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Groups of Order p°q. By A. E. Western, MLA.
Read Februa.ry 9th, 1899. Received February 22nd, 1890,

1. I propose to discuss the different types of abstract groups
whose orders are p%q, p and ¢ denoting different prime numbers. I
must express my thanks to Prof. W. Burnside, F.R.S., for his
criticisms on my work, which have enabled me to abbreviate it
considerably. Before beginning the consideration of these particular
groups it will be well to refer to the previous work of this nature
that has been published, and to the general theorems of the theery
of groups, of which use will be made.

Throughout this paper the letters p, q, 7, ... exclusively denote
prime numbers, and {4, B, ...} denotes the group obtained by com-
bining in all possible ways the operations (or groups) 4, B, ....

There is, as is well known, only one type of group of order p, viz.,
the cyclic group {4}, where A? =1 (Burnside, Theory of Groups,
p- 26). )

There are two types of group of order p* :—

(i) {A} where A*" =1 (and no lesser power of 4 equal to 1; this
proviso will in future be implied, for the sake of brevity).

(ii.) {4, B}, where 4*=D"=1, 4B = BA.
Both of these types are Abelian (alias “ commutative ’). (Burnside,
Theory of Groups, pp. 63 and 81 ; Young, “ On the Determination -of
Groups whose Order is the Power of a Prime,” Amer. Jowr. of Math.,
Vol. xv., 1893, p. 132, and Cole and Glover, in the same volume,
p. 192) :

There are also two possible‘types of order pq:—

(i) {4, B}, where 4* =1, B*=1, AB = BA; this may alse be
written {0}, where ("7 = 1.

(ii.) {4, B}, where 47 =1, B* =1, and A'BA = B*, where a is
any primitive root of the congruence

=1 (mod g).
This type only exists when ¢g—1=0 (mod p).

(Burnside, Theory of Groups, p. 100, and Cole and Glover, lac. cit.,
pp- 193, 194.)
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Groups of order p° are dealt with by Burnside, in his Theory of
Groups, pp. 81, 82, and 87, and by Young, and Cole and Glover, in
their papers already referred to. (See also post, § 4.)

Groups of order p’q are'given by Burnside, loc. cit., pp. 132-137,
and by Cole and Glover, loc. cit.

Groups of order pgr are given by Cole and Glover, loc. ¢it.; and,
lastly, groups of order p* are enumerated by Burnside, Theory of
Groups, pp. 87, 88, and by Young (loc. cit.). See also the memoir by
Holder, “ Die Gruppen der Ordnungen 2° pg’, pgr, p*,” Math. Ann.,
Vol. XLIIL

2. Sylow’s theorem forms the basis of attack on all groups whose
orders contain more than one prime factor. It is expressed by
Burnside (p. 92) as follows :—

“ If p" is the highest power of a prime p which divides the order
of a group @, the sub-groups of @ of order p* form a single conjugate
set, and their number is congruent to unity mod p.”

An important corollary is that, if @ contains more than one sub-
group of order p", the order of G must be divisible by 1+kp (k> 0).
Tor there ave, in the case supposed, 1+kp sub-groups of order p%
forming a conjugate set, and the number of sub-groups forming a
conjugate set necessarily is a factor of the order of the group.

A second and equally important corollary is that the number of
groups of order p° contained in G can be expressed in the form

14+ kp+kp’+ ...+ ko p%
where k,p" is the number of groups of order 2* having with a given
group H of the set greatest common sub-groups of order p*~*
(Burnside, p. 94). ' ’

A third, which will also be useful in the sequel, is given by
Burnside (p. 94). Using the previous notation, this theorem asserts
that, if h is a sub-group common to H and some other sub-group of
order p* such that no sub-group which contains 2 and is of greater
order is common to any two sub-groups of order p", then there must
be some operation of G of order prime to p which is permutable
with &, and not with H.

3. Two other general theorems will be frequently employed later on.
(1) Let @ and H be two self-conjugate sub-groups of some third
group, having no common operations except identity; then every
operation of G is permutable with evéry operation of H (Burnside,

p- 44).
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(2) Let 4,, 4,, ..., 4, be all the sub-groups (or operations) of a
certain type contained in @; and let @ be an operation in G of prime
order g. Transform A, with respect to @; the result Q'4,Q is a
sub-group (or operation) of G of the same type as 4,, and either it
is A, or it is some other of the set, say 4, In the latter case,
transform 4, by @, obtaining 4, say, and so on, till the cycle closes.
Then the cycle contains g of the sub-groups (or operations) 4,, 4, ... ;
for, if possible, suppose the cycle closes with 4, (z<g¢), so that

Q74 =Q"4.Q=A4,
Then we get Q74,Q" = 4,
for all values of y.

Now choose y so that zy =1 (mod ¢) ; we thus obtain the result

Q'4,Q =4,
which contradicts the hypothesis
Q'4,Q =4,

Therefore the sub-groups. (or operations) A4,, 4,, ... may be divided
into I sets of ¢ each, and m each of which is unaltered by transforma-
tion with @, 7.e., is permutable with @; and then

n = m+1g.

4. The various groups of order p® must now be examined, and the
facts as to their respective structures proved, which will be needed
when I come to consider them as sub-groups of groups of order p'q.
In particular it will be useful to know, as to each group of order p°,
how it may be made isomorphic to itself (see Burnside, chap. xi.) ;
that is, how to find operations A4, By, ... in terms of the generating
operations 4, B, ... such that A4, B, ... obey the same number of
relations, and these of the same form as A4, B, ...; it is obvious that,
if this is so, the group may be regarded as generated by 4, B, ...,
just as much as by 4, B, ....

I {4}, where A" =1. ‘ .

This contains one sub-group of order p, {4*'}, and one of order z*,
{4} Itis generated by 4,= 4% provided only that « is prime
to p.

This group contains therefore p* (p—1) operations of order p° and
so the order of its group of isomorphisms is p®(p—1). Both its

P2
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sub-groups are characteristic sub-groups, 7.e., such as are vnaltered
by every isomorphism of the group (Burnside, p. 232).

II. {4, B}, where A" =1, B"=1, AB = BA.

This contains p+1 sub-groups of order p, {A”}, and {A*”B} (where
k=0,1, ..,p—1), and p cyclical sub-groups of order p' {A4B'}
(where k=0, 1, ..., p—1), and one non-cyclicnl sub-group of
order p* {4”, B}. _

Let Ay= A*BY, B,= A™D", where = is prime to p, and at least
one of z and r is prime to p; then A =1, B> =1, and 4,B, = B, 4,.

To secure that {4,, B,} generate the group, we must also ensure
that B, is independent of 4.

Suppose that B, = A};
then A?B = A™*DB*,
and so vk = zp (mod p?),

yk =1 (mod p).
Since z is prime to p, k¥ = 0 (mmod p) ; that is, » =0 (mnod p). Pro-
vided therefore that » £ 0, A, and B, generate the group, and are
evidently the most general expressions for any possible pair of
generators. The group of isomorphisms is thercfore of order
p* (p—1). The characteristic sub-groups are easily seen to be
{4r, B} and {47}.

III: {4,DB, C}, where A =Br=(C"=1, AB= B4, AC=CA,
and BC = CB.

This contains p’+p+1 sub-groups of order p, and the same number
of order p’ all of the latter being non-cyclical (Burnside, pp. 59, 60).
Kvery operation of the group is of order p (exceptl). A,=A"B“C",
By = A"B"(C%, and Cy = A“DB=C* will geaerate the group, provided
that the three congruences given by AjDYI(CE =1 cannot co-exist;
these are h
B a,x+by+cz=0 (mod p),
a2 +byy+cyz =0 (mod p),
a2 +byy+ez=0 (mod p).
a,a, ... must therefore satisfy the condition

a, b, ¢|%£0 (modp).
a, by ¢

ag by ¢
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The order of the group of isomorphisms is
(-1 (@ —p)(#'—P)
(Burnside, pp. 58, 59) ; that is,
2 (p=1' (p+1) (P +p+1).

This group evidently has no characteristic sub-groups.

These groups I., IL., III. exist whatever prime p may represent,
either 2 or any greater prime. Since they are Abelian groups, every
sub-group is self-conjngate. The remaining groups of order p* differ

in form according as p represents 2 or an odd prime; and they are
not Abelian groups.

IV. {4, B}, where A‘*=1, B2=1, BAB=A"".
The operations of this group are
1, A, A%, A-', B, AB= BA"', A®B = BA®, A-'B = BA.

It contains altogether five sub-groups of order 2: of these one is self-
conjugate, {A%}; two form a conjugate set, {B} and {4’B}; two
form a conjugate set, { AB} and {A~'B}. And it contains three sub-
groups of order 4, all being self-conjugate; two are non-cyclical,

{4 B} = (1, 4% B, A'B) and {4% AB} = (1, 4%, AB, A-'B);
and one is cyclical, {4}.

Obviously the most general expressions for 4, and B, are 4, = A*',
By=A*B (=0, &1, or 2); for then 45=1, B2=1, and

B,4,By = A"BA*¥' A*B = A*A®'-* = A¥' = A7";

and evidently 4, and B, are independent, except for the above
relations. '

The order of the group of isomorphisms is therefore 8.
The characteristic sub-groups are {A} and {4°}.

V. {4, B}, where A*=1, B’ = A%, BAB= A"\

The operations are 1, A% 4, A°', B, A*B, AB, A-'B, the latter six
being each operations of order 4, and the square of each being A’

This group contains one sub-group of order 2, { 4}, which is self-
conjugate; and three sub-groups of order 4 each cyclical and self-
conjugate,

{4}, {AB} = (1, 4B, 4°, A7'B), and {B} = (1, B, 4% A*B).

The group is symmetrical in 4 and B, for from the relations given
it follows that A-'BA = B-".

Any independent pair from among the six operations of order 4
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may be taken to generate the group, viz.,
4y=A*, B,=A4'B (=0, %1, 2),
or By=A*, A,=AB (=0, +1, 2),
or A4,= A'B, B,= A"D
(=0 or 2, m = %1, or vice versa).
And in each case A3 =1, B} = 42, and B;'4,B, = 4;

The order of the group of isomorphisms is therefore 24. {4%} is
the.only characteristic sub-group.

VI. {4, B}, where A" =1, B"=1, B-'AB = 4*', and p is odd.

This contains one sclf-conjugate sub-gronp of order p, {4}, and
p other sub-groups of order p, { A" B}, forming a conjugate set; also
p cyclical sub-groups of order p?, {AB*}, which are self-conjugate,
and one non-cyclical self-conjugate sub-group of order p*, {4”, B}.

