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ON THE PROJECTIVE GEOMETRY OF A BINARY QUARTIC
AND ITS HESSIAN
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1. A conic drawn through the origin of coordinates x, y is chosen;
and a quartic in x, y is represented by the quadrangle PjPgPgP,! of
points in which the conic is met again by the four lines of which u = 0,
the result of equating the quartic
to zero, is the equation. Linear
transformations of the quartic
are obtained by taking any axes
through any point of the conic,
retaining the same quadrangle,
and also by any projection, of the
figure. Real changes of origin
and axes, and real projections,
afford schemes of linear trans-
formation with real coefficients.

Let CHK be the harmonic triangle of the quadrangle. The sides of
this are real if Plf P2, P3, P4 are all real or all imaginary in conjugate
pairs, i.e., if the quartic u = 0 with real coefficients has all its roots
real or all imaginary. The sides of CHK cut the conic in three pairs
of points, 0 and A, D and E, and a pair which in the case of a real
CHK are imaginary, given by the equation G = 0, where G is the
sextic covariant of u.

The quadrangle u = 0 is one of an infinity of quadrangles on the
•conic with the same harmonic triangle CHK. The vertices of any one
are the points representative of some quartic of the pencil KU-\-XH = 0,
where H is the Hessian of u. Given the triangle, one vertex P of any
•quadrangle of the pencil determines the other three as the second in-
tersections of PC, PH, PK with the drawn conic.

To specify the particular quadrangle which gives the particular quartic
of the pencil H = 0 itself is not so easy as the algebraic simplicity of
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H in respect of it would lead us to expect, and I am not aware that any
writer has taken the trouble to overcome the small difficulties of the
specification of the Hessian by linear construction, though full attention
has been paid to the expression of its properties in the language of polar
pairs and triads. One difficulty arises from the fact that, if the roots of
u = 0 are all real, those of H = 0 are all imaginary—it is easy to see
that a binary quantic of any order with only real and unequal roots has
a Hessian, a sum of squares, with no real roots—so that, starting from a
quadrangle with real vertices as u = 0, we look for one with imaginary
vertices as H = 0, a completed real exhibition of the H going with the
u being thus an impossibility. There is also the complication that be-
tween quartics u and Hessians H there is not a one to one correspondence :
a particular u has, of course, one Hessian H, but of u's which possess
a particular H there are two. These are apolar with one another.

2. Associate with each quadrangle, i.e., each quartic of the pencil, a
point M on CH as follows. Take P one vertex of the quadrangle, the
other three being where PC, PH, PK cut the conic again. Let PH meet

KG in Q. Join OQ, and also join B, the point where OQ cuts the conic
again, to A by a line meeting HK in T. QT cuts CH in the point M.

Now, take F the harmonic conjugate of H with regard to C and A.
F has no reference to any particular quadrangle of the pencil.

Let M, M', M" be the points of CH which are associated as above with
the ^-quadrangle, the w'-quadrangle of the pencil, taking u' apolar with u,
and the i?-quadrangle of ^.respectively. The facts, to be established
presently by aid of a canonical projection, are as follows.

(i.) OA, FH, MM' are pairs of an involution.

(ii.) CH, MM', OM" are pairs of another involution.
u 2
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In these there is complete symmetry as between M and M'; the H-
quadrangle is that of u' as well as that of u.

8. This association by means of harmonic properties and involutions
of thre9 quartics of a pencil KU-\-\E, with the same G, of which two are
apolar and the third thair common Kessian, is general. The following
statement of realities of geometrical construction applies only when the
harmonic triangle CHK is real., and so has no reference to quartics u with
two roots real and two imaginary.

The above construction of a real M (or M' or M") from a real P (or P'
or P") is linear. To construct P (or P' or P") from a given real M (or M'
or M") we may join points of HK to M and to A, letting the connectors
with M meet CH in points q, and the connectors with A meet the conic
again in points whose connectors with 0 meet GH in points q', and find,
linearly by aid of the drawn conic, either double point Q of the involution
of pairs qq', finally joining QH to meet the conic in P. According to the
position of M on CH, Q may be between D and E, or real and outside
the segment DE, or imaginary. Only in one of the two former cases are
the points P real; in the other they are imaginary on real lines through
H; in the third case they are imaginary on imaginary lines through H,
but, as we shall see, on real lines through K.

