+1—a)’
so that, putting A=—a+d+d,
Ptr— a =__(-o)r+l 4

(1—-a)(l—a—d®) (A—a)(1—a—d)

(T+ 1 1—a—d’+ '\/A) _(A+a)(1+d*—2+v4)
f 1l—a—2d? T 4(Q—a)(l—a—0d") ’
: aﬁd thence r=SROTSIO g ( )
slw—sisw 10

can be found ; so that the case of u =20 can now be considered as
solved.

With on = 12,

_ s%w—slﬂw
T ely—sley’
siw—si5w

and now we take (* Pseudo-Elliptic Integrals,” p. 248)

f=— at+al+a® _ A
l—a ~ 1-a’
4\ 1\
so that (r’+'r+ l—a) ( r+ _Tz) A,

and thence 7; this solves the case of p = 24.
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With 2n = 14,

r=RIO—pi0
Pro—pfw
and we take

b= o = 2(1——:_—21_%%?3{,(1+c)(1—2c)+(1—c)«/0},

where 0 = ¢ (1+2¢)(4+5¢+2¢%),

g = o 30604106~ (1420 — 26 —26) /C
Yy=%= 2(T+o) (T+o—20~d)

0+3c+60 —9¢*—21¢* 404162+ 8¢7
+ (1 +2c—38c*—5c% 4 2¢* + 4c”) «/C

z=a,=c¢1+¢c) (I+c—25—c%)?

. 80 that p ;v can be found, which solves the case of u = 28.

In a similar way the case of =32 can be derived from u = 16,
p =36 from p=18, p =44 from p =22, &e.

50. Considering now the transformation of order » and 2z together,
the 2, y, 2, ... obtained for a transformation of order » will be the
@y, Yyy 2y ... Tor the order 2n.

Thus, starting with n==5, ' .
the relation Ye=y—2=0, (354)
leads to a= M, (355)
1—-2m
1—m\?
s0 that y=z=— (T) (1—2m). (357)

Bat, from the transformation of the Tenth order (*‘ Pseudo-Elliptic
Integrals,” p. 235),

] 2 3
=Y —_ Y2 (e+p=-1) _d'=d’ 8
$0 that we must take C om=l (859)
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’ 4

. 8,—83 __ Sg—S§
Otherwise, e (360)

S,—8  &—S$

where the accented letters refer to the transformation of order 2s;
so that

m

Yty VYs VYVs P—%

Therefore, for the Tenth order,

() == 6o
as before in (359). .
With n =06,
x=y—y'; (363)
and therefore either m =1, (364)
or a= ;’”T(ll_‘z—’;% (365)
With m =1,
a 88 _ Sa—S;

- ’ ’
a—1 s5—s§ S—s

w — A
=2e=" (366)
8 4
\/(L) - 2
a—1 757: cpy
z

T 0+a)(p—2)

—-—Qa

il g Tard (367)
(“ Pseudo-Elliptic Integrals,” p. 248),
—a' (368)

= Aroi(+ay
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But, with (365),

=" (1—m)
T 2(01-2m)’
« 1—m _ a?

a—m  1-3m  (+ata)’

_142a44a*+24° +a* 369
= 142+ 60 +2a +a’ (369)
a® (1 +2a+4a’ +2a° +at) (370

T OF2e+6a+28ta)(1+2a+8a' + 28 +a') .

51. But, without these details, we notice that the transformation
is effected, in terms of a single parameter, either by putting

§,—8, = @, (371)
for the order n; or s,—s, =0, » 372)
8§, —%, = O, (373)

for the order 2x.

In this way we obtain either

m=1,
or a_____'m!l—m)’
2 (1—2m)

for the order 21 = 6.
For the Eighth order, put

s,—s, =0,
o _ m (1—m) o m
or (329) a= oo amm= g (374)
so that 2 =—(1-=m)(1—2m), (375)
y=— Ql.:é%%iﬂ@, (376)
and o m=1l—z 377)

(* Pseudo-Elliptic Integrals,” p. 226).
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For the Tenth order, put
s,—8 =0,
or (330) a= ’%ﬂ’!‘) , (378)
.
v= (350
so that m = 1‘17 | (381)

(* Pseudo-Elliptic Integrals,” p. 236).
For the Twelfth order, put (331)
m (1 —m)(1—3m +3m?)

5,—55=0, or a = A —2m)(—2m+2m®) ’ (382)

amm= (1—2m)(1m: 2m+2m)’ (383)

o= — (l—m)(l—2m)(l——2$+2m’)(1-—3m+3m9) . (384)
y=—Q=mA=2m(=53m+3m) (385)
1-s=Y = 1_2”;*9”"'3: 1+‘;t‘::, (386)

so that m = l—l—a (387)

(“ Pseudo-Elliptic Integrals,” p. 248).