In this grou
group (A"B")’ = Arr-labpr(z-1) phe

Let Ay= A°B’, B, = A"D?;
then a3z 0 (mod p), or else Ay would be of order p, and d=£ 0, or
else B, would be a power of 4, Then
B;'4,By= B-4-TA"B* A" B"
=DB-‘A"B'R
-— An(lodp)];h
and At = A0,
In order that 4, and B, should take the place of 4 and B it is
necessary that d =1; that is,
d,= A"B’, B,= A*B.
And it is ensily proved that (if e is prime to p) 4, and B, are not
connected by any additional relations.

The order of the group of isomorphisms is therefore p* (p—1).
The characteristic sub-groups ave {4} and {42, B}.

VIL {4, B, C}, where A’=DB"= (C"=1, AB = B4, AC = CA,
and C-'BCU = AB; whence also B~'0B = A-'C; here p must be odd.
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From these we derive .
C*BY = A-BIC*

and (AanGc): = Aﬂz-]bcﬂs-l) BD:Gtz'

Therefore every operation of the group is of orderp. A and its
powers are the only self-conjugate operations.

This group contains p*-+p+1 sub-groups of order p*; of theze one
is self-conjugate, {4} ; the remainder consist of p+1 sets, each set

containing p conjugates; the sets are
{4*B} (k=0,1,..,p-1),
. =01, .., p-1
“0}, {4'BC}, ..., {A*B'C}, v P,
{470} {4'BCY, oo { o} (J =0,1, ...,p—‘l)

And it contains p+ 1 non-cyclical self-conjugate sub-groups
{4, B} and {4,B0} (j=0,1,...,p-1).

The most general transformation of the group into itself that is
possible, having regard to {4} being the sole self-conjugate sub-
group of order p, is

dg= A%, By= A"B"C" 0, = A“B"0.

Then AyBy= ByA4,, A4,C,= C4,,

and O0;'B,Cy= 0 *B A~ 4" B (" A~ B ("
= Ab=bacatbs Bha (s

and 4,B, = A%*=B%(C"%;

therefore % = byey—byc; (mod p).

Also the sufficient condition that C, should not be expressible in
terms of 4, and B, is that bycy £ byc,, which is, of course, satisfied
when the above congruence is satisfied.

To determine the order of the group of . isomorphisms, we must
find the number of solutions of the congruence

& = bycy~byc; (mod p)
such that » is prime to p.

There are 2p—1 pairs of values which b, and ¢, can assume such
that byes =0 (mod p);
with each of these b, and ¢, can each take any of the values
1,2, .., p-1: thus, if
byes=0 (mod p),
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there are (p—1)*(2p—1) solutions ; if
by, =0 (mod p),
there are again (p—1)* (2p—1) solutions.

Lastly, if none of b, by, ¢, ¢; are congruent to zero, to each of the
(p—1)® sets of values of by, by, and ¢, there correspond one value of

¢, which makes
bycs—bzey =0 (mod p)

and p—2 values which do not; in this case then there are
(p—1)* (p—2) solutions.
The order of the group of isomorphisms is therefore

P [2(p—1@p—1) + (p—1)*(p—2) ] =1’ (p—1)* (p+1).
{4} is the only characteristic sub-group.

In future I shall refer to these groups by their numbers in this
list.

5. Principles of the Classification of Groups of Order pq.

The application of Sylow’s theorem to this order shows that there
are either 1 or ¢ sub-groups of order * in a group of order ’q; in -

the latter case,
g=1 (modyp).

Also there are either 1 or p, or p, or p® sub-groups of order g in

such a group ; if p such sub-groups, then
. p=1 (modyg);
if p* such bub-groups, then
p=1lor—1 (modyg);
if p® such sub-groaps, then |
p=lorpP+p+1=0 (modg).
Thus the groups of order p°g fall into four principal divisions :—

(1) Those which contain self-conjugate sub-groups of orders p°

and gq.

(2) Those which contain g sub-groups of order p°, but a self-
conjugate sub-group of order q.
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(8) Those which contain a self-conjugate sub-group of order p’,
but more than one sub-group of order q.

(4) Those which do not contain self-conjugate sub-groups of
order p° or g.

In the remainder of this paper G exclusively denotes a group of
order p’q, and H one of its sub-groups of order ¢°.

6. (1) Evidently the sub-groups of orders 3* and ¢ have no common
operation except 1; in this case therefore, applying the theorem of
§ 3 (1), each operation of order q is permutable with each operation
of the sub-group of order p*. ’

As in §4, the letters 4, B, and C denote the operations of a group
of order p’, while Q denotes an operation of order g.

Thus, when p = 2, there are five groups of this kind for all values
of q; viz., the direct products of {@} and the groups 1., IL., IIL, IV,
and V. of order 8. )

And, when p 3£ 2, there are also five groups for all values of p and
g; viz., the dirvect products of {Q}, and the gir ups L., IL,, III., VI,,
and VIL of order p*

7. Groups containing q Sub-groups of Order p* and one Sub-group
only of Order q.
g=1 (mod p)
is a necessary condition for the existence of any group of this kind ;
evidently then g cannot be 2. It will be convernient to consider
separately each of the seven groups of order p’ -subdividing each of
these cases in accordance with the values of %, and %, in the

formula (§ 2)
q=1+kpt+hkyp +kp'

Let H represent one of the sub-groups of order p*; all of them, of
course, being conjugates in the group of order p’q, are of the same
type. Then k p is the number of such sub-groups having with H
greatest common sub-groups of order p? k,p? is the number of such
sub-groups having with H greatest common sub-groups of order p,
and k, p® is the number of such sub-groups having no common opera-
tions with H. '

(i.) There may exist a sub-group % of order p* common to H and
some other sub-group of order p*; this must exist if

g#1 (modp'),
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and it may also exist if g=1 (modyp).
Applying the theorem in § 2, we see that Q is permutable with 5.

(ii.) No such sub-group of order p* may exist, but there may be a
sub-group % of order p common to H and H'; then

g=1 (modp?);
this must exist if g#1 (modp®),
and it may also exist if g=1 (modp®.

@ is permutable with & (§ 2).

(iii.) Lastly, the ¢ sub-groups of order »* may have no common
operations between any two of them ; in this case

g=1 (modp®.

The group of isomorphisms of any group of order ¢ is a cyclical
group of order ¢g—1; now, since {@Q} is self-conjugate in @, every
operation of H traunsforms {@} into itself, and therefore corresponds
to an isomorphism of {Q@}. If, then, none of the operations of H are
permutable with @, H is simply isomorphic either to the group of
isomorphisms of {Q} or to a sub-group of the latter; and so in
either case H must be cyclical ; this only occurs when H is of type I.
If some of the operations of H are permutable with @, they form a
self-conjugate sub-group .(which is called % above), of H (Burnside,

p- 42); then each operation of the factor-group % corresponds to

an isomorphism of {Q}, and therefore % must be cyclical. This

condition will reduce the number of different cases to be considered.

Further, since & is a self-conjugate sub-group of H, and is per-
mutable with @, it is a self-conjugate sub-group of G. Also, by
hypothesis {Q} is a self-conjugate sub-group of G, and evidently &
and {Q} have no common operations; therefore [§3 (1)] every
operation of & is permutable with @.

8.1 4°=1.

(i.) % must here be {4}, this being the only sub-group of order p*
in H. Therefore Q and 4° are permutable operations (§ 7).



1899.] Mr. A. E. Western on Groups of Order p'g. 219

And since {Q} is self-conjugate, but @ is not permutable with 4
(a case comprised in § 6),

414 =@,
where a1
Then APQ4r = Q™
and so =1 (mod gq).

This congruence has primitive roots, since
g=1 (mod p).
The same type is obtained whichever root of the congruence is

taken; for let
=a* (mod gq),

@ being prime to p, Then, if 4,= 4=,
Ao-l QAO — A-zQA.‘: e Qa’ = Qb.

Thus we obtain one type,

4°=1, Q=1 A4'Q4=qQ,
where a is any primitive root of

o*=1 (modgq), and ¢q=1 (mod p).
(ii.) h must now be {47}, the only sub-group of order p in H.
Then Q is permutable with A" (§7). Andso
47Q4=q,
where a is a primitive root of
=1 (modygq).

And, as above, there is only one type, whichever primitive root is

tak
wRem =1 Q=1 A'QA=q,

where a is any primitive root of
=1 (modgq)
and where q=1 (modp).
(iii.) Here AT'QA = @,
where a is a primitive root of

=1 (mody),
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and, as above, there is only one type,
=1 Q=1 47Q4=0,
where a is aﬁy primitive root of
@"=1 (modg),
and where g=1 (modp).

9. II. A"=1, B°=1, AB = BA.

(i.) This H has two distinct kinds of sub-group of order p', cyclic
and non-cyclie (§ 4, IL).

First, let & be a cyclic sub-group of order p'. We saw in § 4, IL,, -
that any operation of H whose order is p' might be taken as the
generator 4.

Without loss therefore of generality, we may take 2 = {4}. Then
AQ=0Q4 §7). :

Also, since {Q} is self-conjugate,
B'QB = @,
where a is a primitive root of
a*=1 (mod g).

Since B* will do, in place of B, to generate with A the group H,
there is only one type,

A7=1, B'=1, @Q1=1, AB=BA, AQ=Q4, B'QB=20"
where @ is any primitive root of
a* =1 (mod q), and g¢g=1 (mod p).

Secondly, let h = {A*, B}, the only non-cyclic sub-group of order
p'in H. Then
ArQ = QA*, BQ= QB (§7).

Therefore A'QA = Q-
where a#1;
but, since APQAP = @,

@ i8 a primitive root of
a* =1 (mod g).

As before, there is only one type,
4° =1, Br=1, Q' =1, AB=DB4, A7'Q4=0°, BQ=QB,
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where a is any primitive root of
¢ =1 (mod g), and ¢=1 (mod p).

(ii.) Again referring to §4, IL., there are two distinct kinds of
sub-group of order p in H, {4}, which is generated by the p™ power
of an operation, and {4"’B}; here A*B is not the p™ power of any
operation of H. No generality is lost by putting B for 4*B in the
latter case. :

First, h = {4*}. This is impossible, for —}Iz is Q,- non-cyclic group
(]

GOk
Secondly, A = {B}. Then

BQ =B (§7), and A47'QA = @,
where ¢ is any primitive root of
a’=1 (mod g), and g=1 (mod p°.
These relations define one type.
10. II. 4% = B*= (»=1, 4B = BA, AO=C4, BO = OB.

