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each of which is, in fact,

= aV"+14acaV+ a'V-lWcc'- 4a'c' (ac"+ a' 'c)-12c/W+16aV
-12aV6l-(ac"+ a"c+4aV) (466"+ 86")-12acb"*
+24 (dc"+ ac1) 66'+ 24 (ac'+ a'c) 6'6"+16 (66"- 6'3)1.

The actual calculation of the other invariant J would be somewhat
longer.

On Clifford's Graphs. By W. SPOTTISWOODB, P.R.S.

[Sead June nth, 1879.]

In a very original paper, " On an Application of the new Atomic
Theory to the Graphical Representation of the Invariants and Co-
variants of Binary Quantics," published in the " American Journal of
Pure and Applied Mathematics," Yol. I., p. 64, Professor Sylvester
states that he had " long been with a feeling of affinity, if not identity
of object, between the inqniry into compound [chemical] radicals, and
the search for ' Grundformen,' or irreducible invariants;" and that he
was " agreeably surprised to find, of a sudden, distinctly pictured on
my mental retina, a chemico-graphical image, serving to embody and
illustrate the relations of those derived algebraical forms to their
primitives, and to each other, which would perfectly accomplish the
object which I had in view." " The factors of any algebraical form
may be regarded as in some sense the analogues of the rays of atomicity
in the equivalent chemical atom ; these rays being what Dr. Frankland,
according to his nomenclature, would have to designate as free bonds.
Such rays between two consecutive atoms in a molecule are conceived
as blending in some manner, so as to represent some unknown kind of
special relation existing between them ; they may then, with propriety,
be called bonds, or lines of connection. An invariant of a form, or
system of algebraical forms, must thus represent a saturated system of
atoms, in which the rays of all the atoms are connected into- bonds.
Thus, e.g., O, (oxygen combined with itself) will represent a quadrio
invariant of a quadric. Its graph is o o . Potash, a combination of
potassium, oxygen, and hydrogen, having for its graph / \ , will represent
the invariant to a system of one quadratic and two linear forms. And,
in general, the Jacobian to any tw.o quantics will be completely ex-
pressed by their two corresponding atoms connected by a pair of
bonds."

At the close of the paper, Prof. Sylvester adds, "The subjoined
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matter is so exceedingly interesting, and throws such a flood of light
on the chemico-algebraical theory," that he decides to publish it. The
matter in question is a letter from Prof. Clifford, written at Gibraltar;
and it contains the only general statement of his views on the subject
ever published. The following is the passage which particularly refers
to Graphs:—

"Another [paper] was to be about the very thing you speak of,
which was communicated to the British Association at Bristol. There
is no question of reclamation, because the whole thing is really no
more than a translation into other language of your own theories,
published ages ago in the ' Cambridge Mathematical Journal.' I have
a strong impression that you will there find the analogy of covariants
and invariants to compound radicals and saturated molecules.

" I consider forms which are linear in a certain number of sets of k
variables each. To fix the ideas, suppose & = 2, and that I have
altogether 6 sets of two variables each, namely

Suppose the forms are

(xyzu), (yzvw), (xv), (uw) ;

viz., (xyzu) means an expression separately linear and homogeneous in
the as, the y, the z, and the u, and so on for the rest. I observe that
in these four forms each set of variables occurs twice. This being so,
there is one invariant of the four forms, which is invariant in regard
to independent transformations of the six sets of variables. This you
knew thirty years ago. All I add is: to obtain this invariant, regard
the variables as alternate numbers, and simply multiply all the forms
together. By alternate numbers, I mean those whose multiplication is
polar (xy = — yx), and whose squares are zero. The product of the
forms will then be equal to the invariant in question, multiplied by the
product of all the variables. The quartio forms may be represented by
the symbol -Q-, the quadrics by -O-. Thus the invariant

(xyzu) (yzvw) (xv) (uw)
i

will be represented by the figure jgl» whereas (xyzu) (yzvw) (xu) (vw)

is this form O-O-O-O. The former is clearly the product of the two

quartic covariants _j[_ _JL_ got by cutting it across the dotted lines;

while the latter is the product of the quadrio covariants O-O-, - o o .
A bond between two forms means a set of variables common to them.
Of course we may regard two or more forms as identical, and so form



206 Mr. W. Spottiswoode on Clifford's Graphs. [June 12,

invariants of a single form; thus JLJL is the discriminant of a cubic....
Of course, the main thing is to pass from this system of separate
variables to that in which the same variables occur to higher orders in
the same form, or back again—what you call unravelment."