52. For the Fourteenth order, put (332)
8,—5 =0, (388)
or (1—2m)*a*—m (1—m)(1—2m)(2—3m) a+m? (1—m)* = 0, (589)
so that, putting (1—2m)a=m (1—m) 7,
(1—2m) y*— (2—3m) y + (1—m)* = 0. (390)
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We connect up with the results on P 257 of * Pseudo-Elliptio
Integrals,” by calculating

(L) = e e ez} (391)
m =8 Y Yo
1om _ Ny vy (L+e)(p=2)
mo T Yevs Yy, ¢(1-2)

_ —c+ V0 39

= Sara (392)
o that _ 2430+ gé‘— vo (393)
and this_ makes

fo_m (394)

va = 271'%15%?) {c(1+0)(1—2c)+(1-c) v0}. - (395)

For the Sixteenth order (** Pseudo-Elliptic Integrals,” p. 262), with

5,—8=0, (396)
l—=m\® _g—s__( 2 \} s
( m ) T sg—s (l-z) ’ (397)
1, 1 .
so that m=1l-z= a1 (398)

For the Eighteenth order (p. 265), the various relations
=0, or s=2s, S8=Ss&, &c., (399)

will be found to lead to a certain equation between a and m; and,
putting

_m(l—m)
e s (400)
1—2m = -—1_ (401)
z—1"
—9y =1 (402)
1 27 _y—l’
and y=(1+9) a, (403)
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we are led to the equation
(q+1)} 2’ +(¢*+4*—29—1) 2—2¢° = 0, | (404)
having the discriminant '
(¢"+9'—2¢—1)"+8¢' (g +1)’
= ¢"+2¢°+5¢*+10¢°+10¢* + 49 +1 = @,  (405)

so that z has here the same signification as on p. 266 of “ Pseudo-
Elliptic Integrals”; and now the rest of the identification can be
effected.

53. But the T'wenty-second order is of importance as affording an -
independent determination for this order of Kiepert's parameters

E’ El, Eﬂ'
We start by putting
8,—85 == §,— 8, (406)
and obtaining a quintic equation in a, from (330) and (331).
. a mt’
Putting = & a= AT

(407) -

and taking the square root, we obtain a quintic equation in ¢, and
in m; and this, on putting
m = ._L
147’
becomes #—n(2—n)1+n—n®)t'—n(l+n?) ¢
+2* (3—nd) P+ nd(l—n+ud) t—n =0, (408)

a quintic in ¢, and in 7.

3
But the relation Y1 — (_‘Y_a) ,
Y Vs

which is the equivalent of ¢, =0,
leads to the (a, m) equation in the form

(1—2m)a—m (1—m) + (1—2m)*a

1—2m)(a—m) m®
o (1—2m)%a 3
- {1+(l—2m) a—m (l—m)_’} ) (409)
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I am indebted to Professor E. B. Elliott for the substitution

14— (1—2m)* e =1-—m,r
(I=2m)a—m (1—m))  m '

o= m(l=m) (1—m)r—m

or 1—2m r—2m ' (410)
_ m awr4+1—3m
I Tom T r—8%m (411)

. . L=m A=m)r—m g
which makes s,—s = m mrE1=3m (r—m)}, (412)
o —sy = {(l—m) 'r—m}’ (mr+1—2m) (413)

(mr+1=3m)*s ’
.and leads to the equation '
dmt+2 (#* =3+ 171 —3r—2) m®
— (P =r =8+ =5r=1) m?
+7 (=4 =2+0—-1) mF¢ 0t =0, (414)
:a quartic in m ; but a quintic in 7.

The resolution of this quartic was effected by forming its resolving

bi
cubie 4*—gy5—g, = 0, (415)

and noticing that, if it has a rational root in 7, this root must be of
the form i ‘
12 = ¥4+ A+ B+ 0+ Dr—1. (416)
It was  then found that the special numerical values of 7,
r=1, —1,2 3 made 12s =—1, —25, —19, —97;
hence A=-7,B=10, C=-=5, D=1;
and the required root of the general resolving cubic is thus given by
12s = #*—T7+ 10 =517 4 r—1, (#17)

and this was found to verify ; as, putting 125 = ¢, the resolving cubic
breaks up into the linear factor

e—=1*+7r =103 451 —r + 1,
and the quadratic factor
284+ (=7 +10° =5 +r—1) ¢

_7.xo+5,.o__6,s_3,/7_7.q+17_1.5_14_).4+3_),s_2 .3+2'__1.
VOL., XXVIL.—NO. 564, 2h
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The discriminant of. the quadratic factor is’
.9 (M —6r"+ 138 — 1407+ 20r°— 28 + 197 — 615+ 3r* — 2r + 1)
=9 [ {(9"7- 3t =3+ 4+ r =1y + 54 (7'—1)}’+87" (7‘—1)’]
= 94 (r—1)* {(H+5)'+8},