(i) k& is here a non-cyclic sub-group of order p*; suppose it is
generated by
. Ay=A"B"0%, and B,= 4"B%(C".

Since 4,and B, are independent, the congruences
: a
=== (modp)

cannot both be true.
We can therefore choose ¢, ¢, ¢y so that

a, b ¢|#0 (modp);

ay by ¢
a by ¢
therefore, writing C, = A% B=C",

4, B, C,, generate' the group {4, B, C}; and we have
= {4, 4} (§4, IIL).

The suffixes may now be dropped. Thus we have the type given
by the relations of IIL.,

AQ = Q4, BQ=QB, and 0-'QC = @',
where a is any primitive root of

o =1 (mod ¢g), and ¢ =1 (mod p).
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11. IV. 4* =1, B'=1, BAB= A"} _

(i.) This group has two different kinds of sub-groups of order 4,
the cyclical {4} and the non-cyclical {4% B} and {4° AB}
(§4, IV). _

Firstly, h = {4}. Then

AQ@=0Q4 (§7), end B-'QB= ¢,

g0 that #=1 (modg).
But a Z1; soa= —1; and we have the type
A*=1, B'=1, BAB=A4"', @ =1, AQ=QA, BQB= Q.

Secondly, h = {4% B} or {4% A4B}; since A and B,= 4B
generate H, and obey the same relations as A4 and B, it will be
sufficient to consider k= {4% B}. Then we get the type

A'=1 B'=1, Q'=1, BAB=A4"', A'QA=Q"', BQ=QB.

(1i.) H has also two different kinds of sub-group of order 2
(§4,1V.), {4°} and {4'B} (k=0, £1,0r2). But 4 cannot be

{4%}, for %- would then be non-cyclic. Nor can % be one of the other
sub-groups of order 2, for they are not self-conjugate (§ 4, IV.).
12. V. A*=1, BB= A} B'AB=A4""

(i.) Let & be some sub-group of order 4; this group contains three
such, {4}, {B}, and {4AB}, but without loss of generality we can put

A,=B or AB,
and thus get h= {A} (§4, V.).
Then 4Q=Q4 (§7),
and then, since BQB'= A*QA* = Q,
B'QB= Q"

Thus we get the type
44=1, B'=A' B'AB=A", @*=1, AQ=Q4, B'QB=Q"".
The oniy sub-group of order 2 is {4}, and this cannot be %, for then

% would be non-cyclic.
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13. VI. 4 =1, B*=1, B'AB = A4*"!, and p is odd.

(i.) ks either one of the cyclical sub-groups {4B*}, or it is the
non-cyclical sub-group {4, B} (§4, VL).

In the first case we can make

d,=A4B*, B,=B (§4,VI),
and so, dropping suffixes, b = {4}. Then
AQ = Q4 (§7), and B'QB = Q-,

where a®=1 (mod g),
and a is a primitive root.

We must now find whether any transformation of the group of

order p°q given by these relations for a particular value of « can
make the last relation become

Bt @By = @,
b being some other root of =1 (modyg).

Q and its powers are the only operations of order ¢ in the groap;
clearly nothing is gained by putting @Qy == Q.- A/BQ" is of ovder p*
if f is prime to p, but of ovder p if f is a multiple of p.

Let A, =A@, B,=A4"DBQ;
then A¥ =1, B'=1, B;'QB,= B7QB = Q*,
and B;'A,B, = Q*B~* A A/ BIQ" Ai» B+ Q*

— Q—kB-zAjBthB:Qk
—_ Al\li-zp) Q-k B-=tv Qh Bx: Qk
=Al(lﬁ.w)Q-kBtha’+k :

= Af(+a) Bo Qf.u’-k(uf/-u ;

also Ar = AR
therefore fQ +ap) = FQ+p) (modp?);
L w=1 (mod p).

_This proves that each primitive root of the congruence
=1 (mod gq)

gives a separate type; there are therefore p—1 types, whose
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generating relations are
A =1, B*=1, @ =1, B'AB= A", AQ=Q4, B'QB=Q",
or ey Q0
where a is a primitive root of

a"'E 1 (mod g), and ¢=1 (mod p).

Secondly, & = {4?, B}. Then
A'Q = Q4" BQ=QB (§7),
and then A1QA = Q°,
where a is any primitive root of
=1 (mod q).

This only gives one type, for we can take 4,= 4% and all the
relations are then unaltered, except that a is replaced by a®; its
relations are

A" =1, =1, =1, B'AB= 4", 4'Q4=Q", BQ= @B,
where @ is any primitive root of

a*=1 (mod q), and ¢ =1 (mod p).

(ii.) {47} is the only self-conjugate sub-group of orderp (§ 4, VL.).
1. = {A?} makes IT-LI non-cyelie, which is impossible (§ 7), and there-

fore no type exists in this case.

14. VIL. A»=B*= (" =1, AB = BA, AC = CA, 0-'B0 = AB;
p 1s odd.

(i) h={4,B}or {4,C}or {4, BC} (=12, ...,p-1).

1t h = {4, 0},
we can put 4,=4"", B,=¢C, Cy= B,
and so h= {4, B}

1f k= {4, B0},
we can pnt 4, =4, B =B0, 0,=0,

and so h= {4, B,}.
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It is sufficient then to consider

L= {4, B}.
Then AQ = Q4, BQ = QB.
Also C-'Q0 = @,

where a is a primitive root of a?=1 (mod q).
And there is only one type, for, if
A,= 4%, B,=B, C,=C,
the condition of § 4, V1I., is satisfied, aud
C;'QC, = Q“.
The type is
A=B=0=0Q =1, AB=DA, AC=C4, AQ=Qd4d, BQ=QB,
C'BC=A4D, (C'QC=Q",
where a is any primitive root of

a* =1 (mod g), and ¢=1 (mod p).

As before, h cannot be of order p, for % would then be non-cyclic.

15. The thixd principal division of the subject—groups containing
one self-conjugate sub-group of order p°, but more than one sub-group
of order g—must now be considered.

@, as before, represents any opervation of order ¢ in @, and H is the
group of order p®contained in @ If the operations of H are all
transformed by (3, we obtain the same operations in a different order ;
Q therefore corresponds to an isomorphism of H, and g, the order
of @, must be a divisor of the order of the group of isomorphisms
of H. Hence, taking the different types of groups of order p®in
order (as in § 4), the following congruences involving p and g must
hold :—

I p=1 (mod g).

II. p=1 (mod q).
III. p=1 (mod g), or p=—1 (mod ¢), or p*+p+1 =0 (mod g¢).
IV. No group exists of the required kind.

V. Here g must divide 24; thercfore q = 3.
VL p=1 (mod q). ’

VIL p=1 (modg) or p=—1 (mod q).
VOL. XXX.—Nu. 672. Q
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For the same reason @ is permutable with the various characteristic
sub-groups of H, named in § 4.

Each of the above cases may be subdivided, according to the
number of sub-groups of order ¢ contained in @; this number is
either p, p* or p°.

(i) If @ contains p sub-groups of order g, H must contain p*
operations (forming a sub-group) each of which is permutable with
each sub-group of order ¢; for, if this was not so, the transformation
of {Q} by each of the operations of H would produce either more or
less than p groups of order g. Also, in this case

p=1 (modq) (§5).

(ii.) If @ containus p* sub-groups of order ¢, H must (for a similar
reason as in the previous case) contain p operations (forming a sub-
group) each of which is permutable with each sub-gronp of order g,

and p=1 or —1 (modg) (§5).

(iii.) Lastly, if (¥ contains p® sub-groups of order g, either
p=1 (molgq) or p'+p+1=0 (mod q).

In veference to these congruences it may be noted here that p must
be odd when H is either of the types I. and II.; that p must also be
odd when @ contains p sub-groups of ovder q; that when g =2 the

congraecnces

p=1 (modq) and p==—1 (mod q)

are identical ; and that when ¢ = 3 the congruences
p=1 (modq) and p'+p+1=0 (modyg)

are identical, for P+p+l=(p—1) (mod 3).

Liastly, let D be one of the operations of H mentioned above
which are permutable with {Q}; then, since

D'{Q}D={Q}, D'QD= @,
[:un(l 50 D-Y(QRDQR) = @+

Now, /I being a self-conjugate sub-group of @, ()DQ"" is an operation
of H, and therefore D' (QDQ™), that is, (' is also an operation
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of H. Hence Q' =1,

and so k=1
Therefore D and @ are permuba.ble] »

16. 1. 47 =1; p=1 (modq) (§15).

(i.) p Sub-groups of Order q.—Thé only groﬁp of order p* here is
{4} 80 (§15) '

Q4r = ArQ.
Also, since {4} is self-conjugate in G,
QlAQ=4";
and therefore a?=1 (modp®).
Also Q'A'Q = A" and Q'ArQ= A",
50 a=1 (mod p?).
Putting o= 1+Ip?
we get a'=(1+kp)'=1+kqp' (mod p%),
that is . k=0 (mod p),
and so a=1 (modp®.

This makes AQ = QA4, contrary to hypothesis.

(ii.) p* Sub-groups of Order g—Here @ is permutable with 4" (§15),
just as in the last case this is inconsistent with

Q'AQ = A,
a being a primitive root of a’=1 (modp®).
(iii.) p® Sub-groups of Order q.—Here
Q'AQ = 4,
where @ is a primitive root of a?=1 (mod p%).

In order that this should have any primitive roots the necessary and
sufficient condition is that
p=1 (modygq).

* Added May 18th, 1899,
Q2
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By taking Q, = @7, we get a" in place of a; there is, therefore,
when p ig odd, one type,

=1, @=1, Q4Q=1,
where a is any primitive root of

a’=1 (mod*), and p=1 (mod gq).

17. 11. A" = B*=1, AB = B4,
p=1 (mod q) (§15).

(i.) p Sub-groups of Order q.—The group of order p* with whose
operations ) is permutable (§ 15) is either {4?, B} or {AD*}.
Tirst, taking it to be {47, B}, then
47Q = Q4r, BQ= QB.

Then of the p cyclic groups of order p* in II one at least [§ 3 (2)] is
permutable with @; if this is {ADB*}, we can put

A, = AB,
and then Ar= A" and @Q'4,0Q = A4;.
Hence a?=1 (mod p*), and ap=p (mod p?).
Thercfore a=1 (modp?),

and @ is Abelian, contrary to hypothesis.

