(3.
(3.
(4.
(4.
(4.
.
.
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planes parallel to Az +py+2 = 0 in curves of that order, viz,,

1) (3.1) (4.1) (5.1) (6.1) (7.1) (8.1) (9.1) (10.1) (11.1) ...
1) (4.1) (5.1) (6.1) (7.1) (8.1) (9.1) (10.1) (11.1) (12.1) ...

2) (4.2) (5.2) (6.2) (7.2) (8.2) (9.2) (10.2) (11.2) (12.2) ...
1) (5.1) (6.1) (7.1) (8.1) (9.1) (10.1) (11.1) (12.1) (13.1) ...
2) (5.2) (6.2) (7.2) (8.2) (9.2) (10.2) (11.2) (12.2) (13.2) ...
3) (5.3) (6.3) (7.3) (8.3) (9.3) (10.3) (11.3) (12.3) (13.3) ...

1) (6.1) (7.1) (8.1) (9.1) (10.1) (11.1) (12.1) (13.1) (14.1) ...
2) (6.2) (7.2) (8.2) (9.2) (10.2) (11.2) (12.2) (13.2) (14.2) ...
.3) (6.3) (7.3) (8.3) (9.8) (10.3) (11.3) (12.3) (13.3) (14.3) ...
4) (6.4) (7.4) (8.4) (9.4) (10.4) (11.4) (12.4) (13.4) (14.4) ...

to in (n+1) rows and columns, where (m.p) denotes the multiplior
of k™ in the expansion of

(P4 1P+ T R4 L)

On the Figures formed by the Inlercepts of a System of Straight
Lines in a Plane, and on analogous velations in Space of Three
Dimensions. DBy SamusL Roperts.

[Read May 10¢h, 1888.]

I. Plune Space.

1. In studying some qnestions rvelating to the closed branches of
curves, I was led to consider the clear spaces enclosed by the finite
segments determined by the interscetions of straight lines in a planc.
By ¢ clear spaces ”’ I mean those not cut by any of the lines, and it
will be convenient to call them simply “spaces.” 1 have since found
that, long ago, Steiner treated of the subject, in conseqnence of his
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finding formnlated in certain geometrical text-books connected with the
Pestalozzian system the following proposition, viz. :—* To determine
how many parts of the plane can be marked off by means of a given
number of straight lines and circles altogether finite.” Accordingly
in an early paper entitled, * Einige Gesetze iiber die Theilung der
Ebene und des Raumes” (Crelle’s Journal, B. 1., § 349—364), Steiner
determines the number of parts in various cases, taking systems of
straight lines with parallel groups, and of circles with concentric
groups, afterwards proceeding to the solution of similar questions re-
lating to plancs and spheves. He assumes that no more than two
lines intersect in the same point finitely sitnate, and imposes similar
conditions on the circles, planes, and spheres, so that the final formulwe
cxhibit the number of parts * at most.”

In the present paper, I stndy in somewhat more detail the nature
of these figures. The determination of the number of parts cut off
is plainly only onc of many problems which arise in connection with
such systems. For the figures formed by a system of straight lines
in & planc arc not only finite in number, but definite in form. Thus
three straight lincs not meeting in the same point finitely situate form
by their finite segments o triangle; four straight lines, of which no
threc mect in the same point, make by their finite segments two tri-
angles and a quadrilateral, and, although for higher numbers the
general configuration is variable, it is so within limits.

I shall confine mysclf in what follows to the consideration of sys-
tems of straight lines and plaues.

2. Let n straight lincs in one plane intersect in points finitely
situate, no threec of the lincs meeting in the same point. Several
numerical relations are matter of immediate inference.

n.n=l ; that of the finite

2
segments (which form the sides of the finite spaces) is # (n—2); that
of the segments unlimited in one direction (which I shall call * pro-
longations ") is 2n, the sum of the two scts being 2%

The number of points of interscction is

If now an additional transversal be applied to the system, n—1 new
finite spaces will be added, and, corresponding to the numbers of lines
n—1.n—2
—
The number of open spaces is 2n. Relatively to the finite figure the
intersections may be distributed in four classes—(1) apices, (2) neutral
or level points, (3) reentrant points, (4) interior points, altogether
surrounded by the external contour.