H= P34 =384 4P 4 r—1

on putting A r—1)

The quartic (414) can now be written
{am* 4 (14=3P+P—3r —2) m—r (P =37 +r—1) }?
=2 (=10 (P —8P—r—1)(m—1), (418}

and the resolution of the quartic in m is thus effected.

54. Professor Elliott points out further that, if we put

— _ @m=1)(m-1) (419)
Y= =D (m=1) ' (419)

then the quartic reduces to a quadratic in y,

yP—(—=2r—1)y+r=0, (420)
and further, putting r= E-E-l-, (421)

this quadratic assumes the symmetrical form

oy + 2wy (v +y) +2' +4ay +y* +a+y =0, (422)
or, putting 4 zt+y=p, xy=4gq, (423)
(p+a)* +p+24 =0. (424)

Thence we can deduce
w=2c+;;L0’ y=2c+126—5~/0’ (425)
where C = 4c(c+1)'+1, (426)
s0 that we may put z=p (u—3w)—3%, (427)
y=p (utio)—3 (428)

and ¥ is now found to be the reciprocal of ¢y.
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55. Professor Elliott has also made a similar reduction for the
equation (263), connecting '

q=¢y and c=cy,
by writing it

(1+0)* ¢* (g—c—c)*+q (g—c—) { (1 +26) g—c'—c*}
—c{(1+42)g—=c'}'=0, (429)

p=_9@=c—=c) _ (430)

1+2) g—c—3"

and now, if we put

the quartic (429) reduces to the quadratic
(A+e)Z+c%—c=0. (431)

Here again, by putting

c=—§—, s=—g—1, (432)

the quadratic (431) becomes the same as (422).
The relations connecting this g and ¢ with m and » may be written

r= 2 gtl+e .

l—m g—ec—¢*

—_1l+c q q—c—c*, .
- ¢ g¢q—¢ g+l+c’ (433)

and the elimination of ¢ between this and (264) leads to the velation
(2e+4+8) r—F (L+c) + (r+1+¢) /(4 +83+4c3+¢%) = 0, (434)
or A= Re+)r—1—c =0, (435)

a quadri-quadric relation between ¢ and », which becomes the same
as (422) when we put, as before,
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The elimination of m between (414) and

_ m(1—2m)
P= r(r-3) m+r’

where p=p,=1l+e,,
is found to lead to-the equation
P=(*—=4*+5°4+0+2) p*
+(P =4+ 5 —4* + 6+ + 1) PP
+7(r+1)(#~27+0—-1) p++* = 0. (436)

Expressed as the difference of two squares, preparatory to resolu-
tion, the equation may be written

[2 (p—7+7=1)—r (*=2r=1) {(r—2) p+1}]* .
=7 (r=1)(@=-3r—r=1){(r—2) p+1}* (437)

In Professor Elliott's procedure, this quartic equation is replaced
by two quadratic relations, by putting

_p(p=rttr=1)
T 8

and then (436) becomes

W= (P=2r—=1)utr =0, (439)

the same as (420) ; so that, w and ¥, if not equal, are the two roots of
this quadratic, and

r(p—r+r=1) + (2m =1 (m—7) _
r(r=2)p+r  r(=1)(m-1)

or plp=r+r=1)  Q@m-1)(m=r) _ s o

r(r—2)p+r  r(r—1)(m=1)

0,

Here, as before in (419), it is the relation (438) which still requires
interpretation, as an elliptic function formula.
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56. We connect up these functions m and r with the 2, and p,,,
employed in the transformation of the Eleventh Order, by the relations

omtTh o lom, (440)

Pu S5 m

after reduction ; while

o =58 _ (1-2m)atm(l-m)
n —s,—sl T (Q-2m)(a—m)

= (_L-—_'ni)!l—le (441)

mr+1—3m ’

=%—8 _ _m(1—2m) '
=T (mr+1—3m)sr’ ' (442)

Expressed in terms of m and »,

5,—8, = m (1—m) m__%”, (443)
= (1—m) § I=m) 7—m :
s,—8 = (1—m) { o 1 —3m } (444)

s—s,—_.__._)_ A=m)r—m (445)

m mr+1—3m’