Secondly, let @ be permutable with the operations of {4B*} ; with-
ont loss of generality we may write this {4}. Then 4Q = Q4.
Of the p remaining groups of order p in H besides { 4"}, since

p=1 (modyg),
one atleast [§ 3(2)] is permutable with @; without loss of generality,
we can take this sub-gronp to be {8}, and then

Q'BQ =TI,
where a is any primitive root of

a?=1 (mod p).
Thus there is one type,

A" =B =Q' =1, AB=BA, AQ=QA, Q'BQ=Dn",
where «a is any primitive root of

«w=1 (mod p). and p=1 (mod gq).
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(ii.) p* Sub-groups of Order g.—The group of order p with whose
operations @ is permutable (§ 15) is either {4*} or {4"DB} (of which
latter {B} may be taken as typical). The case of A® being per-
mutable with' @ may be disposed of just as before.

Next, BQ = QB. Of the p cyclic sub-groups of order p’ one at
least is permutable with @. 'This may be taken to be {4}, and then

QAQ = 47,
wlere w =1 (modp?).
Thus we get one type
A" =B'=@Q =1, AB=DBA, Q'AQ= A", BQ= QB,
where a is any primitive root of

a?=1 (mod p*), and p=1 (mod q).

(iii.) p® Sub-groups of Order g.—As before,at least one of the p cyclic
sub-groups of order p* is permutable with @, and this may be taken
as {A}, and at least one other besides {47} of the p+1 sub-groups of
order p is also permutable with @; this may be taken as {B}.

So Q4Q = 4,
where @ is a primitive root of a? =1 (mod p*),
and Q "BQ = B",
where b is a primitive root of 02 =1 (mod p).

How many types do these relations contain ? A”B*@’ is of order g,
but, so far as its effect in transforming any operation of H is con-
cerned, it is equivalent to @*. Putting Q, = @*, we get a® in place of

a, b in place of b; a may therefore be fixed as any one of the

primitive roots of =1 (modp,

and there are ¢—1 types corresponding to the g¢g—1 values of ,
which may be taken congraent to

a, @, ..., a”!' (mod p).
When b#a (mod p),

that is, for g—2 of these types, none other of the cyclic groups of
order p* besides {4} and none other of the groups of order p besides
{47} and {B} are permutable with @ ; but, when

b=a (mod)p),
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all the sub-groups of H are permutable with . The relations of
these g—1 types are

A"=D'=Q =1, AB=DB4, Q'AQ=4", Q'BQ =B,
or B* ..., or B",
where a is any primitive root of

a’=1 (mod p*), and p=1 (mod q).

18. III. A =B"=C" =1, AB= B4, AC= C4, BC = CB.
(1 ) p Sub-groups of Order q; then
=1 (mod Q-

—The group of order p* with whose operations @ is permutable (§15)
may, without loss of generality, be taken to be {4, B}.

Now H contains p*+p 41 sub-groups of order p; since
AQ =Q4, BQ= QB,

we know that @ is permutable with p+1 of these, viz., {4}, {AB*}.
Of the p* remaining sub-groups of order p, since

pP=1 (modyg),
there must be at least one. other, independent of A and B, which is
permutable with Q.
Taking it to be {C}, we get
Q'0Q = Cr,
where a is any primitive root of -
a’=1 (mod p), and p=1 (mod q).
This, combined with the relations of III. and with
AQ@=Q4, BQ=QB,
furnishes one type.
19. (ii.) p* Sub-groups of Order ¢; and
p=1 (mod g).

—The group of order p with whose operations § is permutable may
be taken to be {4} ; then, if ¢>2, among the p'+p other sub-groups
of order p there ave at least two permutable with Q; putting, as we
may, {B} for one of them, the second may either be {4*B}, or else, if
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independent of 4 and B, may be taken as {C}. But the first of these

"alternatives is impossible ; for
AQ =Q4, Q'BQ=B";
and therefore Q'A*BQ = A*B?,
and this is not a power of 4*B; therefore we must have
Q1'CQ = C.
Here a and b are both primitive roots of
a’==1 (mod p).
We can put ' b=a® (mod p).

and the question arises, how many different types are there for
different values of z P

So far as altering a and b is concerned, the most general trans-
formation of ( is given by

Q=¢, B,=Bor 0, C,=C or B.
Now Q=@, By=B, C,=0
merely amounts to taking a diﬂeren.t root of
a?=1 (mod p)
for a. On the other hand, if
Q=Q, B,=0C, C,=B,
we get QA4 =A4Q, Q;'B,Q =B, Q;'0,Q = Cy.
If, then, we choose y so that ay =1 (mod g),
we have a’=a (mod p),
and thus we get Q;'B,Q,=B:, Q;'C,Q, = C¥;
the same relations as before with y in the place of z.
The number of types is therefore the number of solutions of
ay=1 (mod q),
the order of each pair (%, y) being immaterial.
There are two solutions for which 2 =y, viz,,

z=y=1 (mod gq), aud z=y=q-1 (mod q).
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The remaining ¢—3 residues to the modulus ¢ fall into pairs,

q—~3
Lo . 2
each pair being a solution of
ey=1 (mod gq).
Altogether there are 2 + q_—2—_3 = q_—l—_l types,

A*=Br=(0r=Q'=1, AB=B4, AC=0A4, 4Q=Q4, BO=CB,
Q'BQ= DB, Q'0Q =0,
where a is any primitive root of
=1 (mod p),
z assumes any of the 9—%1 values above mentioned, and
p=1 (modg).
[ Each of these types is the direct product of {4} and {B. C, Q} ] *

The case ¢ = 2 was not included above ; besides {A}, either none
or at least two groups of order p are permutable with @ ; if the latter
is the case, we get the one type

AA=BF=0=Q =1, AB=BA, AC=C4, AQ=Q4,
BC=0CB, QBQ =B, QCQ=C".

If, on the other hand, no other group of order p besides {4} is

permutable with @, @ BQ is either 4°B, or, if independent of 4 and

B, may be taken as C; first,
@BQ = A"B,

where 2 is not zero. Then
B= QA’B'Q = A™*"B”;
and therefore y= —1 (mod p).
But now QA*B'Q =A=AYB? = (4°B)";
the sub-group {4 *B%} is therefore permutable with @, contrary to
hypothesis. :

Secondly, let QBQ = C,
then QCQ = B;
and therefore Q (BO) @ = BC,

again contrary to hypothesis.

* Added May 16th, 1599.
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20. (iil.) p*® Sub-groups of Order q;
p=—1 (mod gq),

where g =2 (§15).—The éroup of order p whose operations are
permutable with {Q} may be taken to be {4} ; then

AQ = QA (§15).
No other group of order p can be permutable with @, for the con-
gruence a?=1 (mod p)
has no primitive roots. Since

p’+p+l=1 (modg),

at least one of the sub-groups of order »* is permutable with @Q.
First suppose that this is {4, B}. Then

Q'BQ = A"B’;
and therefore Q- BQF = A"O+br.+0"h p*,
therefore, when z = ¢,

B = Ac(+d+. 4077 gt
then =1 (modp),
that is, b=1 (modp);
and then the index of 4 is

a(l+b+...+b°") = qa,
an impossible result, since ga Z 0 (mod p).

The sub-group of order p* permutable with @ cannot then contain
{4} ; it may therefore be taken to be {B, C}. Then we get

4Q=Q4, Q@'BR=0C, Q'CQ=51C.

{B, C, Q} is a group of order p'q, which is discussed by Burnside in
his Theory of Groups, p. 136. He shows that the congruence
d—bi—a=0 (mod p)

is obtained, and, on the assumption that its two roots are distinct,
proves that they are Galoisian imaginaries, each satisfying

d=1 (modp).

It is easy to verify that ¢ and b cannot have such values that this
quadratic congruence has equal roots. We thus get one type, the
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direct product of {4} and {B, 0, Q}, the defining relations of the
latter being

BP=C=Q@=1, BC=CB, Q'BQ=0, Q'CQ=B'C"",
where ¢ is any primitive (Galoisian) root of the congruence

¢=1 (mod p), and p+1=0 (mod q) and ¢>2..

21. (iv.) p‘8 Sub-groups of Order ¢ ; and
p=1 (mod g).
—If ¢>3, since P+p+1=3 (modyg),

at least three groups of order p are permutable with @; let {4} and
{B} be two of these; then

Q'4Q= 4", Q'BQ=B;

if @ is not equal to b, the third must be independent of 4 and B, and
may be taken as {C}; if @ is equal to b, then {4} and {4*B} are
p+1 groups of order p permutable with @, and there must therefore
be at least one more, {C}. We therefore get

Q'4Q= 4", Q'BQ=B", @'0Q=0%,

where a is a primitive root of
a?=1 (mod p),

and x and y may have any of the values 1,2, ..., g—1. The some-
what difficult matter remains to determine the number of types com-
prised in these relations.

As in similar cases before, it suffices to consider the results of
taking a power of @ for @, and permuting the generators of H. In
this way we get two distinct equivalences:

First, Q=Qq, 4,=B, B=4, C,=0C,

and =1 (modgq);

then  @;'4,Qo= 4% G;'B,Qy =By, Q'0,Q=C; .
Second, Q=Q, 4,=C, B,=B, C,=4,

and ‘ ny=1 (modg);

then  @Q'4,Q =43 Q'B,Q, =B, 'CQ=Cy.
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Thus, for each pair (z, y), we get corresponding pairs (¢, £&y) and
(n=, 1) ; and each of these pairs provides the same type of group ; on
the other hand, any two pairs (z, y) and («, ") which are not
equivalent correspond to different types. Of course the order of »
and y in the symbol (z, y) is immaterial.

It will be convenient to replace these numbers z, y, ¢, &c., by their

indices (mod ¢g). Then let
d=v% y=oh £=y n=yh (modg);
we thus get m, and y, any two of the complete set of residues to
mod ¢g—1; viz,, 0, 1, 2, ..., ¢g—2. And the trio of equivalent pairs is
@o Yoy (Yo Zo—Y)s  (Yo—Tp —0)-
Let E—yy B=, V=Y~ (modg—1).
Then Aptr=0 (mod g—1),
and the equivalent pairs ave
(=2 1) (=), (=nN);
and we must now enumerate the solutions of this congruence.

Let « be the number of trios (A, g, v), disregarding order of A, u, v,
in which all three numbers are different, 8 the similar number in
which two only are equal, and y the similar number in which all
three are equal.

If ' g=1 (mod3),
y=3,

for the solutions of this class are

A=p=v=0, or =92 =1 or —L—l (mod ¢g—1).

3 ’
1f g=2 (mod3),
y=1,
viz., A=p=r=0 (modqg-1).