3, 4 ... n, the numbers of tho finite spaces are 1,3, 0 ...
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Let the numbers of each class in the same order be a,, ay, a5, a,, then

n=—1)

a+agtast+a, = 2 )

If we take into account for a moment the prolongations, it appears
that to an apex belong two prolongations, to a nentral point belongs
one, the reentrant and interior points are not immediately connec-
ted with any prolongation. Hence

2a,+a, = 2n.

Further an apex terminates two finite segments; a neutral point,
three ; a reentrant or interior point, four ; therefore

2a,+ 3a;+4as+ 4a, = 20 (n—2)
or ay+2a;+ 2a, = n (n—3)
—2a,+2a;+2a, = n (n—>5)
If K, L, M denote respectively the numbers of interior segments, of

tinite contour segments, and the sum of the numbers of the sides
bounding the finite spaces, then

Int—7n

2

K=" (77'2_3) +a, L= n—*—'—(n;l) —a, M= +a.

For the number of contour sides is
o, +a;+a;, and L+ M = 2n(n—2).

The maximum and minimum values of a, determine therefore the
maximum and minimum values of K, M, and the minimum an
maximum values of L. '

If N is the number of right angles which make up the sum of the
angles of the finite spaces,

N=an@n-1)+2a,—4.

Let 4, denote the number of p-agons contained among the finite
spaces, then
n—1.n—2
2

32 —7n

nhut (n—1) Ayt ... +34, = M = =+

A"+ .An_]"'.-. +.A3 ==

Taking account only of the sides of the open spaces, and denoting by
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B, the number of such spaces having p sides, we have
B,+B,.1+...+ By = 2n
nB,+(n—=1) B, +...+2B, = “_(’1;&_“‘6

The value of B, is @,. But the possible forms fall short of the integer
and positive solutions of these equations except when # = 3 or 4.

3. Still considering the finite figure, the maximum value of @, is =,
if # is odd. For no line can contain more than two apices. If n be
odd and the lines be numbered consecutively, we can arrange the
cycle (1, 2), (2, 3) ... (n—1, n)(n, 1), so that each line contains two
apices.

‘When = is even, we cannot form a figure having » apices, since, if
the lines be numbered as before and arranged in cycle, an evenly
numbered line must, when we set out from an apex on it, cut all the
oddly numbered lines previous to it in order, before the second apex
is arrived at. Hence we cannot form the apex (», 1) in the cycle.

The maximum number of apices is consequently n—1. The mini-
mum number of apices is in both cases 3, and any intermediate num-
ber can be given to the figure so that, for # 0odd, a, ranges from 3 to n,
for n even, from 3 to n~1. It follows that a, (always even) ranges
from O to 22 —6 when = is odd, from 2 to 2n—6 when » is even.

4. There must be at least one reentrant point between each pair of
apices, except when a contour line contains no reentrant point.
When n = 3, there are three such contour lines, and when » = 4
there are two; but when « is greater than 4 we can only have one
such line, except in the case of a; = 3, when we may have two. TFor
it will be observed that, given a figure for 4 lines, we can add as
many transversals as we please, terminated at both ends by neuntral
points, that is to say, not containing apices. Hence, except in the
case of @, = 3, we must have at least a; = ¢, or ¢, —1.

We reduce the reentra.nt‘points between a pair of apices to a single
one by aggregating them thus

N

7 T
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On the other hand, by segregating them thus

JANVAN
/S NV

we get two reentrant points between the pair of apices; and we shall
get the maximum value of a3 by providing as many as possible of such
pairs together, with as many as possible of reentrant points not im-
mediately depending on apices.