—_— =3 (1 — ’ 9 'f—l s ‘
8,—s, = m} (1 —m) (m___~r+1_3m), (446)
. _1-m s(l—=m) r—m :
L L ( ™) mr+1—8m ' - (47
fms — {(Q=m) r—m}* (mr+1— 2m)’
LR (mr+1—38m)?
_ l—m)r—m [ (1—m)*—mr+m (1—2m)
—s, = m (1—m) . ) 77
=gy =m(l-m)> mr+1—3m [m‘r“-i— (1=3m) r—m(1—-2m)
&e., &e.,
so that
r=3 m (1=m)® (r—1)* (r—m)? { (1—w) r—m}®

'I:Il (s,—s,) = y  (M48)

(mr+1—3m)?
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while
(1=m)(1=2m)(r—2m) {(1—m) 'r—m}
hTh = (mr 4+1—3m)* (449)
_ —(1=m)(1—=2m)r
5T T G+ 1—8my (450)
A—m)>*{(Q—38m+m®) r*+ (1 —2m)(1— 3m) r—m (1—2m)* }
Sg—8 =
m (mr+1—3m)?
(A=m)(r=1)(r+1—2m) {(1—m) } (451)
—m)(r—1)(r+ m —m)r—m
5% = m? (mr+1—23m) (452)
s, = (A—m) 7 (r—2m) {(Q=m) r—m} . (453)

m (mr+1—3m) ’
and therefore Kiepert’s f is given by

fi==(s—s) (si_"si) (54—35) (55 —35) (5—51)

_(Q=my (1-2m) 2 (r—1)(r—2m)* (r+1=2m){(1—m) r—m}®
- mt (mr+41—38m)? ‘

X {(1-—3m+'m’) ?+(A—2m)(1—8m) r—m (1 — 2m)2} y  (454)

whence Kiepert’s T* = f*II (s, ~s,). (455)

57. Also, from (341),

(m—1)*{m (r+1) =1} {m?(r - 8) —m(r+2) +r}

m(r—38) 41143 !
{ « )+} 456)

(5.5 (55—5)) =

so that, as in Halphen’s F. E., 11, p. 245,

& - L) s
PTIANIE T FADT @

= ﬂfﬁﬁ')’_. ’ . (457)

(s.—s,.5,—s,)*’

_mi(m=1) (r—1)*(m—r)* {m (r—3) +1}
{m’('r—3) +m (r+2)—r} 6

(458)



1894.] Diviston of Elliptic Functions. 471

58. Kiepert’s parameter ¢ can be calculated from the formula

—af(22)F(2)" wm _ _ 16T
r=Aa Ay = Af @ T =~=75, (459)
or B _ @ | . (460)
£ s.—s,.8—s, :

and then we find, in terms of m and 7,

_ (r=1)(m—1)"(2m—1)* {4m?(r+1)—2m (3r +1) +r}
7 (2m—r—1)(m—1){2m?+m (r*=3r—1)+r}
x {m? (r—3) +m ('r+2)—'r}

and thence Kiepert’s 4, or Klein and Fricke’s , by the relation

T ¢

59. To find the relation between Kiepert’s & or § and our », we
must eliminate m between these equations and the (m, 7) equation
(414); the work, which is very laborious, has been carried out for
me by Mr. G. H. Stuart.

Contrary to anticipation, the equation for & in terms of ¢ is the
more complicated ; it is a quartic in £, but of the twenty-fifth degree
in r; however, it was noticed that the coefficients of & could all be
-expressed rationally in powers of

H= q-°——31"'—3‘)”+4s1_‘2+?""1

o) , (462)
o that the quartic for & could be written '
% — (2H?+80 I + 792 H* + 2816 H* + 3509 H + 1331) £
+ (H+16H + 88 H’ + 184 H* — 342 H —2651) £
+(8H*+ 75H+143) §~1 = 0, (463)

or, resolved as the difference of two squares,

{(BH*+21H+11) £+ (8H*+7T5H +143) §,—2}*
= {(H+1){ - (H+9)} Hg, (464)
where, as in (167), H” = 4H*+ 56 H*+ 220H 1121
=4I (H—-11) + (10T 411 (165)
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Similarly, Mr. G. H. Stuart found that the quartic for ¢ in terms.
of r could be written

H(&+4)+(4H~11)(£+4) é—(H*+10H+11) & = 0, (466)
4 _ —4H+11+H
£ H

The elimination of H between these two equations (463) and (466)
will be found to lead to a reciprocal quartic in ¢, which breaks up
into Kiepert's two quadratic equations (303) and (306) (Math. Ann.,
xxxir, p. 92) ; for, from (467), in Kiepert’s notation

H =2(«'-2) H-11,
8o that (464) can be written
(BH*+21H+11) £+ (8H*+7T5H +143) §,—
+{(H+1) &~ (H+9) &} {2 («*—2) H-11} =0, (468)

or &+ (467)

and eliminating H between (466) and (468), two quadratics in H,
will lead to the result.