Next, when two are equal, the congruence is
A+2p =0 (modg-1).

p must not be = 0, {]_‘;_1, or %_—'—1-)-, for then it would be = A.



236 Mr. A. E. Western on Groups of Order p’q.  [Feb. 9,

With these exceptions p can have any value, and for each value of m
the congruence gives one value of A. So, when

g=1 (mod 3),
B=q—4;
when g=2 (mod3),
B=q—2
Now the total number of solutions of all kinds of the congruence,
considering the order of each trio, is (g—1)? for p and v can each
have any one of g—1 values, and the congr uence gives a correspond-
ing value of A to each p and .

Also, in terms of a, 8, and vy, the total number of solutions con-
sidering the order of each trio, is 6a+33+y. Therefore

6a+33+y = (¢—1)%;

then, if ' g=1 (mod3),
a =} (q"—5¢ +10),
but, if ¢=2 (mod3),

a=13(¢*—59+6).

It is necessary to subdivide these a solutions into those (a, in
number) in which one of the trio is 0, and the remainder (a, in
number) in which this is not the case.

Now a, is the number of solutions of
Adp=0 (modqg-1),

out of the numbers 1, 2, ..., ¢—2, excluding the solution

— —
A=p= L_2 ;
w0 =13
Therefore, when g=1 (mod 3),
a = }(7"—8¢+19),
tad, when ¢g=2 (mod 3),

= L (qg*—8g+15).

Each trio A, g, v in which all are unequal and different from zero
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corresponds to one set of equivalent pairs (—A, u), (—u, v), (—», A),
and therefore to one type of group ; altogether these give a, types.

Each trio A, p = —\, 0 in which all are unequal corresponds to
two distinct sets of equivalent pairs, one being (—A, —A), (A, 0), the
other (A, A), (—A, 0), and therefore to two types of group, altogether
2a, types.

Each trio A, p, u corresponds to the equivalent pairs (—A, pj,
(A, —p), (—p, +p); the trio —\, —p, —pu corresponds to the same
set ; when

=11
I"'_‘ 2 b

the trios (A, u, p)(—\, —p, —n) form the same solution, but the

other trios go in pairs, each pair- of trios furnishing one type; thus

we get altogether from these trios @;2_—1 +1, 7e., '3‘2,'-1, types.

Lastly, when g=1 (mod3),

there are the two distinct types corresponding to (0, 0), and
=1 _q¢=1 '
( 3 3 ), but, when
g=2 (mod 3),
the single type corresponding to (0, 0).
Adding up these numbers, when
g=1 (mod3),
the number of types is

] 2
¢*—8¢+19 +q_3+q—3 42 =1 +q+4<;
6 2 6
when g=2 (mod3),

2 — s
the number is Q;Sélil'? +q-3+ 92—1 +1=07F9

The relations for these types ave
A"=BP=(0"=Q =1, AB=BA, AC = C4, BC = 0B,
Q4Q=4" Q7BQ=B", Q'0Q=C",
where a is any primitive root of
a?=1 (mod p), p=1 (mod gq),

and @ and y ave chosen as above described.
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The cases ¢ = 2 and 3 huve been hitherto excluded ; it is, however,
easy to see that, if there are three independent groups of order p
permutable with (), all the above work, with the exception of the
actual enumeration, applies to these cases.

When g = 2, we obtain the single type with the relations
Q'4Q=4", Q'BQ=1B", Q'0Q=0",
and, when ¢ = 3, the two types
Q'AQ@= 4", Q'BQ=1D, Q7'0Q=70
and Q'AQ=A°, Q'BQR=D' Q'CQ=0",
where a is any primitive root of
=1 (modp), and p=1 (mod 3).

There still remain other possible cases for ¢ = 2 or 3, which, how-
ever, on examination lead to no fresh types.

q = 2.—Suppose that {4} is the only group of order p permutable
with @; then

QAQ=4"

Either QBQ = Ay,
or it may be taken to be C.

In the first case, I = A= DB,
80 y=1,
and then Q(A'B) Q= A"A*B* = A D®,
which is contrary to hypothesis.

Secondly, QBQR=C;
then QCQ =B,
and so Q(BC)Q= BC,

again contrary to hypothesis.
q = 3.—Here, since it is supposed that there are not three groups
of order p permutable with @, there are none such ; then
Q'AQ =B (say), and Q'BQ= A"B or C (say).
In the first case A= Q'A*B'Q = AVB**",

and so ay=1

.f (modp).
= — y‘J’
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Either z=y=—1, or 2=—qa, y=—d

a being & primitive root of a*=1 (mod p),

and then either Q' (4B-%) Q = (AB-")",
or Q' (4B™) Q = (4B™")";
each of which contradicts the hypothesis.

Lastly, if Q'AQ=DB, and Q'BR=02C,
then Q1CQ=4A4,
and therefore - Q '(ABC) Q = ABCO;

this again is impossible.

) (v.) p® Sub-groups of Order q, and
P+p+1=0 (modq);

then g >3 (§ 15).—Nonue of the groups of order p can be permutable
with @, for, if
Q4Q = 4,
then a’=1 (mod p);
but, ¢ being a divisor of ' +p+ 1, must be prime to p—1, and therefore

a=1 (mod p),
which is impossible.

2
The p*+p+1 groups of order p must therefore fall into ptptl
' 1
sets, each set being cyclically permuted when its groups are trans-
formed by Q.

Then Q'AQ is not included in {4}, and may be taken as B; and
Q'BQ is either A*BY or may be taken as €. The former case is,
however, impossible ; for, if so, {4, B, } is the group of order p’
already referred to (§ 20), and a necessary condition for its existence
is that p+1=0 (mod g),
which is not true here.  'We therefore obtain

Q'4Q =B, Q'BQ=C, Q'CQ= A*BC

Let QCQ" = A* 1P (™,

Then a,, 8., and y, must be such that for z = ¢, but for no smaller
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value of z, the following congruences are true :—
a,.,=1 a,._,;=0, a,=0
B.a=0, B.=1, 3,=0 (mod p).
Vst =0, 7..=0, y.=1
Since A% 0% = Q4™ B 01 @
= B%r-1QPe-14%e-1 pPYan oM,
a,, B., y: are determined by the linear difference-congruences
a, =ay,.,
B.=a,a+Py. | (modp).
Yo =YY HBem
Hence Yo=Y Yerr =B Yez—ay..3 =0 (mod p).
The solution of this difference-congruence depends on the congruence
MNeyX—pPBA-a =0 (mod p).
First, suppose that the three voots of this are equal, say A. Then
the proper form for v, is

¥ = (BBt 8aY) X,

3, &c., being arbitrary constants,
(Throughout this section, all congruences are to be understood as
being to the modulus p, unless otherwise expressed.
8 p I

In this case Y 3\, = 38)

B=—3\\=-38\

Now vo=1 (for a, = ay,, and ¢, = a),
Nn=v=3\, '
.=y7+B8, = y+8 =6\

If p=2, A= 1, and we at once obtain y, = 1; this is impossible.

If p>2, A =1,
d,+ 6,+ & =3,
8, + 26, + 46, =6,

and so ve =13 (+1)(x+2) A~



1899.] Mr. A. E. Western on Groups of Order p. 241

This does not satisfy the conditions
Ye-2 = 3(g—1) q.27* = 0,
Yo = 3q(g+) A =0,

for these congruences are evidently impossible.

il

Secondly, let two of the three roots of the congruence
NM—yN—pPr—a =0
be congruent ;- let them ke A, A;, A,, Then the proper form for y, is
¥s = A+ (8,4 &) A
Then 8, +34, =1,
SN+ 0,0+ SA = A +2A,
SN+ 82+ 20,0 = AT+ 20\, 43X,

A A =20\
and so 8, =_—"1 5 =0T %%
O S (O W
= =N
and EN 3
therefore 7, = Lo (X =@+ NN @D N
(A\"}‘n) .

The conditions Y220, y,.=0
give A=Al = gMT (A=),

M (AT=X3) = gA] (A =Dy).
These lead to X =] =0,

which is not possible.
The three roots of NeyA'—fA—a =0

ave therefore incongruent ; let them be A, A,, A,, Then

y. = A +8,A + 8,17,
and so S+ &+ &=1,
NS NS+ A8 = A A4,
NS N8N8 = XA+ A A A A AN,
Let A=|1 1 1= (\=2)A—A)As=1N).
NN A
AN

VOL. XXX.—NO. 673, [
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Then A8 = — (N—)\) M.
Thus we obtain the results

- 2)‘*2)‘3 (’\i— )‘a) )"1“2:

i

—aS (A=A N

A.a»,, =
Af.= SN
Ay, = — 2(N—Ny) AN

Now, in the light of the three relations between a,, 8,, 7., a.,,
B.-1y ¥z-1, only three of the nine conditions above mentioned are

independent; we may take as an independent trio
79~‘.' = 01 Ye-1 = O) 7q = 1-

From the first two of these

QAN +(g=A) A (AN =0,
A=A A (A=) A+ (=2 A = 0
and therefore
As=A) A7 A=) + (M —=2,) A (A —)5) = 0,
that is, AT =A%
From the symmetry of these congruences,
A=) =l
Thivdly, —I (=AY N = A,
But S (A=A AT = M8 (A A = - AN
Therefore M=a=A=],

and A, A, Ay are primitive roots of the congruence
A?=1 (mod p).

Since ¢ is not a factor of p—1 or p*—1, but is a factor of p*—1,
Ay, Ay, and A are Galoisian imaginaries of the third order, and the
congruence
ANM—yX—3A—~a =0 (inod p)

is therefore irreducible.
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Let A be any one of the three A, A, A;; then A” and A\ are the
other two ; for A, A", A" are necessarily incongruent, and

NP = (yM4BA+a)?
= 711A2p +ﬁ"A." + a

= X"+ BN +a,
and so A", and similarly M, satisfy the congruence. Then
Y = AN 4N
B = — A AP \Pep
and a = AMAPN =1,
since pP+p+1 =0 (modg).

Each value of A therefore defines a single group, with the relations
Q'AQ=B, Q'BRQ=C, Q'CQ=ABC".

I shall now prove that theve is the same type, whichever primitive

root Of A= 1 (mod P)
is taken. Let Qo=@
then By= Q' 4Q, = A% B2 0",

Co = Qn_lBoQo — A"-u-zBﬂzz-zo‘izz-z’
Q;l C,Q = Aﬂax—zBﬂaz-z Va:-z’

and A% B, O'z' = A‘I'“zz-z"'ﬂ'“z-z'f'“' BY'ﬂu-z"'ﬂ'ﬂz-z OY' 71:-'_’+ﬁ'7::-2.