We may set out with two lines, viz., the contour line without
reentrants, and another beyond which we can, at most, place, if » is

odd, 7—"—;;1 aggregated apices. Add to these the two apices at the ex-

tremities of the contour line free from reentrants, and the number is
n+

2
ing the two apices on the contour line free from reentrants, we have

. n—2 .
If n is even, we can make at most, 5 such apices, and, add-

%+ 1. Tt follows that, up to and inclusive of a, = 7—‘-—;—3('» odd), and
n

2

special case of ¢, =3) a3 = a¢;—1 for a minimum ; for higher values

the minimum value of ag is a,.

up to and inclusive of ¢, = 5 +1 (n even), we have (except in the

5. In order to get the maximum value of a;, we place, if a, is even,
a,—2 a—4

apices beyond one of two fundamental lines, say AB, and

beyond AC, the other fundamental line. There are thus a,,;~3 apices,
each accompanied by two reentrant points, and we can get

a,—

n—3—

other reentrant points at most. Thefollowing figure is a typical form
for 8 apices and 9 lines:

A
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The maximum value of a; is for a, even,

n—3-4=" 2 +2(a, 3)-—n+3a'1 8,

If a, is 0dd, the maximum of a, is

-8=nt P

The typical figure for 7 apices and 7 lines is

\

We can have any number of reentrant points between these limits
and unity inclusive. Certain classes of figures (finite) can now be
indicated in a tabular form (Table I.). The numbers under the
respective letters at the heads of the column denote their correspond-
ing values, the system in each row belonging to the same class.

To obtain the number of classes for each value of n >4, we observe
that for » odd, and assuming in the first instance a; = a, for the
lowest value of a;, we have

2 { (n=5)+n—-4)+...+ 3"‘;15 } + 3n; 13’

and for n even

2{ (n— ) (1) .t 3 S0} 4 21t
But for the exceptional cases in which the minimum value of a4
n+1
2
Therefore the number of-classes is % (55°~ 3214 51) for n odd, and
3 (5n*—38n+ 706) for n even.

i3 < a;, we must add in the first case

, and 1n the second %

The minimum value of a, (interior points) obtains when g¢;—a, is a
n!'—8n+16

’-—
maximum, and is n—sg—ﬂé for » odd, and 2

for n even.

The maximum value is WT_E’)+2 (n > 3).
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I
wla | oyl oy e M|N nlo|aglag|a | MIN
313 3|2 813|101 {14|82]80
4131211 101 8 3110 2 {13|81|78
513|141 1(2(22]20 31104 3 |12(80|76
34| 211)21(18 3110 4 |11{79]|74
4(2)13|1]|21(18 3|110| 5 |10(|78]72
5 5 20|16 418(3]13(81|78
6(8|6|1(5|38|36 418 |4112180|76
3|62 |4({37]|34 418 1511|7974
3(6[313[36]32 41816110|78]|72
41413 [4|3734 516|4]13|81]78
44| 4113|3632 516 |5112(80|76
51215 (3(36]|32 5(6|6|11|79|74
5/1216(2(35|30 516 |7110|78|72
7(318}1119|58]|56 51618 9177170
318|2|8]|57]54 6|4 |6|12{80|76
3|8(83;7|56]|52 647 11|79|74
3({8|41{6]55]|50 6|4 [8|10|78|72
4163 [8]57]|54 6(4]19) 9177170
41614 17]56]|52 712]17112(80|76
416|585 |6[55]|50 7128 |11179]|74
5|44 85754 712(9|10(78|72
54| 5 |756]|52 712110 9{77(70
51416 |6[55(50 712 (11| 8|76(68
5147 ]|5(54|48
6126 |7]56]52
612 716([55]50
6(2|8[5]|54]48
7 71756152
7 8 16(585]50
7 9{5|54!48
7 10 |4 ({5246

6. As T havo said, the equations (4) and (B) which must be satisfied
give also inadmissible solutions. Some of the limitations on these
general cxpressions can be immediately inferred. Thus, relative to
the equations (), the first number 4, must be unity or zevo, since n
lines can at most make one n-agon. It is moreover found, by actual
inspection of the figure, when n = &, that we cannot by an additional
transversal ecreate a hexagon and a pentagon., It follows that, for
valnesof n > 5, 4,.,=0 if 4,=1.
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Again, 4, cannot be less than n—2. Suppose this is soup ton—1.
In such a system, the removal of a line diminishes the number of
triangles by one. Now take an »™ {ransversal not forming a divided
triangle with at least one of the triangles of the (n—1) systecm. That
triangle is lost and not replaced by the removal of an original line.
If the transversal makes divided triangles with all the triangles of
the (n—1) system, a triangle is still lost by the removal of an ex-
treme line. The transversal must therefore make an additional tri-
angle, and the (n) system has (n—2) triangles, since three lines give
one triangle, four lines give two triangles, &e. By “divided triangle”
I mean a triangle divided by a line into a triangle and quadrilateral.
The number of triangles cannot be diminished by adding transversely.