60. Writing equation (467)

2 — 4
(ve- 722) =8 = _@gﬁlﬂ, (469)
= 2H
then, from (278), b—11=11 “RHLIITE
_plRE-11+H
- 2 (H—11)* °
22H*+4-88H +121 + 11H'
b=11%" o (H=T1)" (470)

We may distinguish this H by writing 1t H (8), where 0 denotes
the elliptic argument ; as

H(6)=gp (0; 92 95) =4
H'0)=¢'(0; 9w g5),

124 41.61
3 b gs— 27 s

29.31°
3’

where (M.F.,11,p.444) ¢, =

G—2Tg = —11% J =~ 41y
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and now we find we can put

b=H (6+4),

, 4 4b+77
while &+ ? 1
: = 2\ _ 8b+33
w=(vé+ /f) i

w=w-8= (“/S— %)3 bu%l |

61. Klein and Fricke’s r is also an elliptic function, which may be-
distinguished by its elliptic argument ¢ as r (¢) ; in fact,

H(¢) =—1lr(¢), H'(9p) =11+ (¢).

Let ¢’ denote the grgument of r when £ is changed into %,:the

effect of which is to change 2««’ into its reciprocal, or to change from
8 positive to a negative discriminant A, or from XKlein's J to
Kiepert's J; then -

. ¢
9 = Fr AR SE e
N = __f_’_h
T ()= B+ 16ET 16"

(¢) — (Qj'_gfq_tot?) w
(B+4€ +8E+4)°

(g) = E+0—16¢—32)w
(F+8E+16¢+16)"

where W= (£+48 486+ 4)(£+88+16¢+16).

Thence, by means of the addition formula

H(p+¢)+H(9) +H(s)+14 =1} {ff(%)g_(g?}

of —11{r(p¢") +7(¢) +r(¢)} +14 =} {;lg)l____’m}’, (472)
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we find, after reduction, that

H(ptg) = NELTTEL4

(¢-2y
=1+
(ve- ) |
= H(0+1a), (473)
8o that we can take ¢+¢’ = 0+5w. (474)
. o ' 2\ 1
Similarl t ? = 2) = — 47.
imilarly, with  « (/£+ Jf) T (475)
1 121 '
g0 th —_— =
so that iy e v 11 8, (476)
a8 in (275), we find
Y _a*—2a*—5a°+2a*4-da+1 A7
‘ H(¢ ¢)— PE (a+1)z ’ (4 7)
so that ¢p—9¢' =6, (478)

if ¢ is the argument of the elliptic function @, which is such that
a (9') =g (BI; g3 93)‘_%,

with 4 =01 -2,

92=§" gs'—"-'ﬁ: J= 11’

an elliptic function already employed.

These relations (474) and (478) may serve as interpretations of the
elliptic function properties implied in equations (419) and (438).
62. Thence p=1(0+6)+%0,

so that, starting with ¢ in the transformation of the Eleventh Order,
we may put

ey =c=p}(0+6)—3 with g, =%, g, =—1;

VO = V(AP +82 +4c+1) = '} (0+6),
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and then
’ 1 124 41.61
—1lr=p {3 (0+6) + 40}~ 3"‘, with g, =12, g="25:7.
117 =g’ {4 (6+6)+30}.
Putting in (462) r= ﬁi

. ¢ -2c —5c%+2¢* +4c+1
gives H(6) = SRl (479)
sothat c=c (@) =p (0)—% with g, =% g¢,=—1%;

1

and then Cyy = w . (480)

The duplication formula, for
H=H () and r=r1(0),

(H—11)(H*+11H*+ 11 H—121)
A+ 56H +220H+121

147)(1 +7—11r 4117 ,
o r(@9) == ¢ tféoj; e g (482)

H(20) = — (481)

will often be required in the numerical applications.