Besides this passage, the only remains of Prof. Clifford's writings on
this subject are contained in a few fragmentary jottings, made at
irregular intervals during the last year or two of his life. He often
spoke about his progress in the subject; but, knowing how little strength
he had to spare, and hoping that he might have written some fuller and
more connected account of it, his friends naturally abstained from
asking particulars on a variety of points, which would have now been
invaluable. The importance which he himself attached to the method,
the amount of attention which he gave to it, and the power which it
would manifestly give to any one capable of wielding the master's
weapon, will perhaps be sufficient apology for offering to mathematicians
the very incomplete notes here collected.

The subject of Prof. Clifford's investigations was that of binary
qualities, so that the number of variables in each of his sets, viz., the
number of as's, y's, &c, is two ; say, zu 89; yu yit &c. A linear form
will then, when written in full, be. represented thus:

a quadric form thus :

and so on. Between any two of the sets, e.g., between the ai's and the
y'a, we may form the determinant &iya—»J2/I, an expression which will
be of frequent occurrence.

To find the product of a form by the determinant of some of its
variables. If the form be linear, we have

(a^+ttja?,) ( a ^ - a ! ^ , ) = (») |a>, y | , suppose;

and effecting the multiplication, while bearing in mind that the
variables are to combine as alternate numbers, the product will be

found to be =

and if we put xlxi = yxy% = ... 1, the result of multiplying the form by
the determinant will be the same as making x identical with —y.

If the form be quadric, we have

(xy) I *»> V I = - (oii-Oai) (2) ;
i.e., the effect of the multiplication will be, just as in the case of the
linear form, the same as making x identical with —y. Similarly, for
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a cubio (xyz) = aluaj1y1»!+..., we should find

(xyz) | x, y | =s ( O J U - O ej+Cflm—flm) *9 ••(3) ;
and the same is obviously true with forms of any order.

It is farther to be observed that the effect of multiplication of a
symmetric form by the determinant of any two sets of its variables
will be to reduce the expression to zero. Thus, if the quadrio be
symmetrical, ali=an, and the expression (2) vanishes. If the cubic be
symmetrical, am = % , am = o^, and the product (3) will then vanish.
And, generally, if ((aj, y, z, ...)) represent the symmetrical form of
which (x, y, z, ...) is the general form, the same form written as a
quadric ((«, y)), in which the coefficients involve the other variables,
will be symmetrical; and consequently

V, *, •••)) I». V I =
Lastly, it will be convenient to remark that the square of any form

of an odd order will vanish; for any such form may be written as a
linear form in respect of one of its sets of variables, thus

(a>, y, ... v, w) = (x, y, ... v X ^ + t e , y, ••• 0)3^9,

in which (as, y, ... v)lt (aj, y, ... v\ are foi*ms of an even order. Hence,'
by known properties of alternate numbers,

(a), y, ... v, w)8 = (a>, y, ... v), (as, 3/, ... v)a (w,w>8+w;sw;,) = O...(5).

We now come to the forms themselves. In what follows, the main
object has been to collect together the fragments which remain of
Prof. Clifford's " Graphs" ; and this seems to be all that can be done
for the present purpose. But, with a view to a better understanding
of the very novel method, I have ventured to prefix to each section an
algebraical statement of the question.

Linear Forms.