We can determine various general solutions. Thus a figure can be

—2.n—3
2

obtained “ quadrilaterals and #» —2 triangles. By adjusting

the angle of intersection we can draw a line through a point on an
interior segment so as to add two triangles, n—38 quadrilaterals, and
two sides, one to each of two spaces, and one of them may be a tri-
aungle, in which case the transversal must make two triangles.
Through a point on a contour segment we can draw a line adding two
triangles, » —3 quadrilaterals, and one side to a space. Through a
point on a prolongation we can draw a line adding one triangle and
n—2 quadrilaterals. Any one of the numbers 4,, 4,._,, ... 4, may
vanish. Similarly other results applicable to the general number »
can be obtained. But I have not succeeded in finding an exhaustive
method of determining all the admissible solutions of the equations.

The accompanying scheme shows the admissible forms for » = 5, 6.
I denote as before by P, a g-agon (Table IL.). The forms marked
with an asterisk are inadmissible. All but six of these are excluded
by the. preceding considerations.

7. The general expressions of §2 may he extended to the case in
which the system contains groups of lines passing through one point.
If p lines cointersect in one point, it has absorbed all the spaces, the
finite edges, and all the points due to the intersection of p lines. If
therefore, in a system of n lines, p pass through one point, ¢ through
another, » through another, and so on, the number of spaces is

n—1.2—2 p—1.p—2 ¢q—1.9—-2_ r—1.r-2 —&o
2 2 2 2 N
and the number of finite edges is
n(n—2)—p (p—2)—q (¢g—2)—r (r—2)—&e.
In the latter case we maust take p, ¢, », &. = or >2,
The points, on this general supposition, may be described as termi-
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nating a certain number of finite segments and a certain number of
prolongations. If a point terminates 2a, segments in all, of which &,
are prolongations, this is, in fact, an apex ; if a,—1 are prolongations,
it is a level point; if there are no prolongations, it is an interior
point. If there are a, prolongations where a, is < ¢,—1, it is a re-
entrant point. Including these in one class, let there be p points of
the orders a,, @, ... a, terminating respectively «, a; ... a, prolonga-
tions; then the sum of the sides of the faces is
s7a,~3 a,—0,
where O is the number of contour points, and 3fa, = 2n.

11,
P, | Py | Py | Py
* | 11211 6
* |1 1183815
1 5| 4
* |1 1])12(6
* 112 7
1 41 5
|1 {1}1 7
1 316
2| |P |11 8
* |1 217
IRE ANk
n=2>5 1 5 n=6 2 41 4
% | 8 215
8|3 1 5 | 4

* 4. 2

* 21 4 2 8153
¥ | 3 1] 6
1 415
2 216
3 7
1 316
* 12 1 7
* 8 | 2
¥ 713
6 | 4
* 515
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8. If o group of p lines is a parallel one, we must further deduct
p from the number of the edges, and p —1 from the number of spaces,
and so for other groups of parallels. In his paper, Steiner does not
consider intersections finitely situate of a higher order than 2, but
only parallel groups. He gives the number of spaces in the form

a.a—1

2 )
where a is the number of single lines, U is the sum of the orders of
the groups, and 4 is the sam of their products in pairs. This form
gives a very symmetrical expression when circles also are involved.
Putting aside for a moment the case of single lines, we may write U
for n, and our expression becomes

(p+g+r+&c.—1)(p+q+r+&e.—2)
2

1-T+4+

—1.p—2 q—1.¢—2 »r—=1.r=2
_P 227 —q 2q 7 2? — &,

or Zpg—Fk+1, where k is the number of groups ;. but, since the gfoups
are parallel, we must deduct

(p—1)+(@-1)+(—1)+&c. or p+g+r+&e.—Fk,
giving Spg—Z2p+1.