63. So also the relation s,—s,;, =0 A (483)
may be replaced by (337), in the form
(5,—35) (5, ~55) = (5.—3,)(5s—5,) 3
.and, from (447) and (456),
A—m)(r—m)*{(1—m) r—m}® (mr +1—2m)*
m (mr+1~—3m)*+*
— =m)’ {(1—m) r—m}2{(1—m—m?)r—2m+3m?}
(mr +1—3m)° ’
or (r—m)? {(1—=m)r—m} (mr+1~2m)
=m(1~m)! {(l—m—m¥)r—2m+3m*}, (485)

: quintic in m, and in 7; and Mr. James Hammond has found that
this (m, r) relation becomes the same as (414) if we write

1—m for m, and A=m)7 g0 .

r—m

(484)
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64. The special numerical values in the cases of Complex Multipli-
cation implied in the Modular Equation of the Eleventh Order provide
interesting applications of the preceding theory.

Taking Kiepert’'s form of the modular equation (325b) (Math.
Ann., xxx11, p. 98), it will be found that the coefficient of W can be
resolved into the factors ’

(n+6)(n+7)(n+1)(n+4) (1—8) (4" +2n—44)(v" + 40 —16),
and these are found to correspond to the cases of ecomplex multipli-
cation where the ratio of the periods

X =v2, w1, v7, /(19), V(43), (10), V(35);

and then L (11)? is found to be the corresponding complex multiplier,
so that

LA =8—v2, —-%+v7, 2+/7 }{-5+.,/019},
H{ -+ v(43)}, i+./(10), 2{-3+(85)}.
Kiepert's notation can be connected up with that. employed by
Brioschi (4nnali di Matematica, xx1, 1893, p. 309) by putting

L(ll)=z{or 'b‘/g—yi)}, —1—2, &c.

65. In a similar manner, when the ratio of the periods

=V(22-¢") =/(21), /(18), /(13), V6,

we may take L (22)" as the corresponding complex multiplier, and
L (22)* =1+:/(21), 2+4:/(18), 3+4+i/(13), 4+:v6;
also,

L2y == — 64 (LTHY 3)A° (BEY7Y, ea(va+ var,

—{/(13)+3}%, 64 (v2+1)%;

aerived from the corresponding special values of the modulus given
in the Proc. Lond. Math. Soc., Vol. xix, p. 301.
When the ratio of the periods is ,/(13), we shall find that

E=2, B=—8, v*'=4 0v=10/(13), w=-3,/(13),
V1n'=5/(13)+18,

L()" = — 15 = Pr'=—64 {5.,/(13) +18},
or %’ = 5./(13)—18 = { 112)—3} :

a verification of the well-known result.
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Also o) =252, ro) =,
Hptg) =11 n_ 3
¢+¢) —_Zr a(0)—-z, &e.

So also we find that, for ,
K'/K = +/8, E=—14¢v38, &= 8, u'=2 v=05,
‘ V= (V2+1)
K/K=4y/(18), {= 1+4iv8, £=-8, u'=6, v=098,
vy = (/34 V2);
h’/K=‘\/(2l): §= i++3, &= 8,
w=4+42v3;= (V3+1), 0=32v7+18,/(21), »=84+48+v3,

Vi = }o+7) = (VT +3v3)B+3vT) = (L V3)a (3EY7Y.

2 72
66. With % = V2,
L =en=16(L —«) =64,
K
L(2)} =2,
and fﬂ+4§+%=7)=—6,

E+48468+4=0,
(+2)(8+26+2) =0,
¢=—2 or —1+4i.
Then u=0 v=2 w=-14, 5 =1,
r=4 =kv2
Also a = w, so that 8/ =0, and
L ¢ =¢ =30+%u;
Hp=-%, Hep=-3;
H@GE0) =—8+iv2, H(f) =—5+2+2
so that ‘ H (6)*+10H (6) +83 = 0,
and the discriminant of the quartics (263) and (414) vanishes, so that
the quartics have a pair of equal roots.

When H)=-2, r@=3, 7@ =222
then $=—éﬁ‘§£@..
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. K _
Wlth E = ‘\/ 7,
2’ =1,
and | L)%= =— K_}% —_—t

This is satisfied by taking

f=—4, v'=-1 n=-1;

and then r)=% r(¢)=1;
N |27,
2@ =1 () =iv;
HO+io) ==, r(0+5o) =2;
a(6) =0,
so that ¢ =20,
With : II; =/(19),
r'=—45, ‘l‘(l}):i—, T'(¢)=1-:A4E,
and E+48+44¢644=0.
With % =/(43),
_ _1 L iV(43)
| n=28, T =1 7O =5
and S48 8E+4 =0,
With X =vqo),

& =16 (l _.c)’ = 64 (.‘ﬁ_‘*'_l)u,
K : 2
which we find is satisfied by

¢=—-8=4+5, W=-2 v=2 gy =1L

13,
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Then  r(p) = 1=3V5 (o) = 11¥/5-24

4 V2 ’
1_(‘P,)=7+Z‘\/5’ r.(¢,)=114/3;24z.;
Hgp+¢)=—15, 1@+ =, r@+g)=1200;
H-¢)=-3=H@a), if H@=-}

With I%=~/(35),

n=—2+245, r(p) ;Ki%;ﬂ, v (9) = i;/7.

