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planes parallel to \x+ny+z = 0 in curves of that order, viz.,

(2.1) (3.1) (4.1) (5.1) (6.1) (7.1) (8.1) (9.1) (10.1) (11.1) .

(3.1) (4.1) (5.1) (G.I) (7.1) (8.1) (9.1) (10.1) (11.1) (12.1) .

(3.2) (4.2) (5.2) (6.2) (7.2) (8.2) (9.2) (10.2) (11.2) (12.2) .

(4.1) (5.1) (6.1) (7.1) (8.1) (9.1) (10.1) (11.1) (12.1) (13.1) .

(4.2) (5.2) (6.2) (7.2) (8.2) (9.2) (10.2) (11.2) (12.2) (13.2) .

(4.3) (5.3) (6.3) (7.3) (8.3) (9.3) (10.3) (11.3) (12.3) (13.3) .

(5.1) (6.1) (7.1) (8.1) (9.1) (10.1) (11.1) (12.1) (13.1) (14.1) .

(5.2) (6.2) (7.2) (8.2) (9.2) (10.2) (11.2) (12.2) (13.2) (14.2) .

5.3) (6.3) (7.3) (8.3) (9.3) (10.3) (11.3) (12.3) (13.3) (14.3) .

5.4) (6.4) (7.4) (8.4) (9.4) (10.4) (11.4) (12.4) (13.4) (14.4) .

(98),

to hi(n+\) rows and columns, Avhere (ra./ti) denotes ihc multiplier
of k'" in the expansion of

On the Figures formed by thn Tntevcapts of a Si/stem of Straight

Lines in a, Plane, and on analogous relations in Spa.ce of Three

Dimensions. By SAMUEL ROBERTS.

[Itcad May IQth, 1888.]

I. Plane Space.

1. In studying some questions relating to the closed branches of
curves, I was led to consider the clear spaces enclosed by the finite
segments determined by the intersections of straight linos in a plane.
By " clear spaces " I mean those not cut by any of the lines, and it
will be convenient to call them simply " spaces." I have since found
that, long ago, Stcincr treated of the subject, in consequence of his
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finding formulated in certain geometrical text-books connected with the
Pestalozzian system the following proposition, viz.:—" To determine
how many parts of the plane can be marked off by means of a given
number of straight lines and circles altogether finite." Accordingly
in an early paper entitled, " Einige Gesetze iiber die Theilung der
Ebcne und dcs Raumes" (Crelle's Journal, B. i., § 349—364), Steiner
determines the number of parts in various cases, taking systems of
straight lines with parallel groups, and of circles with concentric
groups, afterwards proceeding to the solution of similar questions re-
lating to planes and spheres. Ho assumes that no more than two
lines intersect in the same point finitely situate, and imposes similar
conditions on the circles, planes, and spheres, so that the final formula)
exhibit the number of parts " at most."

In the present paper, I study in somewhat more detail the nature
of these figures. The determination of the number of parts cut off
is plainly only one of many problems which arise in connection with
such systems. For the figures formed by a system of straight lines
in a plane are not only finite in number, but definite in form. Thus
three straight lines not meeting in the same point finitely situate form
by their finite segments a triangle ; four straight lines, of which no
three mcot in the same point, make by their finite segments two tri-
angles and a quadrilateral, and, although for higher numbers the
general configuration is variable, it is so within limits.

I shall confine myself in what follows to the consideration of sys-
tems of straight lines and planes.

2. Let n straight lines in one plane intersect in points finitely
situate, no three of the lines meeting in the same point. Several
numerical relations are matter of immediate inference.

The number of points of intersection is —'— ; that of the finite

segments (which form the sides of the finite spaces) is n («—2); that
of the segments unlimited in one direction (which I shall call " pro-
longations ") is 2n, the sum of tho two sets being n3.

If now an additional transversal be applied to the system, n—1 new
finite spaces will be added, and, corresponding to the numbers of lines

3, 4 ... n, the numbers of tho finite spaces are 1, 3, G ... ~ .

The number of open spaces is 2n. Relatively to the finite figure the
intersections may be distributed in four classes—(1) apices, (2) neutral
or level points, (3) reentrant points, (4) interior points, altogether
surrounded by the external contour.
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Let the numbers of each class in the same order bo a,, a2, as, a4, then

If we take into account for a moment the prolongations, it appears
that to an apex belong two prolongations, to a neutral point belongs
one, the reentrant and interior points are not immediately connec-
ted with any prolongation. Hence

2a! + a2 = 2TO.