If now we suppose one of the groups, say the p group, to consist of
single lines differently directed, we have deducted too much by

p—l.p—2+P_1 or E'E_l,
2 2
so that Steiner’s formula results.

9. If we take generally a system of points at which respectively
a,, a4 ... a, finite scgments terminate, the number of segments is

5‘_+-"2'$", and the number of spaces is ﬁi-a—"%l—f-’i— p+1. For,

assuming the formula, if we add a point a,,,, we increase the number
of segments by a,,,, and the number of spaces by a,,;—1, and we
have

a,+a+...+a, +a, a,tag+...+aqtapn —(p+l)—l
2 + B H ]

l_p= 2

which is the same form, since the original system of points contains
a,,, points to which a segment ltas been added. The formula is true
for p = 3, 4, &c. Let u be the number of contour points, then the



1888.] Intercepts of a System of Straight Lines in a Plane. 415

sum of the sides of the corresponding spaces is a;+a,+...+a,—p.
The sum of the angles is equivalent to 2u—4+4 (p—p) or dp—2u—4
right angles.

The formulw of § 2 are, in fact, independent of the linear relations
which reduce the number of admissible figures in the case of systems
of lines. Disregarding linear relations, we can with 10 points and
15 segments, no more than 4 segments meeting in a point, construct
4 quadrilaterals and 2 triangles, or with 15 points and 24 scgments,
no more than 4 mecting in a point, we can construct 3 pentagons, 1
quadrilateral, and 6 triangles. Thesc are inadmissible forms when
the parts and segments are those due to a system of straight lines.

II. Space of Three Dimensions.

10. Let us now take a system of #» plancs, of which no more than
three meet in one point, and no more than two have a common line,
and no two arc parallel. Moreover the points of intersection (triple
points) are supposed to be finitely situate.

If we add one more plane to the system, it is cut in » lines which

give n=l.n=2 o\ finite spaces, to each of which belongs an addi-

tional elear space or volume.

If » is the number of finite volumes of the system of n plancs, we
may write

Au= (n—l)z(n.—?:) " (n2—1) —n+1,
whence

_n(m=D)m—=2) a@-1) o (n—1)(n—2)n-3)
v= 7.3 g trol= 973 '

beeause # must vauish for » = 1.

When we include the open volumes, and write v for the corres-
ponding number, we have

Ay = mo_i +u+1,

— _ _ s .
and V= u (n 21)(3” 2) + ® (”'2 1) +a+1l = wororTy +5(;‘+b.¢:

because % = 3 gives two spaccs.

* This and some other particular eases will be found given as examples in the
text-books, e.g., in Dlr. C. Smith's Zreatise on dlyebra, recently published,
Examples xxur.
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n(n—2)(n—3)

The number of finite faces is )
-

—-2.n—
2

since each plane is

cut by n—1 plaunes, giving e 3 plane spaces. Including open

spaces, the number is

@ [(n—1)3+(n—1)+2] n (nl—n+2)
5 or 5 .

The number of finite edges is “(”_1-—0)(71:3—)

n (n— )
2
‘When p planes meet in one and the same point, but no more than
two have a common line, the volumes, faces, and cdges, due to a
systom of p plaues, are absorbed in the common point. If, therefore,
such groups of p,, P, ... P, planes exist in the system of n plancs,
the number of finite volumes is

(n—1)(n—-2)(n—3) ”‘"'(p,—l)(p, 2)(pi— 3)
2.3 z=1 2.3

that of the finite faces is
i (n—2)(n—3) _'52"'}’1 (p—=2)(p,—38)
2 2 ’

I=l

, or, the prolonga-

tions being included,

and that of the finite edges is
n(n=1)(n=3) s P (p— 1)(}?1 3)
2

l:

11. We will next suppose that the system of » planes contains certain
groups of plaunes having a common line, but that the several multiple
lines do not interscet.