Given either M or M', we are told by (i.) that the other can be linearly
constructed, and then by (ii.) that M" can be.

Conversely, given M", M and M' constitute the common pair of two
involutions, each given by two pairs, and can be linearly constructed by
aid of the drawn conic. We shall see that a real M" thus determines a
real M and M'.

4. To justify the above statements, which are strictly projective in
form, we have to prove them for a figure canonically simplified by any
convenient projection. In the case, on which we are fixing attention, of
a rc2l CHK let us project the drawn conic into a circle in such a way
that HK, the side of CHK which does not meet the conic in real points,
goes to infinity. This is a real projection. We also ehoosa for origin—
which may be anywhere on the circle—an end 0 of the diameter OCA
which is the projection of the side CH, and for axes OA and ths tangent
at 0. The linear transformation which effects all this is a rsal one.

We are, in fact, thus led to the usual canonical form of a quartic.
Slightly departing from the usual notation, we write for the canonical
form of u = 0

. (1)
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The sextic covariant G = 0 is

xy(xi-yi) = 0. (2)

Every quartic of the pencil KU-\-\H = 0 has an equation of the form
of (1). Take, in particular,

Ax'Y = fi' (a^+z/2)2 (8)

for that quartic u' = 0 of the pencil which is apolar with u = 0. The
condition to be satisfied, found by equating to zero the lineo-linear
invariant of (1) and (3), is

(2/*-l)(V-D = - 3 . (4)

Using this relation, we at once find that the Hessian H = 0 of u may be

= — /JL/J.' (x2+if)2

+ff (5)

written . Q 2 , . 2

4y ' (2

the symmetry of which tells us that, as stated earlier, the two apolar
quartics have the same Hessian.

It is interesting to notice incidentally that another statement of these
facts is that the quartic equations in tan 0,

cos 40 = cos 4a, cos 40 = cos 4/3, cos 40 = cos 4y,

where cos 4a cos 4/3 = — 3 and cos 4d+cos 4)8+2 cos 4y = 0,

are canonical forms of u = 0, u' = 0, H = 0 respectively, arrived at by
real transformation, when u = 0 has only real or only imaginary roots.
It is here clear that a and /3 cannot be both real, and readily shown that
if one of the two, say a, is real, y cannot be, except in the extreme cases
of cos 4a = cos 4y = ± 1, cos 4/3 = + 3, in which cases u and H are
identical, but for a constant factor, and perfect squares.

Returning to the notation of (1) to (5), the conic by which we cut the
pencil of lines is the circle ^ . 2 _ 2 x /6\

The vertices of the u-, the u'-, and the IT-quadrangles are then by (1), (8),
and (5) respectively on the line pairs

y* = ix, y2 = /*', y2 = — / V , subject to (4). (7)

The quadrangles are now rectangles symmetrical about the lines y = 0
and x = 1. One vertex or side of a rectangle determines it completely.

The six points G = 0 are the ends of the rectangular diameters OCA,
DGE and the circular points at infinity.
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If we start from a real ^-rectangle, all we can hope for in the way of
real construction is, in virtue of a remark made above, to obtain real sides
of the associated u'- and .ff-rectangles, whose vertices are imaginary except
in the extreme cases of n = 0, 1.

Take P a vertex of the w-rectangle, and let a side y = V/* through
it meet BE in Q. Join OQ, and let QM at right angles to it meet OA in
Af; then CM =

so that, if Fia the middle point of CA, FM = /u.—%, in sign and magnitude.
If, then, M' corresponds to vertices P ' of the u'-rectangle, just as M does
to P, we have, by (4), that

FM.FM' = —l=F0. FA,

i.e., MF.FM' = FG2,

so that MGMf is a right angle.