Further an apex terminates two finite segments ; a neutral point,
three j a reentrant or interior point, four ; therefore

2ax + 3a2+4a8+4a4 = 2TO (TO—2)

or a2 + 2a8+2a4 = TO (TO—3)

—2a1 + 2a8+2a4 = n (TO—5)

If K, L, M denote respectively the numbers of interior segments, of
finite oontour segments, and the sum of the numbers of the sides
bounding the finite spaces, then

17 n (n—3) . T ?i (TO— 1 ) , r
1 2 4> 2 4>

3TO2— In
2 4> 2 4> 2

For the number of contour sides is

and L + M = 2n(n~2).

The maximum and minimum values of a4 determine therefore the
maximum and minimum values of K} M, and the minimum and
maximum values of L.

If N is the number of right angles which make up the sum of the
angles of the finite spaces,

N = n(n-l) + 2ai— 4.

Let Ap denote the number of p-agons contained among the finite
spaces, then

1 2

Q 2 _ (A).
nAn+ (n-1) /!„_,+ ... + 3 4 , = M = 6n~<n

Taking account only of the sides of the open spaces, and denoting by
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Bp the number of such spaces having p sides, we have

Bn+Bn.i+... +B, = 2n \

.(B).

The value of B3 is av But the possible forms fall short of the integer
and positive solutions of these equations except when n = 3 or 4.

3. Still considering the finite figure, the maximum value of a, is n,
if n is odd. For no line can contain more than two apices. If n be
odd and the lines be numbered consecutively, we can arrange the
cycle (1, 2), (2, 3) ... (n—1, n)(n, 1), so that each line contains two
apices.

When n is even, we cannot form a figure having n apices, since, if
the lines be numbered as before and arranged in cycle, an evenly
numbered line must, when we set out from an apex on it, cut all the
oddly numbered lines previous to it in order, before the second apex
is arrived at. Hence we cannot form the apex (n, 1) in the cycle.

The maximum number of apices is consequently n—1. The mini-
mum number of apices is in both cases 3, and any intermediate num-
ber can be given to the figure so that, for n odd, a, ranges from 3 to n,
for n even, from 3 to n— 1. It follows that a2 (always even) ranges
from 0 to 2»—6 when n is odd, from 2 to 2n—6 when n is even.

4. There must be at least one reentrant point between each pair of

apices, except when a contour line contains no reentrant point.
When n = 3, there are three such contour lines, and when n = 4
there are two ; but when n is greater than 4 we can only have one
such line, except in the case of ax = 3, when we may have two. For
it will be observed that, given a figure for 4 lines, we can add as
many transversals as we please, terminated at both ends by neutral
points, that is to say, not containing apices. Hence, except in the
case of Oj = 3, we must have at least a3 = o, or a, — 1.

We reduce the reentrant points between a pair of apices to a single
one by aggregating them thus
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On the other hand, by segregating them thus

A A
/ V V

we get two reentrant points between the pair of apices ; and we shall
get the maximum value of a3 by providing as many as possible of such
pairs together, with as many as possible of reentrant points not im-
mediately depending on apices.

"We may set out with two lines, viz., the contour line without
reentrants, and another beyond which we can, at most, place, if n is

odd, —-— aggregated apices. Add to these the two apices at the ex-

tremities of the contour line free from reentrants, and the number is

—-—. If n is even, we can make at most, such apices, and, add-

ing the two apices on the contour line free from reentrants, we have

— + 1 . It follows that, up to and inclusive of ax =
 n 1*-- (?i odd), and

up to and inclusive of ax = — + 1 (n even), we have (except in the
a

special case of ax = 3) as = ax — 1 for a minimum; for higher values
the minimum value of a3 is av

5. In order to get the maximum value of a3, we place, if ax is even,

—! apices beyond one of two fundamental lines, say AB, and -1""

beyond AC, the other fundamental line. There are thus a,—3 apices,
each accompanied by two reentrant points, and we can get

other reentrant points at most. The following figure is a typical form
for 8 apices and 9 lines:
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The maximum value of a3 is for a, even,

n - 3 - ^ + 2 (0 , -8) = n+ | * - 8 ,

If at is odd, the maximum of as is

n3

The typical figure for 7 apices and 7 lines is

We can have any number of reentrant points between these limits
and unity inclusive. Certain classes of figures (finite) can now be
indicated in a tabular form (Table I.). The numbers under the
respective letters at the heads of the column denote their correspond-
ing values, the system in each row belonging to the same class.