Let there be one such group of @, planes. If w is the number of
finite volumes, we have

Aw = (71_1)‘)(71'_2) - (111’1)2(‘!1“2),

and
(u—- D(n—2)(n-—-3)
2.3 =0

for w must be zero, for # = «,.

v—1) (01_1)2(0'1—2) + o (%—13)(%—2)’

It now we cut the system by another group of a; planes having a
comon line, the merement of volumes is

(n—=1)(n~2) (¢,—1)(a,—2) (n=1)__(a,—1)a,—2)
2 A +(a, 1) {fn 9 a 20. }
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and, changing » into n—a,, we get

_ (n=1)(n—2)(n—3) (¢,—1)(0;,—2) | (a,—1)(a,—2)
w= 7;.3 - (”“1){ 2 R— }

+al@ ‘13)(“1—2) g (ae—-lg)(a,—fz) ;

and the result will be of similar form when we include groups of
a3, Q4...a, plancs having common lines. In fact, assuming the
gencral expression to be

—1)(n—2)(n—3) (e, —1)(a,—2) (a,—1)(a,—2)
= 53 "(”—1){ S LT R— }

pa@=D@=2) | e (=1)(a=2)
> SCES

add another group of «,,, planes having a common line. The incre-
ment of finite volumes is

(n=D=-2) _ ((e,—1)(a,—2) (a,—1)(a,~2)
—% { gt ) }

R R e e Ce

Writing now n—a,., for z, and observing that

(n--ay1—1) (=81 ~2) (n—0ay., —3) + (n=ayn—=1)(n—0,.—2)
2.3 2

¥ (@) Ble) (o an=l)

is reducible to

-21—3 {(n=1)(n—2)(n—8) - 3% n+2a,,

. fnall +9a,“,n—-3a:j+,—5a,1,,—(3n+0},
we have finally,
(r—=D(n—-2)(n—8) , { (a,—1)(a,—2)
73 (n—1) ' TR +...

(=) (2,~2) , (apa—D)(a,1—2)) | a (a,—1)(e,—2)
+ ==y + D }+ 5 F e

+ % (ag— 13)(%_2) + B @y _;)(aqﬂ “2),

which verifics the form generally.

We can deal similarly with the open spaces. Tor if we suppose
the finite figure constituted by s plancs to be surrounded by a super-
ficies, say, a sphere, the number of spaces will be the same as that of
the parts into which the superficies is divided by the planes.  Let
groups of a,, a,...a, plancs have common lines respectively. The

VOL. XIX.~—N0O. 331 2 e
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effecct of the multiple lines is to produce pairs of multiple points
among the intersections of the arcs determined by the planes on the
sphere, and cach of these absorbs the same number of superficial
spaces as if the arcs were straight lines. Hence the number of open
spaces or regions is
wi=u+2—(a,—1)(4,—2)—(0,—1)(a;—2) — (2, = 1)(2,—2) ;
and, if # = 3a,, this result is
2%a,a,+ 2%, —(p—-1) 2.

Tor brevity’s sake, and becanse the finite figure possesses more
interest, I concern myself chiefly with the finite volumes, &e.

12. If, however, some of the multiple lines intersect, the above deter-
minations become incovrect. Suppose that a number of multiple
lines of various orders meet in one point. The interscction has
absorbed the volunes, faces, and edges due to a systcm made up of
the same number of multiple lines of the same orders, and constituted
by the same number of planes, but not co-intersecting. Hence, the
foregoing expression gives us the form of the correction.

Let the system of » plancs contain multiple lines of the orders
by, by ...k, mecting at a multiple poi..t of the order m,, of the orders
i, Iy ... I, mecting at a multiple point of the order m,, of the orders
K1, Ky ... K,, meeting at @ multiple point of the order my, of the orders
AL Ay.. A, mecting at a multiple point of the ovder me,, and so on.

‘I'he expression for the number of finite volumes is

(u—l)(o;-.—;_’)('n—?))__(n_l){(a,—l)‘z(ag——‘?a)_*_m+ (aq—1)2(a2—2)}

L4 (a,-—12)(al—") ot ag ((7.7—-13)(%-—2)

T O IR (U NCES I

(/'n—l)("t_ﬁ) kl (I"l—l)(l‘l-2) "A (L,—l)(k,'—2)
L e

_ (my=1)(ny—8) (m,—3) _ ,-1(1,-2)
53 + (my,—1) {————————-—‘ ) +...