Therefore ~10,Q, = A~ BS CY,

provided that o', 8, and y’ satisfy the congruences
gz g—Y'ty,_y—fPla,_,—a' =0,
Bss-a—7'"Bre-2— LBz 2 =0,
Yar—7Yua—Bvsz = 0.

Reverting to the notation A}, A, and A for the roots of the congruence

M=y —BA—a = 0,
R 2



244 Mr. A. E. Western on Groups of Order p*q. [Feb. 9,

it is easily seen that these congruences aro satisfied by

Y = NANAN,
B = = NN -XN XN,
a' = AN =1

For, if ', 8/, and " bave these values, we have
A=A —BNi—a’ =0,

identically, for & =1, 2, 3; and then

& (aa0-2= ¥ 81— Bt =)

= — 30\ (A=A (A =N =B\ —a’) = 0,
B (Bore2—¥ Pueea—PB'Beca) = 2 (= 2) (X =Y\ =)
=3 (A\=A)a =0,

— 3 A=) =y AT =BA)
Z =3 (\,;—A)a =0.

A (Yiz-2—Y Yir-2— B’ ¥ra2)

The effect of making @, = ()" is therefore to reproduce the original

relations, but with AJ, A, A in place of A, Ay, A;. Thns the one type -
exists:

Ar=B=C"=Q'=1, AB=DB4A, A0=CA, BC=CB,
Q'AQ=DB, Q'BQ='0, Q'0Q=ABC,
where 8 and y have the values above stated, and

p’+ﬁ+l =0 (mod g).

23. V. 4*=1, B=4° B'AB= A"

Since ¢ = 3, there must be four sub-groups of order q.

Since {4%} is a characteristic sub-group of H (§4, V.), A%is per-
mutable with Q.

H contains three sub-groups of order 4, {4}, { B}, and {AB}. Qis
either permutable with each, or else transforms them cyclically.

The former case is impossible, for, if
Q'4Q = 4,
then a=1,
and so 4 and @ would be permutable.
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Secondly, Q1AQ = AR,
which may be taken as B (§4, V.). Then
QRQ1'AQ=1D;
this gives Q'4'Q = B* = A%,

which is right. Also Q'BQ = 4B or 4A7'B.
Either of these is consistent, for each makes
Q7B = 4,
which is true, since Q=1
There is, however, but one type; for, taking the first,
W 'AQ =B, (Q'BQ = AB,
let Q=@Q, B,=A4B, A,=4 4 V.);
then @ =1, Q;'4,Q, = AB = B,, and Q;'B,(},=B = 4;'B,
This type is
A=B=Q=1, BB=A4°, B'AB=A4", Q'AQ=DB, Q@ 'BQ=AB.

24. VI. 4" = Br =1, B'AB = 4"*'.—p is odd, and
p=1 (modq).
(i.) p Sub-groups of Order ¢.—The group of order p* with whose

operations {Q}, and therefore @ (§ 15), is permutable, is either { AB*}
or {47, B}.
First, suppose that @ is permutable with AB*. Then we can put
A,= AB', B,=B (§4, VL),
and so, dropping suffixes, AQ = QA.

Then {4} is a group of order p permutrable with @ ; there remain
p others ; since
p=1 (modyg),

at least one of these latter is also permutable with @, say {A”B}.
Then we can substitnte B for A% B, and thus obtain
Q'BQ =1,
where a is a primitive root of a?=1 (mod p).
These relations, however, are not consistent; for
Bl'4Q = AP BIQ = AquB-a,
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and B-l QA - QB-«A — QAn,nlB-a — Anpﬂ QB-a,
and so a=1 (modp),
which is contrary to hypothesis.

Secondly, let the group of order p* whose operations are permutable
with {Q} be {4r, B}. Then (§15)

4ArQ = Q4", BQ = QB.

Of the p cyclic groups of order p* at least one is permutable with
Q, since

p=1 (mod g).
It may be taken to be {4}, without interfering with the result
Q= qa,
above obtained, for (A4BF) = A* (§4, VL).
Then CQAQ = A,
where @ is & primitive root of a?=1 (mod p%).
But Q' A"Q = A,
and so a=1 (mod p),

which is inconsistent with @ being a primitive root of
=1 (modp?).
(ii.) p* Sub-groups of Order g.—Here ) is permutable with the
operations of some group of order p. This cannot be {A4*}, for the

same reason that @ in the last case could not be permutable with

the operations of {4*, B}.
This group of order p may therefore be taken to be {B}. So
BQ = QB.

One of the p cyclic gronps of order p*is permutable with @; we
may take it to be {4}. Then

Q'4Q = 4,
and « i8 & primitive root of  a?=1 (mod p).

By taking Q,= @" in place of @, we get any other root of this
congruence in place of a; hence the single type

A" =B =@Q =1, B'AB= A", BQ=QB, Q'AQ= 4"
where @ is any primitive root of

a®=1 (mod p’), and p=1 (mod gq).
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(iii.) Sub-gréups of Order ¢.—Of the p cyclic groups of order ',
“one, say {4},is permutable with . Then
Q'4Q = 4°

Besides {4}, at least one other group of order p, say {B}, is per-
mutable with Q. Then

Q'BQ = B

These relations, however,are mutunally inconsistent, unless b = 1; for
B AR = A,

and so Q'B'ABQR = Q1A' Q = A°'P*),

But BQ=QB, Q'B'=B"*Q";

therefore = A%P*) = B-*Q'AQB® = B4 B* = A°®P+Y,

and so b=1 (mod p).

This makes BQ = QB,

which is contrary to hypothesis.

25. VII. A =B"=(C" =1, AB=BA4, A0=04, C'BC=A4B
(p>2).
() is permutable with {4}, the characteristic sub-group of this group.
(i.) p Sub-groups of Order q; then
p=1 (mod g).
—The operations of some group of order p' are permutable with @
(§ 15); it may be assurmed to be {4, B}. Then
4Q=Q4, BQ=QB,

and () is thus permutable with p+1 groups of order p, viz., {B} and
{4B*} (=10, 1, ..., p—1); there remain p* other such groups; now

=1 (mod gq),

so at least one of the latter is permutable with Q. Suppose it is
{4*B"C} ; then we can put

4,=4, B,=B, (0= .AkBmG,
. and, dropping suffixes,
4Q=Q4, BQ=QB, and Q'CQ=C",

where a is a primitive root of a*=1 (mod p).
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These relations are, however, inconsistent with

C-'BC = AB.
For, since BQ = @B,
C-'BC is permutable with C-'QC. Now
0-1QC = QC~*+';
therefore ABQC "' = QC~""'AB = AQA"-'BC-"*' = A°BQC "*';
therefore a=1 (mod p),

which makes @ permutable with C, contrary to hypothesis.

26. (ii.) p* Sub-groups of Order q; and
p=1 (mod g).

—The operations of some one group of order p are permutable
with Q (§15).

This case falls into two principal sections according as (1) this
group is {4}, or (2) some other sub-group of H, say {B}.
(1) AQ = QA.
Besides {4}, there are p*+p other groups of order p in H; now
P’+p=2 (modgq).

Except therefore in the case ¢ = 2, in which it may be that no other

group of order p is permutable with ¢ (which supposition will be
considered later), there are at least two such besides {A} permutable

with @, and, of course, this may be the case when ¢ =2. Taking, as
we may, {B} to be one of these, the other cannot be {4*B}, for

@~ A*BQ = A*B",
where astl;
and A*B" is not a power of {A*B}.

The third group of order » permutable with @ may therefore be
taken as {C}. Thus we get

Q'BR=215, Q'CQ=70"
where o and b are primitive roots of
a®=1 (mod p);
a and b, however, are not independent, for

C'BC = 4B.
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Transforming this relation with ¢, we obtain
Q'C'BCQR=Q'A4BQ = AB".
Now CQR=QC, QR'C'=C-"*Q";
and therefore
AB*= @'0'BCQ = C-*Q'BQC* = C-*B*(C* = A*B* (§4, VIL).
To render the relations consistent it is necessary that
ab=1 (mod p),
that is, b=a"' (mod p).
It will appear on examination that the other relations may be

transformed and combined in every possible manner without any
inconsistency emerging, provided that the condition

b=a! (mod p)
i satisfied. -

The relations furnish one type only, for the transformation @Q,= @*
changes a into a®:

A=PB=0=Q =1, AB=BA, AC =04, AQ=QA,
C'BC=AB, @'BQ=PB", Q'CQ=(C"",
where a is any primitive root of
=1 (mod p), and p=1 (mod q).

When q = 2, there remains the supposed case of the p°+p groups
of order p being all non-permutable with Q. Either

QBQ = A*B,
or it may be taken to be C.
First, QBQ = A*B;
then, since @’ =1, B = 4=** BV,
80 : y=—1 (mod p).

and then QA B) Q=A7A*B?*= (A"B%"),
which is contrary to hypothesis.

Secondly, QBQ=0C;
then QOQ = Bv
and so QBC'Q =CB'=(BC™)",

again contrary to hypothesis.
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(2) Having disposed of the case AQ = Q4, we must now consider
the second case, BQ = @B.

As before, there are at least two other groups of order p besides
{B} permutable with @; the only conceivable exception being when
g = 2; this, however, may easily be proved impossible, as in the
previous case. And one of these we know is {4}. Then

Q'4Q= 4", QB = BQ.

The other group of order p permutable with @ may without loss of
generality be taken to be {C}, and so

Q'CQ = C'
here ad=p"=1 (mod p).
Now, since 0-'BO=A4B, Q'C'BCQ = Q'4ABQ = A°B.
Now CQ = QC,
and 8o AB=C"°Q 'BQC* = C°B(C* = A’B;
and therefore b=a (mod p).

The other relations give rise to no fresh conditions and no incon-
sistencies. We therefore get the one type

A=B"=C=Q=1 AB=BA, AC=C4, C'BC=A4B,
Q'4Q=4", QB=BQ, Q'CQ=C0",
where a is any primitive root of

a*=1 (mod p), and p=1 (modg).

27. (iii.) p* Sub-groups of Order ¢; and
p=—1 (modyg);
here ¢ >2.—Since @ is permutable with {4}, and the congruence
a®=1 (mod p)

has no real primitive roots, @ must be permutable with 4. For the
same reason, no other gronp of order p besides {4} can be per-
mutable with Q. Then

Q'BQ = A°B?, orelse A°B°C".
It Q'BQ= A,
then Q'BQ' = Aﬂ(l-f-ﬁ+...+ﬂ¢'.‘) ng,
80 Be =1 (modp),
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that is B=1;
and so B = A“B,
which is impossible. Therefore
Q'BQ = A*B*(".