To obtain the number of classes for each value of n > 4, we observe
that for n odd, and assuming in the first instance as = at for the
lowest value of as, we have

A\ i i 3n—15 ) . 3»—134) + + j +

and for n even

. 3n—16 ) . 3n—14+ j +

But for the exceptional cases in which the minimum value of as

is < au we must add in the first case —5—, and in the second ^-.

Therefore the number of-classes is \ (5ft2 — 32w + 51) for n odd, and
i (57l

J-38«+76) for n even.

The minimum value of a4 (interior points) obtains when a3—04 is a
-, • n — 8»+15j. , , , n—8ra-f-16 £maximum, and is tor n odd, and —-1— for n even.

The maximum value is n^ —^ + 2 (n > 3).
2
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I.
11

3
4.
5

6

7

<h

3
3
3
3
4
5
3
3
3
4
4
5
5
3
3
3
3
4
4
4
5
5
5
5
6
6
6
7
7
7
7

a*

2
4
4
2

6
6
6
4
4
2
2
8
8
8
8
6
6
6
4
4
4
4
2
2
2

1
1
2
3
5
1
2
3
3
4
5
6
1
2
3
4
3
4
5
4
5
6
7
6
7
8
7
8
9
10

2
1
1

5
4
3
4
3
3
2
9
8
7
6
8
7
6
8
7
6
5
7
6
5
7
6
5
4

jir

3
10
22
21
21
20
38
37
36
37
36
36
35
58
57
56
55
57
56
55
57
56
55
54
56
55
54
56
55
54
52

N
2
8
20
18
18
16
36
34
32
34
32
32
30
56
54
52
50
54
52
50
54
52
50
48
52
50
48
52
50
48
46

n

8

a.

3
3
3
3
3
4
4
4
4
5
5
5
5
5
6
6
6
6
7
7
7
7
7

«2

10
10
10
10
10
8
8
8
8
6
6
6
6
6
4
4
4
4
2
2
2
2
2

%

1
2
3
4
5
3
4
5
6
4
5
6
7
8
6
7
8
9
7
8
9
10
11

a4

14
13
12
11
10
13
12
11
10
13
12
11
10
9
12
11
10
9
12
11
10
9
8

M
82
81
80
79
78
81
80
79
78
81
80
79
78
77
80
79
78
77
80
79
78
77
76

N
80
78
76
74
72
78
76
74
72
78
76
74
72
70
76
74
72
70
76
74
72
70
68

6. As I have said, the equations (A) and (B) which must be satisfied
give also inadmissible solutions. Some of the limitations on these
general expressions can be immediately inferred. Thus, relative to
the equations (A), the first number Aa must be unity or zero, since n
lines can at most make one n-agon. It is moreover found, by actual
inspection of the figure, when n = 5, that we cannot by an additional
transversal create a hexagon and a, pentagon. It follows that, for
valnea of n > 5, A,^ — 0 if An = 1.
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Again, Aa cannot be less than n—2. Suppose this is so up to n—\.
In such a system, the removal of a Hue diminishes the number of
triangles by one. Now take an nth transversal not forming a divided
triangle with at least one of the triangles of the (n—1) system. That
triangle is lost and not replaced by the removal of an original lino.
If the transversal makes divided triangles with all the triangles of
the (»—1) system, a triangle is still lost by the removal of an ex-
treme line. The transversal must therefore make an additional tri-
angle, and the (n) system has (n—2) triangles, since three lines give
one triangle, four lines give two triangles, &c. By " divided trianglo"
I mean a triangle divided by a line into a triangle and quadrilateral.
The number of triangles cannot be diminished by adding transversely.