¢-1)(.—-2) } — {l.(ll—l)(l.—fz) +.__+l,(l=-1)(l‘—2)}
2 3 3

P

+
—de.,
or as we may write it
T (ny dy e ) =1 (0, by o B) =T (g, 1 o0l 1)

—F (my, kyonn k) — F (i Ay N)—&o,,
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where the symhol F' denotes similar functions, except as to the
number of the letters involved. It is to be remembered also that the
letters k,, &c., 1, &c., and 8o on, really represent orders comprised in

" a,, &c., and may be repeated in different functions. In this way we
include cases in which the same multiple line intersects several others.
If no multiple line meets another more than once (excepting at the
usual triple points), the expression is simplified and becomes

(n—1)(n—2)(n—3) _ (n—my) {(k, —l)(k,—2)+ +(k,—1)(75,—g)}
. 9 5

2.3

_ (m=1)(m,—2)(m,~3)
2.3

— (18—maq) { (l‘—l)z(ll_z) +ot (l¢—1)2(l;-—2) }

- (my—1) (my —2) (my—3) —&e.
2

The general formula includes the case of multiple points finitely
situate, since we may consider these as constituted by double lines
meeting together.

13. If we add to the system p parallel p]a.ﬁes, the increment is
(n—1)(n—2) _ (a,—1)(a,--2) _ (aﬂ:l)(”s"‘z)_
P ) ) )

— (= Do=2)],
)

A further addition of ¢ parallel planes of different direction gives
an increment
q [(n+p—l)(n+p—2) = (@—=1)(a,—2) _(q,—=1)(a,—2) _
2 2 2
— (aq_l)(a‘q_'2)] _&'—1 -7-’-2 _
h P 2

p+l.
and so on.

If in the resulting expression we put n = 0, and therefore dismiss
ay, a, ... a, we have

—1+p+g [(}7—-1)2(7)—2) _P—l.271—2 —P+1:|

-1 —2 —1)(p— —1)(q—
_r[(p+q )2(7o+q )_(p 1)2(77 2)_(g )2(0 2)_1,_9,,_2]
—&o.
or —=1+4p-—3pq+ Spgr—&e.,

which is the form in which Steiner gives the vesult. It includes the
caso in which single plancs diﬁ‘zorontly divcoted ontor, for ib is por-
B2
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missible to suppose the value of any of the letters p, g, r, &c. to
be unity.

14. Similar considerations enable us to determine the number of
faces and edges.

In the first instance, we take a system of n planes containing
multiple lines not co-intersecting, and of the orders a,, a, ... a,.

There are n~a,+a;—...~a, planes containing n—1 lines each,
a, planes containing n—a,-+1 lines, and so on; but it must be remem-
bered that in this way we count the multiple lines a,, a, ... @, times
respectively, whereas the other lines are counted only twice. Hence,
for edges, we have to make a final deduction of

(a—2)(n—a,—1)+... + (¢,—2) (n—a,—1).
Thus the formula for the number of edges will be
((n—ay—ay— ...~ a,) {(n—1)(n—3)—a, (0,—2)— ...

—ay (a,q—Q)}
+a, {(n—al+1)(n-—al— 1)—a,(a,—2)—...
3 v—a, (aq——2)} -

+.ta, {(n—a,+ 1)(n—a,q—1)—a,l (a,—2)—...
e =8y1(ag1—2) }
L -—(a1—2)(n—al—l)—...—-(a,q—-2)(n—a,,-—1)
=T(n a,0..0a,).
And if a certain number of these multiple lines intersect in one point,
let these lines be of the orders &y, k... k. We must deduct for the
edges lost according to the number of planes constituting the inter-
scction. Form, planes the deduction will be I, (m,, ky, &y ... k,), and
so for any number of such intersections; t.e., the general formula

will be
I (ny ay ag e @) — Iy (my, Ky, Ry ool By)— Ty (g, by 1y 0 1) — &y
the symbol I, being interpreted in the same way as F. In like

manner, we get, for the number of faces when the multiple lincs do
not intersect,

(n—ay—a,...—a,) [(n-—2)(n—3)—(arl—l)(a,—2)—...
...—(%—1)(@,-2)]
+a [(”“a’l)(n_a‘l‘“l)—(‘12"1)(“'2_2)""m
..—(a,—1)(a,—2) ]
+.ta [(n—' ag)(n—a,—1)—(a,—1)(a,—=2)—...
o —(ag1—1)(a,- 1"'2):'
= F, (na,a,... a,),

/

I
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and the correction for intersceting lines will be as before
- [Fg (o, Tey oo To) + Ty (myyly oo &) + & ],

a similar meaning being attached to the symbol I,

If certain groups of planes throngh a line interscet at infinity so
that the multiple lines are parallel, the multiple point is the limit of
an apex.