Let (x) = alx1-{-a%xi\ and, when there are two such forms with
different coefficients, let

Then the cases which we have to consider are

Of these, the first (a;)1 = 0, in virtue of the general remark made
above. The second

(as) (y) = a] xx yj + ^ o , (aj^,+35,^) + a\ as, yv
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in which the coefficients a,, a, may represent either ordinary quantities,,
or forms of alternate numbers of even orders. If, however, the
coefficients represent forms of odd orders, then

(as) (y) = - 0,0, (XM+XM).

Again, O»)i(*)s = OUOJS—«n«n = A suppose,

or it will = — D, if the coefficients represent forms of odd orders.
Lastly, as shown in the preceding section,

(a?) | at, y | = - (y).

In graphical language, (as) will be represented by the symbol o - ;
and the square of it by O-O; so that we shall have the relation

o-o = 0.

And if (x\ =. &~, and (as), = ®-, then

GMS) = D,

where D represents the determinant of the two linear forms.
x

Again, if the determinant | a», y |, be represented by ), or by ) where

no ambiguity can arise, then we have the relation

o-a ) = -o-y.

Quadric Forms.

Algebraically, the form will be represented by (x, y) ; and the com-
binations which we have to consider are

(». y) I». y l» (<*>, y) I y»«I» (*» y ) \ (»»y) (» . *)•
In virtue of the general remark I made above, in order to evaluate the
first of these, we have only to replace y by —x; the result will then
easily be seen to be

(», y) |», y | = <%—Ou, = c suppose.

Again, in virtue of the general theorem II.,

(»»y) I y»«I = - 0», * ) •
Also (a, y) = (ai)^+(as), y,,

in which (x)lf (x)v are linear functions of x; hence

Again, (a>, y)(aj, z) = {(a>)iyi+(aj),y,} {(»)1«l+ (a;),*,}
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Proceeding further, we might form combinations, such as

(as, y) (a>, z) (y, z) = - D \ y, z J (y, z)

Or, again, (», y) (a, z) («*, y) (u, z) = (», y)(aj, z) . (w, y) (w, e)

From which it appears that no new forms are to be obtained.
To these may be added, if

(a?, y\ =

then (», y\ (a?, y), = — am aM3 + a^^ a,,, + a,u am—am an%

= — Pia, suppose.

Graphically, the form itself will be represented by - o - ; -O-), or oQi
will then represent the invariant dn — Oj3, which vanishes when the
form is symmetrical. O-o will then represent the discriminant, say

0 0 = — 2D.

• Again, -O-O- will be a quadvi-covariant. But, multiplying this by ),
and remembering that the square of the determinant ) is equal to 2,
it follows that

From the last equation it appears that this invariant vanishes when
the variables are made identical.

Proceeding further, we may add

which also vanishes when the form is symmetrical.

and so on. Hence these and all other ulterior derived forms are only
products and powers of the form itself and its discriminant.

Cubic Forms.
Algebraically, the form will be represented by (as, y, x). In this we

may change one, two, or three letters; hence we have the following

four forms :— (a?, y, z),

, («*, v, w).
VOL. X.—NO. 1 5 4 . P
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The form being of an odd order, its square will vanish, viz.,

The product of the form by the determinant of two sets of its variables
gives a linear covariant, as mentioned above, viz.,

(as, y, z) | as, y | s= (asll -am) zx + (aw - o^) zit

-which vanishes when the form is symmetrical.
Of binary products we have three forms, viz.,

(as, y, z) (as, y, w) = (u, v, z) (M, V, W),

(as, y, z) (w, v, z) = (x, y, u>)|(«, v, z),

(*i y» «>) K v, w) = (a?, y, u;) (w, v, 2).

Of these, we may write the first thus,

(as, y, z) = (so, y), *!+(», y),%
(a?, y , u) = (a>, y \ u x + (x, y)%u%.

Hence

(x, y, «)(*, y, u) = (x1y)\zlul+(x, y\(x, y)i \

Again, (a>, y, *)(#, u, v) = {(y, 2)1asl+ (y, z\x%}{(u, v)i*j+ (ut v)gar8}

But - 2 (y, a), = (y, a), | y, a | • = (o^-<»„,) | y, a | ,

- 2 (y, a), = (y, a), | y, a |" = (ojn-Oju) | y, a | .
Hence

4 (as,y, a) (as, u, v) = (c^-On,) (a^-Oj!,) {| y, z 11u, v| - \y, z \\ u, v \)

= 0.