We can determine various general solutions. Thus a figure can be

obtained j- quadrilaterals and n— 2 triangles. By adjusting

the angle of intersection we can draw a line through a point on an
interior segment so as to add two ti'iangles, n — 3 quadrilaterals, and
two sides, one to each of two spaces, and one of them may be a tri-
angle, in which case the transversal must make two triangles.
Through a point on a contour segment we can di'aAv a line adding two
triangles, n~ 3 quadrilaterals, and one side to a space. Through a
point on a prolongation we can draw a line adding one triangle and
n—2 quadrilaterals. Any one of the numbers AM An_u ... A^ maj'-
vanish. Similarly other results applicable to the general number n
can be obtained. But I have not succeeded in finding an exhaustive
method of determining all the admissible solutions of the equations.

The accompanying scheme shows the admissible forms for n = 5, G.
I denote as before by Pq a ^-agon (Table II.). The foi'ms marked
with an asterisk are inadmissible. All but six of these are excluded
by the preceding considerations.

7. The general expressions of § 2 may be extended to the case in
which the system contains groups of lines passing through one point.
If jp lines cointersect in one point, it has absorbed all the spaces, the
finite edges, and all the points due to the intersection of p lines. If
therefore, in a system of n lines, p pass through one point, q through
another, r through another, and so on, the number of spaces is

n—l.ro—2 p—l.p—2 q—l.q — 2_r—l.r—2 „
2 2 2 2 &C'

and the number of finite edges is
n (n—2) -p (p—2) -q (q-2) -r ( r - 2) -&c.

In the latter case we must take p, q, r, &c. = or > 2.
The points, on this general supposition, may be described as termi-
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nating a certain number of finite segments and a certain number of
prolongations. If a point terminates 2ax segments in all, of which a^
are prolongations, this is, in fact, an apex ; if ax — 1 are prolongations,
it is a level point; if there are no prolongations, it is an interior
point. If there are ax prolongations where ax is < ax — 1, it is a re-
entrant point. Including these in one class, let there be p points of
the orders ap terminating respectively als aa... ap prolonga-
tions ; then the sum of the sides of the faces is

where 0 is the number of contour points, and ^,[ap = 2n.

II.

*

p5

1
1
1

p*

2
1

3
4
2

P8

3
4
5
3
2
4

n = 6

*
X

X

X

X

X

X
X

X

X

X

X
X

*

-Pa

1
1

rH

1
1
1
1
1
1
1

2
3
1
2
3
1
2
3
1
2

P .

2
1

1
2

1

1

1

P*

1
3
5
2

4
1
3

2
6
4
2
5
3
1
4
2

3
1
8
7
6
5

P3

6
5
4
6
7
5
7
6
8
7
3
4
5
4
5
6
5
6
7
6
7
2
3
4
5
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8. If a group of p lines is a parallel one, we must further deduct
p from the number of the edges, and p — 1 from the number of spaces,
and so for other groups of parallels. In his paper, Sfceiner does not
consider intersections finitely situate of a higher order than 2, but
only parallel groups. He gives the number of spaces in the form

i TT. i , o . a—11-U+A+ —-— ,

where a is the number of single lines, U is the sum of tho orders of
the groups, and A is the sum of their products in pairs. This form
gives a very symmetrical expression when circles also are involved.
Putting aside for a moment the case of single lines, we may write U
for w, aud our expression becomes

2

p — \ . p - 2 _ q — 1 - 7 — 2 r — l . r — 2 _ .
2 2i £i

or *$pq—& + 1, where h is the number of groups ;.but, since the groups
are parallel, we must deduct

(p—l) + (q — l) + (r—l) + &c. or p + q+r + Sco. —fc,

giving 5 pq — 2jp + 1 .

If now we suppose one of the groups, say the p group, to consist of
single lines differently directed, we have deducted too much by

so that Steiner's formula results.

9. If we take generally a system of points at which respectively
aly at...ap finite segments terminate, the number of segments is

lie number of spaces is — 8

2
assuming the formula, if we add a point ap+i, we increase the number
of segments by apt l , and the number of spaces by ap+i — 1, and wo
have

which is the same foi*m, since the original system of points contains
ap+1 points to which a segment lias been added. The formula is true
for p = 3, 4, &c. Let n be the number of contour points, then the
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sum of the sides of the corresponding spaces is a1-fa2+...+a;l—ft.
The sum of the angles is equivalent to 2[x—4 + 4 (p—/i) or 4p—2/̂ —4
right angles.