An apex subtends the same number of superficial spaces bounded
by its lines as it would do if cut by a single plane; so that, when the
apex is infinitely distant, we must deduct the number of volumes due
to the planes through it, augmented by another plane, In addition,
therefore, to the usunal deduction of F (m,k,k, ... k,), where m, is the
number of planes, and k,, %, ... k, are the orders of the lines, we have
to deduct

(m=D)(m=2) _ (h=D(a=2) _ _ (a=1)(k—2)
2 2 T 2 '

It will be observed that an apex may subtend more faces of the figure
than the number mentioned, but the number of superficies subtended
will be as stated, by the principles of perspective.

In the like case, we can determine the correction for the numbers of
the faces and cdges considered as finw _and the foregoing formulw
can be adapted to other cases which I do not treat of at length,—for
cxample, to the case in which some of the parallel plancs pass
through a multiple point, and so forth. So that we may conclude
that the numbers of the volumes, faces, and edges can be generally
determined for systems of plancs, consisting partly of single planes,
of groups of planes having a common line finitely situate, or on the
infinitely distant plane and -multiple points formed by the interscc-
tion of multiple lines, and finitely or infinitely distant.

15. The numbers which occur relative to systems of a very moderate
number of planes arve large. Applying, for instance, the formula to
the 45 real triple tangent planes of a cubic surface, we have to con-
sider that they pass, five together, through 27 lines, and thesc inter-
scet in 135 points in pairs, each point being constituted by 9 planes,
since the two intersecting lincs belong to a common planc of the
system. The formulwe give therefore, for the numbers of the volumes
or completely enclosed cells, the faces and the cdges respectively

44.43.42 1876 oo, 4.3 o, 5.4.3
2.3 2 3

+135.8.2.4_2'_3—135.2..5.-$3_-§=6650,
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1
3

{(45—5.27)(43.42—-27.4:.3) +5.27(40.39~26.4.3)

§ =176,
—135 (9-10)(7.6—2.4.3)—2.5 (4.3—-4.3)

5(45_5.27)(44.42-27.5.3)—5.27 (41.39-26.5.3)
-27.3.839-135[ (9-10)(8.6~2.5.3) = 17523,
( +5.2(5.3—5.3)—2.3.3]

1
2

and by the formula of § 11 there are 1658 open regions.

When we attempt to determine more particularly the forms of the
volumes involved, the difticulty which we already encountered in the
analogous plane problem is much intensified.

The edges of the finite figure made by » planes, no more than three
meeting in one point, and no more than two having a common line,
and no two being parallel, may be divided into four classes.

The cdges may be (1) convex, (2) level, (3) re-entrant, (4) interior.
Lot a,, ay, a3, a, be the numbers of the four kinds respectively. A
convex cdge belongs to two faces ane. onc volume, a level to three
faces and two volumes, a re-entrant to four faces and three volumes,
an interior to four faces and four volurucs. Henee, if we put F for
the number of all the edges of all the faces taken separately, V' for
the number of all the edges of all the volumes taken separately, and
I% for the number of cdges taken ouce only, we have

2avl+3ag+4as+4a" = F
4 20,4 Bag+da, = V oty | ©),
’ _ —
a+ ay + a3 + a, =E=u_’§—2—_

and therefore a,=E+V-T.

Theso relations and others similarly obtainable are quite insufficient
for a solution of the main question.

If we refer the letters a,, @y, a5, a, back to the plane case, so that
a, means the number of interior points, and represent by I, V, B, re-
spectively, the number of the extremities of the finite edges taken
sepavately, the sum of the number of the sides of the faces, and the
number of intersections, the cquations () hold in the same form, so
that the value of ¢, is in the same form.