The constructions, or real steps towards construction, of the other
three from a given one of P, P', M, M' are most naturally performed
by drawing circles. But the effectiveness of methods which yield on
projection the general linear ones expressed in §§ 2, 3 is clear. Given
P, and so Q, a parallel through Q to RA cuts OA in M; and M' is the
conjugate of M in the involution of which F is centre and OA a pair
[cf. § 2, (i.)]. M' stands to Q', where DE (produced) meets a y = v V
through a u'-point P', just as M does to Q, i.e., OM' subtends a right
angle at Q'. Given M (or M'), Q (or Q') is either double point of the
involution on DE of which lines through M (or M') and the perpend-
iculars to them through 0, i.e., the lines from 0 to the points where
parallels to them through A cut the circle, determine pairs.

Again, take M" on OA (produced if necessary) such that

CM" = - MM',
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i.e., that CO . CM" = CM. CM',

so that, in language suitable for projection, OM", MM' are pairs of an
involution with C for centre [cf. § 2, (ii.)]. M" goes with a Q" (imaginary
in the figure) on DE, and vertices P" of the if-rectangle, just as M goes
with Q and P.

5. The statements of §§2, 8 have now been justified, except that
there remain for consideration questions of reality and imaginariness.

We are supposed to have started from a quartic u = 0 with real co-
efficients, and have seen that when it has only real or only imaginary
roots a real linear transformation gives it the form 4a;2?/2 = M (re2 —}-j/2)2.
In these cases then M is real, and consequently by (4) so are M' and
—MM'- The points M, M', M" are real points on OA. Moreover, any
real M (or M) on OA, infinitely produced, determines a real M' (or M)
and a real M". Conversely, any real M" determines a real M and M' :
for, having —MM' real, = m say, (4) tells us that ix-\-fx' = 2(1—?^), so
that (M—M')2 — 4 (1—??i)2-+-4ra = (1 — 2m)2+3, and consequently M~M'

as well as M+/*' is real.
As M covers the whole line OA produced, proceeding from left to

right and starting from — oo, M' also covers it all from left to right,
starting from F, while M" covers it twice from right to left. We have,
in fact, by (41, the following correspondence of parts of the ranges of
M, M'> —MM'-

MOI-M'---

M'orM...

-MM* . . .

— oo to — 1

, to 1

oo to 1

— l t o O

1 to 2

1 toO

O t o £

2 to oo

0 to — oo

£to 1

— oo to —1

oo to 1

I t o 2

— l t o O

l t o O

2 to oo

0 to £

0 to —oo

Half the table gives the whole, as it is symmetrical in its reference to
M, M'- ^ B is fcne reflexion of Cm A, we may also express it : according as

M or M' is to the left of O, between O and C, or between C and F,

M' or M is between F and A, between A and B, or to the right of B,

and M" is to the right of A, between A and C, or to the left of C.

The speciality of the separating cases —MM' = 0, 1, OO will be noticed.
Now, if by M we mean either of M. M\ —W', the sides y2 = M of the

associated rectangle are real only if M is not negative, i.e., if the associated
M is not to the left of C, and the vertices of the rectangle are real only if
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further fi does not exceed 1, i.e., if M is not outside the segment CA.
If, then, the u- (or the u'-) rectangle is one of distinct real vertices, the
u'- (or the u-) rectangle has imaginary vertices, which lie on real or on
imaginary parallels to the diameter OA according as M (or M') is between C
and Fov between F and A, and the .ff-rectangle has also imaginary vertices,
on imaginary or real parallels to the diameter according to the same
circumstances; and, if the if-rectangle is one of distinct real vertices,
both the u- and the u'-rectangles have distinct imaginary vertices, those
of one being on real and those of the other on imaginary parallels to
the diameter. In the special separating cases of —/U/UL' = 0, 1, i.e., of
ilf" and either M or M' at C or A, the if-rectangle is identical with one
of the u- and w'-rectangles, having real vertices united in pairs. In the
third separating case of —/UL/UL' infinite, the if-rectangle is also identical
with one of the u- and ^'-rectangles, having imaginary vertices united
in pairs.