The formulaa of § 2 are, in fact, independent of the linear relations
which reduce the number of admissible figures in the case of systems
of lines. Disregarding linear relations, we can with 10 points and
15 segments, no more than 4 segments meeting in a point, construct
4 quadrilaterals and 2 triangles, or with 15 points and 24 segments,
no more than 4 meeting in a point, we can construct 3 pentagons, 1
quadrilateral, and 6 triangles. These aro inadmissible forms when
the parts and segments are those duo to a system of straight lines.

I I . Space of Three Dimensions.

10. Let us now take a system of n planes, of Avhich no more than
three meet in one point, and no more than two have a common line,
and no two are parallel. Moreover the points of intersection (triple
points) are supposed to bo finitely situate.

If we add one more plane to the system, it is cut in n lines which

give n~ ' n new finite spaces, to each of which belongs an addi-

tional clear space or volume.

If u is the number of finite volumes of the system of n planes, we
may write

( l ) 0 2 ) ( 1 )

whence

. , _ (n-l)(n-2)(tt-3)
u

_ _ + 7 i ___
because n must vanish for n = 1.

When we include the open volumes, and write v for the corres-
ponding number, we have

and v =
2.3 2

because n = 3 gives two spaces.

* This and somo other partiouliir discs will lio found given as examples in (ho
text-foooka, e.g., in Llr. C. Smith's 'Treatise on Algebra, recently published,
Examples xxm.



416 Mr. Samuel Roberts on the Figures formed by the [May 10,

The number of finite faces is 1—^-—1 ~~ since each plane is

, i T i . . n—2.11 — 3 T T i J -

cut by n—i planes, giving- plane spaces. Including open
spaces, the number is

» [ ( n - l ) 3 + ( » - l ) + 2 ] ^ 11(^-11 + 2)
2 ° r 2

The number of finite edges is — — - , or, the prolonga-

tions being included, v ——.
2

When p planes meet in one and the same point, but no more than
two have a common line, the volumes, faces, and edges, due to a
system of jp planes, are absorbed in the common point. If, therefore,
such groups of pu p2) ... pm planes exist in the system of n planes,
the number of finite volumes is

2 .3 ili 2 .3

that of the finite faces is

W ( n - 2 ) ( n - 3 ) >gtP/(ft
2 i-i

and that of the finite edges is

2 £i 2

11. We will next suppose that the system of n planes contains certain
groups of plaues having a common line, but that the several multiple
lines do not intersect.

Let there be one such group of a1 planes. If 10 is the number of
finite volumes, we have

and

, - 2 ) q, ( a 1 -
2 .3 K J 2

for w must be zero, for n = ut.
If now we cut the system by another group of a3 planes having a

common line, the increment of volumes is

( ) ( - l ) (a, - l)(a, - 2)
^
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and, changing n into n—aa, we get

_ 2.3
, ^ f (o l - l ) (a1-2) • (q.-l)(a,-2)7
^ ; I 2 2 3

, a, (a1-l)(ai—2) , a2 (a2—l)(a2—2) ,+ _ _ + 3

and the result will be of similar form when we include groups of
a3, »4...a, planes having common lines. In fact, assuming tho
general expression to be

2.3
, ^ ( (o1-l)(al
K } I 2 "

3
add another group of aqtl planes having a common line. The incre-
ment of finite volumes is

((0,-1X0,
I 2

Writing now ?i—a3+1 for w, and observing that

2 .3
(n- -aq+l — l)(n—a0^ — 2)(n — aq^—d) , (w—a<?^1 —l)(?t—q,^ —2)

2

is reducible to

^ { ( W - l ) ( « - 2 ) ( « - 3 ) - 3 a , + l W + 2a

+ 9aa+xn—3o2+i—5a3+1 — 0 },
we have finally,

(n-l)(n-2)(n-3) ( n ^ ( (a1-l)(o,-2) (

t (q,-l)(o,-2) , (a,4,-l)K,1-2)| + a, (^-1)^-2) [
2 2 j o

o,(o,-l)(ag—2)
3 ,

which verifies the form generally.