Let A, =4, B,=B, C,=A"B’C (§4, VIL).
Then 4,Q=04, Q'B,Q=0C,
Dropping suffixes, we get

AQ=QA, Q’'BQ=C, Q'CQ= A*BC.

Let Q0@ = A~ BP-C.
Then
A% BP o = Q‘IA%-\Bﬁz-xo‘!z-l Q

= A%-1(Pe-1 (A“Bﬂ Cv)n-n

= Aa,_li-ay,-1"%671,-,(v,_l-l)—ﬁﬂ,_ly,.,Bﬂy,_. Oﬂ,_ﬁw,-l;
and therefore

ar—ty = ayen—fy L=l _gp, .
B.= By (mod p).
Y2 = YYem+hin |
Then Ve—YYVer—BYer 0.
If the roots of the congruence ,
N—yA—=B=0 (modp)
ave equal,-each being A, then
y =2\ A=\,

and so v. = (1+a) A
Rut V1 = 0,
and so g\"'=0 (mod p),

which is impossible. Therefore the roots must be unequal, A, and A
say, and then

Azf'l_xzel . A’—A’
=1 2 = 1 3
A=A, =P Wy (mod p).

]}

Y
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Now Y10, y,=1;
therefore A=A=1 (mod p).
Also LEX;

therefore A = A= e = 1
and so f=—1.

Then 2 (A —\)? (a,—a,.y)

1 2 ?

= (2‘7-"7)(Af_1) X;-l+(2a_y)(}\§_1) A;-l+X:’z+l_xzz-l+hzz+l_)‘2z—l
and so ‘
2(A—X)a,y = (2a—7y) (7\:+)\;+-)\:-l+)\;_l—y—2)+)\?-l+>\:hl—'y.
These values of a,, 3., and v, satisfy the conditions
aq-—l = aq = 01 ﬂq-l = l: ﬁq = 01 Yq—l = 0, 'Yq = 1-
Thus we obtain the relations
AQ=Q4, Q'BQ=2C, Q'0Q=A"B'0,
where Y= AN,
and A is any primitive root of A =1 (mod p).

These are seli-consistent, and the only question remaining is, How
many types are included therein ?

Let d,= A" B,= A'B"C*, 0,= A0
(which express an isomorphism of H, § 4, VIL.), and
Q= @
Then Q;'B,Q,

= Q *A'B"C Q" = 4 (A% B2 0™ (4% BT ()"
:A“’"“k-l*‘""k"’i"‘(""1)Yk_s\‘k-1+1}"("‘I)Yk-17k+""‘713-1
x B~ ™k-2" k-1 O"“Ik—ﬁ"‘lk’
and this is to be C,= A'C.
Then r = 14 f (m, ), 1)
the right side being the index of 4 in @;'B,Q, Also
myr.atnyra =0, my, 40y, =L

These last give M=y BE — vy,
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since we have Yea—Yive2 =1,
identically. Also Q;'0,Q,=Q*4 Cq
= ATT% BT Y1 0%
and this is equal to B;!Cj, which is the same as
O-HB-mA—Hrra Cd‘ — -_rl-l-ﬁ-l'G"”MlB-ﬂl G—lua’
provided that 8= yi— Yo (2)
and - —l4ré—mn = r+a;. 3)

Congruences (1) and (3) can always be satisfied by proper values
for land . Also

= — & k
8= YEe—Yr-2= )‘.+)‘;,

and this shows that the same type is obtained whatever value of A
is taken among the primitive roots of

AM=1 (mod p).
Thus there is only one type of group of this kind whose generating
relations may be taken to be
A= =0C=Q=1, AB=BA, AC=CA, C*'BC= AB,
AQ=Q4, Q'BR=20, Q'CQRQ=B'C,
where Y= A4+,

and X is any primitive root of A?=1 (mod p).

28. (iv.) p* Sub-groups of Order q; then
p=1 (mod gq).
—If ¢>2, at least two of the p’+p sub-groups of order p, besides
{A}, are permutable with @, and this may also be the case when

g = 2. The possible exceptions to this when g =2 will be treated
later. '

We have Q'AQ=4";
let {B} be another group of order p permutable with @ ; then
Q'BQ =B
If o is not equal to b, @ cannot be permutable with {A*B}, and so

the third group of order p may be taken to be {C}. Andif a =0,
then we have p+1 such groups, viz., {4}, {4*B} permutable with Q;
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there remain p’, one at least of which is also permutable with Q;
here again it may be taken to be {C}. So
Q'4Q= 4, Q'BQ=B", Q'0¢Q=C",
where a is any primitive root of
=1 (mod p).

Evidently the alteration of a to ¢* 2 and y remaining constant, does
not make a fresh type. Since

C'BC = AB,
Q'C'BCQ = Q'4BQ = A"B*,

But CQ = Q0.

So A°B* = 0~ Q'BQC¥ = O~ B¥ (¥ = A*""'B*.
Therefore a**=a (mod p),

that is, z+y=1 (mod gq).

If this condition is satisfied, all the relations are consistent.
It remains to find how many types are included in these relations
for different values of » and .

For this purpose, let B, = A'BC;

we must take for @, the most general form of operation of ovder gq.
Since G contains p* sub-groups of order ¢, every operation of the
form A’B’C*Q" is of order gq. Since @ may be considered fixed, we
may put k=1, and, since 4 is permutable with B and C, we can
omit the 47; thus we have

Q,=B'C"Q.
Then, writing b=a*, c¢c=a
we obtain Q' By @y = At o 0,
Also B = A% btytom! B O,

Since g and v are not both =0, b,=b orc¢ (mod p).

So the only change that can be made to b and ¢ is to interchange
them ; thus w, y and y, 2 give the same type. The number of types
is therefore the number of solutions (order being disregarded), of

the congruence
’ z4-y=1 (mod q).
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Neither » nor y can be 0 or 1, for this would make @ permutable
with Bor 0. When ¢ = 2, this congruence has no solutions of the
proper kind; when ¢>2, there is one solution

for which » =y,

and q_;._‘.?. solutions for which zz£y.

Thus we obtain altogether %l types :
A=B=("=@Q=1 AB=BA, A0=CA4, 0"'BO=AB,

Q'4Q=4, QBQ=5", Q'c@=0"",
where a is any primitive root of
a* =1 (mod p),

q is greater than 2, p=1 (modg),
and = takes any of the values 2, 3, ..., q;—l

The case g = 2.-—Here either one only or at least three groups of
order p are permutable with (); the case of three permutable
with @ has been already discussed, and shown to be impossible
for g = 2.

Suppose now that only one group of order p is permutable with @;
it must be {4}, and so

Q4Q=4"';

and then QBQ cannot belong to {4, B} (as in § 26), and so may be
-taken to be C; then .
QBQ=0, Q0Q =B,
and so QAYP-VBOQ = AY@-V RO,

which is contrary to hypothesis.

29. We uow reach the fourth and last of the principal divisions of
the sabject (see § 5)—the groups of ovder p% which do not contain
self-conjugate sub-groups of orders p® or q.

Since there must now be ¢ groups of order p°,

g=1 (modp),
and therefore p <q.
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)
Theve cannot therefore be p gronps of ovder ¢, for this requires that

p=1 (mod q).
Nov can there be p* groups of order g, for then p°(g—1) operations
of the group are of order q, leaving only p* other operations; in this
case there can ounly be one group of ovder p° If there are any
groups of the kind now songht for, they must therefore contain
p* groups of order ¢, with the condition

2+1=0 (mod g).

The only valnes of p and q satisfying this and the previous
condition

q=1 (mod p)
ave p=2 gq=3
Accordingly, if there are any sucl groups, they ave of ovder 24.
In Burnside’s Theory of Groups (pp. 101-104), the groups of this
order are discussed, and it is unnecessary for me to reproduce this
discussion here; it will suflice to give the generating relations of the
solc group which has no self-conjugate sub-groups of order 8 or 3,
A=p=@=1, BAB=4", Q'A4*Q=DB, Q'BQ= A*B,
A'Q4 = Q*B.

Summary.

30. Lt will be best to keep distinet the cases p = and >2.
First, Groups of Order 8q.
Number
of Types.
Q) =@ =1, AQ=0Qd ... e 1
This is the cyclic group of order 8.
@) A=rF=Q=1, AB=DBd4, 1Q=Qd, BQ=QB... 1
@) A=pr=0C=0=1, AB=DB4, AC=C4,
BCO=CD, 4Q=Q4d, BR=B, CQ=Q0C ......... 1
These first three gronps ave Abelian.
() L=BF=Q@=1, BAB= A", .1Q=Qd, BQ=QB. 1
(65) A*=B=Q' =1, B'=A4% B'AD=A4"", AQ = QA,
BQ=QBR . PP |
(6) =@ =1, A'QA=Q" ... 1

(1) A'=B"= Q =1, AB=BA, AQ = Q4, BQB=Q"". 1
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Number
of Types.

B) A=R=(=]1, AB=BA, A'QA=Q"", BQ=QB. 1

9 A=B=0C=@=1, AD = DA, AC = 04,
BO=0(B, A= Q4, BQ= QB, 0Q0 = Q'..... 1

(10) A =B=Q =1, BAB=A", AQ=QA, BQB=Q. 1
() A=R=@=1 BAB=A", A'Q4=Q",

(12) A‘—J ==1 B= /4 B'AB= A", AQ= QA
B7'QB = Q7 ceiiiiieieens e . 1

The above twelve groups t,xmt f()l .111 vwlucs of q
(¢ being supposed a prime number greater than 2).