The summary of results as to reality is then as follows:—
(i.) If the roots of u (or of u') are all real, the roots of u' (or of u) are

all imaginary; and so are those of H, except that when u (or u') is the
square of a quadratic with real roots H is the same square but for a con-
stant factor.

(ii.) If the roots of u (or of u') are all imaginary, either the roots of
the other are all real and those of H all imaginary, or vice versa, except
that in two separating cases the other and H are identical and squares of
quadratics with real roots.

(iii.) If the roots of if are all real and different, those of both u and u'
are imaginary; and, if those of H are real and equal in pairs, those of one
of u, u' are the same equal pairs and those of the other are imaginary.

(iv.) If the roots of H are all imaginary, those of one of u, v! are real
and those of the other imaginary; and in particular, if those of H are
imaginary and equal in pairs, those of the one of u, u' which are imaginary
are the same equal pairs.

6. It has been stated (in § 3) that in a case when the vertices of one
of the triangles lie on imaginary parallels to OA, i.e., when the construc-
tion of Q (or Q' or Q") from M (or M' or M") is devoid of reality, they
lie on real perpendiculars to OA. This is clear; for the points of the
circle which lie on y2 = /x also lie on (x—I)2 = 1—AC. The intersections
N with OA of the required perpendiculars to OA are then given by

CN*=CA. MA = CA . Cm,
where Am = MC.
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The construction of the real
sides of the quadrangle in the
general figure of § 2 may then be c

stated. Find, linearly, m, the o ivi '
harmonic conjugate of M with
regard to FH, and then find,
linearly by aid of the drawn conic,
the double points of the involution of which Am, GH are pairs : the
connectors of these with K are the real sides required.

N i a

7. The canonical projection and reference of the above do not apply
when u is a fourth power, or when it is the product of a square and a
non-square. These cases are so simple and well known that they will not
be dwelt upon.

Excluding these singular cases, it has been observed in § 3 that the
association in projective terms of three allied quartics u, u', IT of a pencil
K2i-\-XH with a given G is general. But the realities of construction
detailed above have no applicability in cases when a chosen one of u, u',
H with real coefficients has two real and two imaginary roots. In such
cases the projection adopted above is imaginary, or, in other words, the
linear transformation by which it is effected involves imaginary co-
efficients.

We have already the ground for asserting that, if one of u, u', H has
two real and two imaginary roots, so also have the other two. For, if
either had not, (i.) to (iv.) above would tell us that u had not.

For guidance to realities of construction in cases of two real and two
imaginary roots a different canonical projection and reference are desirable,
and to these we now proceed.

8. In a case when u = 0 has two
real and two (conjugate) imaginary
roots, two vertices Pv P3 of its repre-
sentative quadrangle on the chosen
conic are real, and the other two are
imaginary on a real line GW. One
vertex C, and one side, the polar
UVW of C, of the harmonic triangle
are real, and the other two are the
imaginary points on UV where it is
met by the common pair of harmonic conjugates of GU, CFand CPlt GW.
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The best canonical projection now is the real one by which UVW is
sent to infinity, and the angles UCV, PXCW are made right angles. The
conic becomes a rectangular hyperbola
with C for centre. Take the transverse
axis, and 0 one of its ends, for axis of
x and origin. The equation of the
hyperbola, say

ix—I)2—y* = 1, (8)

and that of PXGP3 and GW, say

give the vertices of the quadrangle.
The lines to them from 0 are at once
seen to be

Q.xy \jj "| y ) ^~ JJL \j3c —~y ) ^ ^ iu j

and this is accordingly the canonical form of u = 0 to which we are led
by a linear transformation with real coefficients.