Of ternary products we have four forms, viz.,

• 0B> y, t#) 0*» *"» *) (̂*> "> *")>
(*, y, «) . («, v, a) (w, v, w),
(as, y, a) (as, y, w) . (u,v,w),
(x, y, a) (as, y, w) (w, v, a)

These are all really the same, as each involves three of the variables
twice, and three of them once. They therefore represent the cubi-
covariant.

The cnbi-covariant is symmetrical, for it is reduced to zero by the
factor, e.g., \u,w\. In fact, taking the last form

(as, y, e) (as, y, w) (u, v, a) | u, w| = (as, y, a) . (as, y, w) («;, v, a),
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which is equal to the product of the'cubic itself into a quadri-covariant,
which, as was already shown, vanishes.

Of quaternary products we have only one form, viz.,

(«, V> *) (*> V> w) («» v, z) (w, v, w),

which involves each of the variables twice, and is consequently an in-
variant ; viz., it is the discriminant.

The above written forms give an immediate proof of the following
theorems. The Hessian of the cubi-covariant may be formed by
multiplying together two of the four forms; but

(x, y, w) (w, v, z) («, v, w) . (x, y, z) (u, v, z) (u, v, to)
= - 0*, y, *) (»> y> «0 (w> v, z) (u, v, w) . (w, v, z) (u} v, w).

That is to say, the Hessian of the cubi-covariant is equal to the dis-
criminant of the cubic multiplied by the Hessian of the cubic. Again,
to form the discriminant of the cubi-covariant, we must multiply all
the four forms together; but this product

That is to say, the discriminant of the cubi-covariant is equal to the
cube of the discriminant of the cubic. And again, to form the cubi-
covariant of the cubi-covariant, we must multiply together three of
the four forms; but, taking the last three, this product

= (*» y» «0 {(»»y>z) (*» y> «0 ( « » « , « ) («»«, «*)}".
That is to say, the cubi-covariant of the cubi-covariant is equal to
the product of the cubic itself into the square of the discnminant of
the cubic.

We may consider also the case of

(y» *> «0 (*» a*, v) (a, y, to).
But (y, *, u) I y, z I = (a,u—oui) 1^+ (asl,-a123) w, = (i«), suppose; •
with similar transformations of the other factors. Hence, operating
a second time with \y, z\t \z, x\, \x, y\., on the three factors re-
spectively, we obtain

- 8 (y, z, u) (z, x, v) (x, y, w) = (it) (v) (w) \ y, z 11 «t, x\ J«, y | .

But the product of the last three factors = — 2 j # hence

* (y»»»») (*» » i« ) (̂ i y>w) = (w) (v) («0-

And consequently the covariant vanishes when the original cubio ia
symmetrical. The covariant itself is also obviously symmetrical.

* See Spottiswoode on " Determinants of Alternate Number8," Proceedings of the
London Mathematical Society, Vol; VII., Nos. til and 95.

P 2
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Again, the form
4 (ft *> «0 (*> «i v), («, ft v) = («) («)8 = 0. .

Hence this covariant vanishes.

Graphically, the cubic form will be represented by 6 ; and then we

shall have

representing a linear covariant which vanishes when the form is
symmetrical. The quadric combinations will be represented by

0^0, -0 -0- , -O-O-.

Of these the first vanishes. The second represents the Hessian, or
= —2J2". And since - o o - ) = o=o = 0, it follows that the Hessian
is symmetrical. As to the third, writing it explicitly, we have

y u

z v

when the variables are made identical, this vanishes.

Passing to ternary combinations, we have the forms

-O-O-O-

The first of these is obviously symmetrical j and it is therefore re-
duced to zero by ). But

and consequently the second form vanishes. Moreover, since

-o-o-o= ) = A = 0

— _o o-oO = 0,

it follows that this form is symmetrical. I t is the cubi-covariant *.