So also we find that
K _ _
=v(22)

corresponds to

LEY=v(E2), £=2 r@=r@) =35, 7 =122

H@l+§w) =, 0=2v

b

a(@) =—% a(3t)=—4%

But H(p) =14
so that 16 =9,
and ¢—¢ =2p, or ¢ =-—¢".

Now =8, v=198, ~n' =2 (~2+1)%;
so that 16 (% _K)’ = & = 647/,

—xl——r=2(f\/2+1)°;

agreeing with the cdx-responding value of the modulus.
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Other numerical cases can be worked out, as further applications,
corresponding to

7(p) =—1, ¢=%o, &c.;

H@+2) =0, 6=0, v'=-3, _£=_z+é(33),

_23—y/(1) ..\ _13/A1)—24v3 .
T (¢) - ‘/(11) y T (¢) - '_(7‘(1%)—3 &c'l

H(0+%) =11, H() = o, &e.
67. The case of X =vay
corresponds to the vanishing of Kiepert's W; and
=T = /(1 +8) V(1" + 4r'—T20—364)

= (£42-2£%) /(8+4E+8+4) /(£+ 88 +16£+16).

The value =0, or o, makes r=o, p=-—8,
and J=— g—: ,
as required in this case (Proc. Lond. Math. Soc., Vol. x1x, p. 306).
When o228t =0,
or £+28-2=0,
and we put £ = 16k,
then 2/(x)+2¥Y(2x)—1 =0,
the equation obtained by putting
k=N, &=
in Schriter’s Modular Equation of the Eleventh Order.
" 'When E+48+4 8¢+ 4=0,
or E+88+166+16 = 0,
then w=0 =0,
and %’: 2./(11), or Z-(zlll

(Klein-Fricke, Modulfunctionen, 11, p. 437).
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[Note added November, 1896.

It was considered important, as a check upon the ac‘cnracy of the
formulas, to have some numerical verifications of the results in
special cases of the Transformation of the Eleventh and Twenty-
second Order ; and this has been carried out by Mr. T. I. Dewar.

The object is to calculate the twelve values of ¥, namely,

Yor Yo Yoy Y2 oo+ Yo

the roots of Klein’s * Multiplier Equation of the Eleventh Order ”
(Math. Ann., xv, p. 88; M. F., i1, p. 442), in the form

"+ 114 (—904°+40.12g,5'—15.216g,3° + 2. 1444y")
"1293-21693A'y—11Ay-11A’ =0,

equivalent to Kiepert’'s L equation (147), Math. Ann., xxx1, p. 428,

when we take
A=1l, y=-IA

If one root y_ or L? is known, the remaining eleven roots are

given by the a’s of § 24, from the formula

2
I = %: ——(l+e’“’a +6¥:4g, 4+ ¥ g, + €510 q, 4 €937 g )2,
Yo

e=e™ ¢=0,1,2,..10
(Klein, Math. Ann., xvi1, p. 567),
noticing that e, = ¢, in equations (159).

First, with

K ——
9
and J .23‘ )
we take 129, = 382, 216g; = 56+/(11),
A=-—-1,
g, =—I =/(11);
and then =w, H=0;

and therefore, as in (180), we may take
VOL. XXVII.—NO. 565. 21
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1
- 2r
2 cos ¥
1+2cos 1

= —0372, 785, 597, 771, 91, 7,

c=

and this makes, in (149),

\/0___24-5('-;0-203

= —0642, 952, 335, 136, 877,
and, in §22, .z= 0821, 476, 167, 568, 438,
y = — 0254, 428, 804, 456, 417,

o= —0045, 421, 605, 252, 541,

2 = — 0356, 796, 697, 749, 900,

A= — 0467, 304, 294, 715, 509,

A = —0:933, 176, 117, 881, 270.