Every quartic of the pencil KU-\-\H = 0 derived from this is of the
same form, with some /A or other. In particular the apolar xC = 0 of the

-2/2)2 (11)

(12)/A/A' = 3 ,where

and the Hessian H = 0 is

4xy (*2+</2) = - (13)

The sides of the common harmonic triangle of the quadrangles repre-
sentative of the pencil are the line at infinity and the lines from C to the
circular points, i.e., the lines {x—l)2+y2 = 0; and the sextic covariant
G = 0, the equation of the lines from 0 to the intersections of these
sides with the hyperbola, is

= 0. (14)

9. Now (9) gives that, if Px is a w-point on the hyperbola,

tan 2,4 C P ^ / x - (15)

Hence, if on the tangent at A we take an ordinate AQ = n, the two sides
PtCP3, CW through C of the ^-quadrangle are the bisectors of the
angle ACQ.
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We are thus led to exhibit the relative positions of the real vertices
j and P3, Pi and P'8f P[' and P'z of the w-, the u', and the ff-quadrangles

0 F

respectively, by means of corresponding points Q, Q', Q" on the tangent
at A. Taking ACD = 60°, Q and Q' are such that AQ.AQ' = AD*;
and Q", on the opposite side of A from Q and Q', is such that Q"A = AR,
where R is the middle point of QQf. The lines P^P^, P'iCP'3, PxCP'i
are respectively the internal bisectors of the angles ACQ, AGQ', ACQ".

It remains to express in terms suitable for projection ways of finding
the two others of Q, Q\ Q" when one of the three is given. First we
must specify D in projective language. In imaginary terms we may say
that CD forms with the perpendicular through C to CA and the lines
from G to the circular points an equi-anharmonic pencil. But a real con-
struction for D of the kind we require is obtained by taking OE = GO
on CO produced, finding F such that AF2 = AC. AE, i.e., finding a
double point of the involution of which A is centre and C, E a pair, and
drawing FD (or FD') parallel to an asymptote. The determination of Q\
and then of Q", when Q is given, is now immediate, the constructions
being in projective language that of fourth harmonic points. When it is
Q" that we have given, its reflection R is found as a harmonic conjugate,
and then Q and Q' as harmonically conjugate both with regard to D, D'
and with regard to R and the point at infinity on AR.



300 THE PROTECTIVE GEOMETRY OF A BINARY QUARTIC AND US HESSIAN.

Projecting the figure back into the general one in which CPXP8 and
G1W are two lines of which only the first meets the conic of reference in
real points, we may now state as follows.

CPtP3 and CW, CPiP3 and CW, CP'IK and CW are pairs of an
overlapping involution to which every quartic of the pencil KU-\-\H con-
tributes a pair, and of which CU and CV are one pair. This pair and any
other determine it. Take COA the one which cuts the conic of the
common pair of this involution and the, also overlapping, involution of
pairs of conjugate lines with regard to the COL- C through G. Let Q on
the tangent at A be where that tangent is met by the harmonic conjugate
of CA with regard to CPV CW. Points Q', Q" on the tangent are
similarly associated with the GP\, CW' and CP'{, CW" of u' and H.

Construct two points D, D' on the tangent at A, having no connection
with the particular CPX or CP{ or GP'{ as follows. On COA, which meets
UV in G, take E the harmonic conjugate of C with regard to 0, G, and F
either double point of the involution of which C, E and A, G are pairs.
D and D' are where FU and FV meet the tangent.

Now, having Q on ADD', take Q' the harmonic conjugate of Q with
regard to D and D'. This is the point associated with the CP[P's of the
apolar u' just as Q is with the GPXP3 of u.

Again, take B the harmonic conjugate of Y, where UV cuts ADD',
with regard to Q and Q', and then take Q" the harmonic conjugate of B
with regard to A and Y. Q" has the same association with the CP'{ P« of
the Hessian of u, and of u'.

All the above constructions can be performed linearly by aid of the
drawn conic. So can that of Q, Q' from a given Q", by finding B, the
harmonic conjugate of Q" with regard to A, Y, and then constructing
the common pair of harmonic conjugates of D, D' and B, Y. So, finally,
can that of CPXP3 and CW (or CPiP^ and CW or CP'i'Ps and CW') from
CQ (or CQ' or CQ"), by finding the common pair of the involution of
which CA, CQ are the double lines, and that of which CU, CV and CA,
CY are pairs.