In addition, when ¢ = 1 (mod 4), there ave : —

(13) AA=Q'=1, A'QA =, where ais any primitive
root of «*=1 (mod ¢) .covrvrrivririreiieiiiieneinne 1

(14) A=B'= Q' =1, AB=DBA, A'QA=Q", BQ=QB,
where ¢ has the same meaning as in the previons
28 1102 5 N 1
Thus, if ¢=1 (mod 4), there are fourteen types.
Lastly, if ¢ =1 (mod 8), in addition to these,
there is:—

A5) A=Q'=1, 4'QA = (Q*, where « is any primitive
root of @@ =1 (mod q) ....covvvrerrenrevcriniiiiinne, 1
There ave, thercfore, twelve, fourteen, or tifteen
groups of order 8g containing a self-conjugate sub-
group of order ¢, according as ¢—1 is a multiple of
2 only, 4 only, or 8.
In addition, for certain values of ¢, there arve
groups not containing a self-conjugate sub-group of
order q (i.) whenq = 3:—

(16) The Galoisian « in this case satisfies & =1 (inod 2).
Therefore #+¢+1 = 0 (mod 2) ; and so
A=B=0=Q@=1 AB=BA, AC=C0A4,
BC=0B, AQ=Q4, Q'BQ =0, Q'CQ=DC... 1

A7) A*=B'=Q'=1, BB=A4% B'AB=A" Q'4Q=B,
Q'BR=AB .ot 1
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Number
(18) £4=B =@ =1, BAB= 4", QAQ = B,Of e
Q'BQ=A"B, 47Qd =QU'B...ccorrvrruure w1

And (ii.) when ¢=17:—
(19) The values of 8 and y are
B=—NXm8, y=A+N4AS,

where N"=1 (mod 2). So y+8=1 (mod 2), and

we can take 3 =1, y = 0; the type is
AA=B=0C=@=1, AB=BA, A0= CA,
BC=0B, Q'4AQ=D8, Q'BRQ=0, Q-'CR=4B... 1

There ave, therefore, altogether fifteen groups of order 24, being
the twelve types which exist for all values of ¢ and the three special
types just mentioned. And there are thirteen groups of order 56.

My vesults for the order 24 are confirmed by Burnside’s list
(pp- 101-104), in which are given the gemerating relations of the
fifteen groups. And the results just given as to groups of order 8¢
ave confirmed, so far as the number of types is concerned, by Dr.
Miller, in his paper, * The Operation Groups of Order 8p, p being
any Prime Number,” Phlusophical Magazine, Vol. XuiL, pp. 195-200.

31. Groups of Order p°q, where p s odd.

First, those containing self-conjugate sub-groups of orders p* and gq.

Number
of Types.
(1) 47 =1, Q@ =1, AQ=QA .......ccvcvvveveeecininiiaenn,. 1
Q) A"=B'=@*'=1, AB=DBA, AQ=Q4, BQ=@B ... 1
@) Ar=B"=0=Q1 =1, AB = BA, AC = 04,
BC=0B, AQ=QA, BQ=QB, CR=Q0 ......... 1
(4) A" =DB"= Q1 =1, B'AD = A**, AQ = Q4,
BQ = QB e 1

B A=B=0C=Q=1, AB = BA, A0 = CA4,
' 0'BO=A4B, AQ=Q4, BQ=QB, CQ=0C ... 1
Secondly, those containing a self-conjugate sub-group of order g,
but not one of order p°.
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Number

of Types.
If ¢=1 (mod p), there are the following:—

6) A7 =Q' =1, A'Q4A = Q*, where a (here and in
the next five groups) is any primitive root of

=1 (mod g) ..coovirniiriii 1
(M A"=B=@=1  AB=B4,  4Q=Q4,
B'RB= Q" cceoirnvirriiiiiiniiiiniennene 1
8) A”’— BP=Q =1, AB = BA, A47'Q4 = @°,
9) Ar=B"=0C=Q =1, AB = BA, AC = CA4,
BC=0B, AQ=Q4, BR=QB, C'QC=¢Q" ... 1
10) A" =B =Q =1, B-1AB = Ar*, AQ = QA4,
B'QB = @, whereb=aq,ora? ...,or a”'......... p—1
1) Ar=B=C=@Q=1, AB = BA, AC = CA,
4Q=QA4, " BQ = @B, C-'BC = AB,
CTRC=Q" ccooiviiiiiiiiiiiiirir it st cse e 1
And if ¢g=1 (mod p*), there are, in addition to
the above : —

(12) 47 = Q' =1, A'QA = Q", where a (here and in
the next group) is any primitive root of

a”=1 (Mod @) cvcvviniiriiiiiniiiinn 1
(13) A" =DBr=Q' =1, AB = BA, AQA = Q"
BR=QB ...c..viiiiiiiii 1

And if g=1 (mod %), there is, in addition :—

(14) A”'— Q=1 A7QA=Q" where ais any primi-
tive root of a” =1 (moq q) .. R |
Therefore the number of groups of order »%q
containing a self-conjugate sub-group of order ¢
is 5 when ¢z1(modp), p+9 when ¢=1 (modp),
p+11l when g=1 (modp?), and p+12 when
g=1 (mod p%).
Thirdly, those containing a self-conjugate sub-group of order p*
but not one of order g.
When p=1 (mod q), there are the following
types :—
[a denotes a primitive root of a’=1 (mod p),
a; of a?=1 (mod p*), and u, of a?=1 (mod p*).]
8 2
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F;‘mbcr
of Types.
(15) A" =(r=1, QAR =A% .cooevverirrrerirriennnn. 1

(16) A" =D =Q'=1, AB = BA, AQ = QA,
QU BQZ T oo

A7) A"=Br=Q =1, AB=DB4A, Q'AQ=A"

(18) A" =Br=Q =1, AB=DB4, Q'AQ=A"
Q@'BQ = B" or B, ..., ot B% oo, g—1

(19) &r=D=C= Q=1 AB=DA, AC=CA,
BC = CB, AQ=QA4, BQ=QB, Q'CQ=0C"... 1

20)qg=2 Ar=D=C==1, AR = DBA,
AC=CA, BO=CRB, AQ=QA, QRO = B,
q>2. Ar==C==1 AR =D,
AC=0d, BC=CDB, AQ =04, Q'BQ= D",
Q'Y =0" where A represents  one  of
":l valwes (as showw in §19) ...l
21) q=0 or =1 (mod 3). A'=B=0"=Q =1,
AB=Dd, AC=04, BC=CB, (7= 4",
Q'BQ =58 Q'CQ=C" where v and y
have the vatues shownin §20.o
qg=1 (mod 3).—"The same relations as in the
QA+

0

(2) A== =1, B'AB=." BQ=QD,

(23) Ar=DBr=0C=Q" =1, AB=DB4, AC=Cd,
AQ = Qd, C'BC = AB, Q-'BQ = B,
Q' CQ=C"" 1
@H dr=p=>0r='=1, AB=DBd, .I=/0Cd,
C'BO = .8, A Q = A, OB = I3,
QU = (s 1
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Number

of Types.
@25) ¢g>2 A=B=C0C=q@=], AB = BA,

AC=CA, C'BC = AB, Q1AQ = A°,
Q'BQ =B, Q'CQ=C""" where =2,
or3, .., or l";;l g_—l

When p= —1 (mod q), and ¢ >2, there are :—
(26) Ay =B"=C"=Q'=1, AB=BA, AC= CA4,
BC = CB, AQ = Q4, Q'BQ =2C,
Q'CQ = B'C"*, where ¢ is any primitive
Galoisian root of =1 (mod p).......ceeuvrerrennnn 1
27 &r=B=0"=Q" =1, AB=BA, AC=CA,
C'BC= ADB, AQ = QA, Q'BQ =C,
Q'CQ = B~ C"** (¢ being the same as in the
previous type)
And, lastly, when p’+p+1=0 (mod q), and
q >3, there 1s the one type:—
(28) A#=B"=0C"=Q'=1, AB=DBd, AC =CA,
BC = CB, Q'4Q = B, Q1'BQ =C,
Q10Q = AB~X'=AT=ATT paea A ohare A s
a Galois imaginary of the third order, which is
a primitive root of AM*=1 (mod p) .....coovvvvveeeen - 1

32. Some interesting facts as to the numbers of types of groups of
order p*q can be derived from the foregoing summary.

The most noticeable fact is that (if certain conditions as to the
relations between p and q are satisfied) the number of groups of
order p’q increases indefinitely as p or q increases. This is not the
case with groups of orders p, p', pq, #°, or p'; but it is the case with
those of order p’q (see Burnside, 1'heory of Groups, p. 136), where, when

p=1 (mod q),
the number of types is of the form ag+b, @ and b being constants.
When p=1 (mod gq),

the number of groups of order p’q having a self-conjugate sub-group
of order »° but not one of order ¢,

() if ¢ =2, is 10.



262 Mr. A. BE. Western on Groups of Order p’q.  [Feb. 9,

(i) If ¢>2, and =3, or = ~1 (mod 3), the number is
1 (g*+13g+36), that is +4’)6( +9) )

(iii.) If ¢>2, and = 1 (mod 3), the number is 3} (¢*+13¢+40),
that is ({0 +8)
6

When p=—1 (modg), and ¢>2,
the nuﬁlber of groups of this sort is 2; and when
P*+p+1=0 (mod gq), and g¢>3,
the number is 1.

Consequently the total number of groups of order 2p®is 15. This
enumeration is confirmed by Dr. Miller's paper in the Quar. Jour. of
Math., December, 1898 (see pp. 259-263).. It is curious that there
should be this same number 15 of groups of order p*, when p is odd
(Burnside, Theory of Groups, p. 87), and also of order 8¢, where

g=1 (mod 8)
(ante, § 30).

Also the total number of Agroups of order 3p*® (where p is odd and
> 3) is 19, Wwhen

p=1 (mod 3),
but 6 oﬁly when p=-—1 (mod 3).

The total number of groups of order 5p° (p 7 2 or 5) is 26, when

p=1 (mod 5),
6 when p=-1 (mod 5),
and 5 when p=+2 (mod 5).
And the total number of groups of order 7p* (p %2 or 7) is 12, when
p=3 '
35 when p=1 (mod?7),
6 when p=2,40r6 (modT7),

and 5 when (p > 3)
p=3ord (mod 7).
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Finally, I give a table showing the number of types of group for
all orders of the form p’¢ less than 400.

Order. of Types.

|
|

" Order. | Factors of | Number
|

P24 2.3 15
P40 1 225 | 14
L b4 P2 115
56 2.7 13

88 28,11 12
104 213 14
135 3.5 5
136 2. 17 15

L 152 2°.19 12
| 184 2. 23 12
[ 189 3.7 12
o232 28,99 14
| 248 2. 31 12
i 250 5.2 15
296 v 37 14

L 297 P11 LB
| 328 2.41 | 15
344 0 28,43 12
351 #.13 . 13
375 5.3 17
376 . 28,47 12

On the Complete System of Multilinear Differential Oovariants of
a single Pfaffian Expression, and of a set of Pfaffian Ez-
pressions. By J. Brir, M.A. Received January 81st, 1899.
Read February 9th, 1899. Received in revised form
April 5th, 1899.

1. An account of the bilinear covariant of a Pfaffian expression is
to be found in Forsyth’s Theory of Differential Equations, Part 1.,
ch. xi. This covariant involves the first set of Pfaffians belonging to
the given expression, and is derived from the said expression by