Now, in § 24, starting with
a = -~

and thence determining ay, ay, ay, @, from the relations

2 2
aya, = — L8

Azt’

2 23
wi=- L,
t A
a0y ;3};;;;

Mr. Dewar finds that
a, = 1230, 578, 018, 091, 480,
ay, = — 1771, 424, 180, 284, 673,
a, = — 0-583, 448, 985, 672, 033,
ay= 0909, 841, 056, 781, 324,
a, = —0864, 171, 339, 453, 279;
50 that 143 = — 0:078, 625, 430, 537, 181,
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2 _ (1+3a)’
and L= 7aDn

= 0001, 863, 927, 552, 231,
agreeing closely with the approximate value given by

2 11
0% 12y,.216y,’

12y, = 32,
216y, = 56 /(11).
So also the imaginary roots are given by
L, Li,= 2323362 41934112,
L, L:' 1:698161 =+ 0-356919¢,
L;, Ly = — 2776133 4 22598144,
L}, L; =—0164155 4 3-579350%,
L, Ly = 0576146 0247194,

Next, with o
K _ ] a
K=V o \/(5)
. _ 1
we take =5
and a =—%'s

in (175) ; and therefore, with our ¢ out of phase with this « by one
twenty-fifth of a period, we can take the b and +/B the same as the
¢ and +/C just employed with

K _ .

X =van;
and now, from (193),

¢= 27028, 919, 189, 803, 4,

or =— 1063, 634, 337, 710, 340,
according to the sign attributed to

VA =12
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Taking  c= 27-028, 919, 189, 803, 4,
/O = 291-442, 741, 535, 938, 85,

s=— 145221, 370, 767, 969, 4,

y=—  897:631, 636, 212, 663, 5,

x = — 131252928, 291, 711, 92;

and a rapid calculation, from the formulas

showed that

125, = {(y+1)'+4a}'—2a (y+1),

216g, = {(y+1)'+4c}*—36z (y+1) {(y+1)'+ 4z} +2162",

v, = % = 11325,

and therefore corresponds to

Now

and

50 that

vy = 775=5404/2,

K ‘2
x =)

vs=—7/(A1)(V2=1)* (5+/2+2),
L. =/(11)(v2-1),

at = — 50820, 195, 781, 427, 47,
A= 263305, 853, 647, 054,
M= 1659, 746, 895, 262, 522,
a, = — 0218, 712, 903, 083, 518,

o= 0773, 432, 664, 433, 080,
4 =— 2053, 977, 923, 433, 609,
4= — 1465, 129, 712, 633, 559,
= 1964, 405, 935, 908, 983,

1+43a = 0:000, 018, 061, 191, 377.
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Taking the second value,
c =—1063, 634, 337, 710, 340, O,
~/C= 0991, 348, 563, 851, 883, 5,
z= 0004, 325, 718, 074, 058, 2
y= 0004, 619, 769, 581, 744, 308,
0-004, 599, 785, 760, 966, 573 ;

and these give values to 12¢, and 216g,, which make -
=1 = 1538675,

which corresponds to
7. = 775454042, K'/K =/ (23),

Now v = T/(11) (V2+1)4 (9 v2+2),
I = — y(1)(vV2+1),
and &= 0166, 307, 767, 947, 716, 8,

A =—0011, 305, 225, 190, 562, 9,
AT = — 0665, 312, 040, 870, 516,
@ = 8395, 657, 270, 978, 186,
ay = — 0081, 537, 962, 826, 480,
a = 0614, 208, 346, 818, 869,
a4y = —2:830, 940, 071, 212, 028,
a, = — 2077, 159, 775, 134, 698,
so that 1+3a= 0020, 227, 808, 623, 849.
But now, from a consideration of the approximate value of L in
Kiepert's equation (147),
' P ) S
® 7 12y,. 216y,

we see that, in accordance with the general principle stated in § 5,
these second values of @ must be employed with the transformed
modulus, corresponding to

K/K =v(2 + 11).
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Conversely, the first series of values of a must be employed when
K/K =/(22);
and now  Li = —/(11)(v2+1)
= — 8007, 040, 550, 218, 830,

Ly _ (1+3a)
L. -1
= —0:000, 000, 000, 029, 655, 148, 541, 5,

L 0-000, 000, 000, 237, 449, 976, 894, 553.

i

Also I’ Ly 5:96687 - 8:291037,

L;, Ly = — 475298 + 7'52094q,

L, Li = 999196 + 3:28036:,

L, L; = — 7'31464 & 3:838244,

L} Li = (11247 4-9'63335:.
With . K'/K = v/(2 + 11),

and the second series of values of the a's,
L. = v(11)(v2-1),
1-373, 790, 969, 468, 031,

0-000, 409, 164, 241, 723, 06
-11 ’

L = —0-000, 051, 100, 558, 209, 852,
L}, Lj, = - 2:5203793 + 1-5134366,
L, Ly = 18423729 + 0:0747787,
L} Ly = 10898557 & 372944057,
L}, L] = —4:0969314 + 1-4719174q,
Li, L; = — 20425644 3 3:8031382:. ]