We can deal similarly with the open spaces. For if we suppose
the finite figure constituted by n plaucs to bo surrounded by a super-
ficies, say, a sphere, the number of spaces will be the same as that of
the parts into which the superficies is divided by the planes. Let
groups of a,, a2... ap planes have common lines respectively. The

VOL. XIX.—NO. 331. 2 E
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effect of the multiple lines is to produce pairs of multiple points
among1 the intersections of the arcs determined by the planes on the
sphere, and each of those absorbs the same number of superficial
spaces as if the arcs were straight lines. Hence the number of open
spaces or regions is

and, if n = %ax, this result is

Tor brevity's sake, and because the finite figure possesses more
interest, I concern myself chiefly with the finite volumes, &c.

12. If, however, some of the multiple lines intersect, the above deter-
minations become incorrect. Snpposc that a number of multiplo
Hues of various orders meet in one point. The intersection has
absorbed the volumes, faces, and edges due to a system made up of
the same number of multiple lines of the same orders, and constituted
by the samo number of planes, but not co-intersecting. Hence, the
foregoing expression gives us the form of the correction.

Let the system of n planes contain multiple lines of the orders
'̂i> k-i ••• k* meeting at a multiple point of the order mu of the orders

li, Za ...It meeting at a multiple point of the order mit of the orders
K'i> K2 ••• "<>, meeting at a multiple point of the order viit of the orders
X,, A.2... Ar, meeting at a multiple point of the order ?u4, and so on.

The expression for the number of finite volumes is

Q i - l ) ( t t - 2 ) ( M - 3 ) (n n f ( o , - ! ) ( « , - 2 ) . • ( a o - l ) ( q o - 2 ) ]

+
a, (0,-1X0,-2) . <T 0 K-1)(« , -2)

2 3

){^-^-}-[lAli 3)(Al )+.-+A< K' 3 K' ]

~ + O'Ja-l) 5 J 3 J +•"2.3

+ (7<-l)a.-2)J_|UWXi,-2)+ii+J,(Zl-lU-2)|

— etc.,

or as AVO may write it

— P(Wj, K, ... *r,) — JP(w4, Xi... Xr) —&o.,
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where the symbol F denotes similar functions, except as to the
number of the letters involved. It is to be remembered also that the
letters kv &c, lv &c, and so on, really represent orders comprised in
a,, &c, and may be repeated in different functions. In this way we
include cases in which the same multiple line intersects several others.
If no multiple line meets another more than once (excepting at the
usual triple points), the expression is simplified and becomes

( t t - l ) ( n - 2 ) ( n ~ 3 ) {n m ) ( (ft, - !)(*, - 2) , , fo-l)(ft.-2))
a . 3 La 2i )

2.3

The general formula includes the case of multiple points finitely
situate, since we may consider these as constituted by double lines
meeting together.

13. If we add to the system p parallel planes, the increment is

( n - i ) ( n _ 2 ) (o , -
2

(n,-l)(a.Q-2)l
2 J'

A further addition of q parallel planes of different direction gives
an increment

|
2 J 2

and so on.
If in the resulting expression wo put n = 0, and therefore dismiss

n aa... a7, we have

rr(p + 7-D(p + 7-2) (p-l)(p-2) (7-D(7-2) g

L 2 2 2 J 2

— &o.

or —1+2? — 2p2 -f- Ŝ j?* — &c,
which is the form in whioh Steiner givea tho rosult. It includes the
caso in which siuglo pianos differently dirootod ontor, for it is por*

2 E 2
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missible to suppose the value of any of the letters p , q, r, &c. to
be unity.

14. Similar considerations enable us to determine the number of
faces and edges.

In the first instance, we take a system of n planes containing
multiple lines not co-intersecting, and of the orders an a% ... aa.