For combinations of four we have only the two forms
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As to the first of these, since

(£(> ) = S 3 ' and consecluently £ £ l = * ̂  S 3
it follows that there is no quarto-quadri-covariant. And as to the

second, since .

it follows that the discriminant of the Hessian is the discriminant of
the cubic.

If we take the cubi-covariant as a form, its Hessian will be
-O-O-O-O-O-O- = -CHO-O-O- X - O - O - .

in other words, as shown algebraically, the Hessian of the cubi-covariant
is the Hessian of the cubic multiplied by the discriminant of the cubic.
Its discriminant will be

as proved algebraically.

Lastly, the cubi-covariant of the cubi-covariant will be

as before.
The only irreducible form of the third degree being the cubi-covariant,

the forms of the fourth degree are its alliances with the cubic; of these
the only irreducible one is an invariant, and there are therefore no
more irreducible forms. '

If we wish to find the Hessian of the compound form K/+\$, we

shall have to join K 6 -f\ -o-o-o- to itself by two bonds. And bearing

in mind that/* = — <bfy we have, in fact, only to find the Hessian of $.
This is found by the theory of quadric forms, applied to A, to be

I-HA; viz., -o-o-O-o- X -o -o - = \ ijL -O-O-. Therefore the Hessian

in question, say EKt x = K*H + 1 A8 V H = J5T((cs + 1 \9 V ) = HQ, suppose.
To find *„, x, we must join icf+\fb to the above by one bond. The

result is (** - 1 \ V/) = \

Quartic Forms.

The form itself will be represented by (a?, y, z, t). Then

(aj, y, z, ty = the quadric invariant = L

Again, (as, yt z, t) (x, y, z, s) = (x, y, z)' (x, y, z)" \ t, s \;

and consequently this covariant vanishes when the variables are made



2 U The late Prof. W. K. Clifford on [June 12,

identical. Next,
(», y,z, t) (a>, y, w,«) = (z, t, w, s\ = Hessian = E,
( a , y , z> t) (a?, v , wt s) = ax3Ja | (y, z , t \ (v, w , s ) \ ;

and consequently this covariant also vanishes when the variables are
made identical.

Next, for cubic covariants,

(x, y} z, t) (x, y, w/, s) (2, tt w, s) = cubic invariant = J,
(ar, y, 2, t) (z, y, w, s) (z}v} w, s) = (z, t, w, s), (z, v, w, s) = (t\ (v)

= > » y, 2, ")i («> y»«»0 = (<0i (0-
But if (w) = 6^!+J8«s, (u)i = 0,^+ ca«,,

the condition (0i (v) = (v\ (t) will give

hv%—»i<2=0, or <1Vj+<sv, = 0;

and consequently ( ^ (v), or (v)a (^), will contain |*, v \ as a factor, and
the covariant will consequently vanish when the variables are made
identical.

= (w, v, CB, y)! (z, tt a, y) = (w, v)[ (z, 0

contains factors | zt u | , 11, v | ; or | z, t; | , 11} u \; and consequently
vanishes when the variables are made identical.

Next, (a>, y, z, t) (x, y, w, «) (u, v, Jc,«) j

which does not admit of any such double form as the two preceding
products. This last is the sextic covariant, *.

Binary Forms of Alternate Variables. By the late
Prof. W. K. CLIFFORD, F.R.S.

[Read June Uth, 1879.]

Introduction.
1. Alternate numbers are such that o/3j=—'jSa, a* = 0, /3' = 0. It is

easily shown that linear functions of them possess the same properties;
i.e., if a = a1a1+cr,a,+ ..., jS = 61/31 + 6a/384-..j, where the a, 6 are
Bcalars and the a, /3 alternate numbers, then we shall have a /7 = —~fi a,
and a* = 0 = ]?. If M, N are homogeneous functions of alternate
numbers of degrees m, n respectively, the number of interchanges of