There are n—a1 + a3 —... — aq planes containing n— 1 lines each,
ax planes containing n—ax +1 lines, and so on; but it must be remem-
bered that in this way we count the multiple lines a1} O2 ... aq times
respectively, whereas the other lines are counted only twice. Hence,
for edges, we have to make a final deduction of

Thus the formula for the number of edges Avill be

(n—a, — a.2— ... — a,) {(n — l)(w—3)— at (a,—2) —

>,—ax — 1) — a2 (a2 —2) —

= 2?, («, ax, a2... aq).
And if a certain number of these multiple lines intersect in one point,
let these lines be of the orders hv l-2... h,. We must deduct for the
edges lost according to the number of planes constituting the inter-
section. Form, planes the deduction will be Ft (mlt l\, h2... hs), and
so for any number of such intersections; i.e., the general formula
will be

I'1, (n, a u o 2 ... aq) — Fl ( v i v k v Jc2... 1is) — F1 (m2, lt, 1.2... If) — & c ,
the symbol Fx being interpreted in the same way as F. In like
manner, we get, for the number of faces when the multiple lines do
not intersect,

... a,),
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and the correction for intersecting lines will be as before

a similar meaning being attached to the symbol JP2.
If certain groups of planes through a line intersect at infinity so

that the multiple lines are parallel, the multiple point is the limit of
an apex.

An apex subtends the same number of superficial spaces bounded
by its lines as it would do if cut by a single plane ; so that, when the
apex is infinitely distant, wo must deduct the number of volumes due
to the planes through it, augmented by another plane. In addition,
therefore, to the usual deduction of F(m17i51fc3 ... ks), where /ml is the
number of planes, and 7cn Je9... ks are the orders of the lines, we have
to deduct

2 2 '" 2

It will be observed that an apex may subtend more faces of the figure
than the number mentioned, but the number of superficies subtended
will be as stated, by the principles of perspective.

In the like case, we can determine the correction for the numbers of
the faces and edges considered as finite, and the foregoing formula?
can be adapted to other cases which I do not treat of at length,—for
example, to the case in which some of the parallel planes pass
through a multiple point, and so forth. So that we may conclude
that the numbers of the volumes, faces, and edges can be generally
determined for systems of planes, consisting partly of single planes,
of groups of planes having a common line finitely situate, or on the
infinitely distant plane and multiple points formed by the intersec-
tion of multiple lines, and finitely or infinitely distant.

15. The numbers which occur relative to systems of a veiy moderate
number of planes are large. Applying, for instance, the formula to
the 45 real triple tangent planes of a cubic surface, we have to con-
sider that they pass, five together, through 27 lines, and these inter-
sect in 135 points in pairs, each point being constituted by 9 planes,
since the two intersecting lines belong to a common plane of the
system. The formulae give therefore, for the numbers of the volumes
or completely enclosed cells, the faces and the edges respectively

44.43.42 , 1 3 5 8 ^ G _ 2 7 4 4 4_^ 5 ^ _ 3
2.3 2 .3 2 3

+135 .8 .2 . i ^ -135 .2 . 5 ' ^ - 3 = G65G,
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(45-5.27)(43.42-27.4.3) + 5.27(40.39-26.4.3)£ _
-135(9-10)(7.6-2.4.3)-2.5(4.3-4.3)) ~

(45-5.27)(44.42-27.5.3)-5.27 (41.39-26.5.3)}
-27.3.39-135 [(9-10)(8.6-2.5.3) ( = 17523,

( +5.2(5.3-5.3)-2.3.3] )

and by the formula of § 11 there are 1658 open regions.

When we attempt to determine more particularly the forms of the
volumes involved, tho difficulty which we already encountered in the
analogous plane problem is much intensified.

The edges of the finite figure made by n planes, no more than three
meeting in one point, and no more than two having a common line,
and no two being parallel, may be divided into four classes.

The edges may be (1) convex, (2) level, (3) re-entrant, (4) interior.
Lot a,, <?2, a3, a4 be the numbers of the four kinds respectively. A
convex edge belongs to two faces and one volume, a level to three
faces and two volumes, a re-entrant, to four faces and three volumes,
an inteiuor to four faces and four volumes. Hence, if we put F for
the number of all the edges of all the faces taken separately, V for
the number of all the edges of all the volnmes taken separately, and
E for the number of edges taken once only, we have .

.(0),

F

V
77- n(w-l)(n—3)

and therefore a4 = E+ V—F.

Theso l'elations and others similarly obtainable are quite insufficient
for a solution of tho main question.

If we refer the letters «„ a3, as, a4 back to the plane case, so that
rt4 means tho number of interior points, and represent by F, V, E, re-
spectively, the number of the extremities of the finite edges taken
separately, the sum of the number of the sides of the faces, and the
number of interseetionN, the equations (0) hold in the same form, so
that tho vuliH! of </t is in tho same form.


