
688156 - symbIoTe - H2020-ICT-2015 D4.3 – Final symbIoTe middleware implementation
 Public

Version 0.6 Page 1 of 62
 © Copyright 2018, the Members of the symbIoTe consortium

Symbiosis of smart objects across IoT
environments

688156 - symbIoTe - H2020-ICT-2015

Final symbIoTe Middleware Implementation

The symbIoTe Consortium

Intracom SA Telecom Solutions, ICOM, Greece
Sveučiliste u Zagrebu Fakultet elektrotehnike i računarstva, UNIZG-FER, Croatia
AIT Austrian Institute of Technology GmbH, AIT, Austria
Nextworks Srl, NXW, Italy
Consorzio Nazionale Interuniversitario per le Telecomunicazioni, CNIT, Italy
ATOS Spain SA, ATOS, Spain
University of Vienna, Faculty of Computer Science, UNIVIE, Austria
Unidata S.p.A., UNIDATA, Italy
Sensing & Control System S.L., S&C, Spain
Fraunhofer IOSB, IOSB, Germany
Ubiwhere, Lda, UW, Portugal
VIPnet, d.o.o, VIP, Croatia
Instytut Chemii Bioorganicznej Polskiej Akademii Nauk, PSNC, Poland
NA.VI.GO. SCARL, NAVIGO, Italy
Universität Zürich, UZH, Switzerland

© Copyright 2018, the Members of the symbIoTe Consortium

For more information on this document or the symbIoTe project, please contact:
Sergios Soursos, INTRACOM TELECOM, souse@intracom-telecom.com

688156 - symbIoTe - H2020-ICT-2015 D4.3 – Final symbIoTe middleware implementation
 Public

Version 0.6 Page 2 of 62
 © Copyright 2018, the Members of the symbIoTe consortium

Document Control

Title: Final symbIoTe middleware Implementation

Type: Public

Editor(s): Matteo Di Fraia, Alessandro Carminati (Unidata)

E-mail: m.difraia@unidata.it, a.carminati@unidata.it

Author(s): Matteo Di Fraia, Alessandro Carminati, Fabrizio Giuliano, Matteo Pardi,
JakubToczek, Mikołaj Dobski, Vasileios Glykantzis, Pavle Skočir

Doc ID: D4.3 - v0.6

Amendment History

Version Date Author Description/Comments

v0.1 June 4, 2018 Matteo Di Fraia, Alessandro Carminati Initial structure of the document

v0.2
July 5, 2018

Matteo Di Fraia, Alessandro Carminati,
Fabrizio Giuliano, Matteo Pardi, Jakub
Toczek, Mikołaj Dobski

Merge Partners contribution

v0.3 July 18, 2018
Matteo Di Fraia, Vasileios Glykantzis,
Pavle Skočir

Merge Partners contribution, revision section, add conclusion

v0.4 July 26, 2018 Maria Bianco Tables and Figures references, minor typos, review

v0.5 July 31, 2018 Alessandro Carminati Final version prepared

v0.6 September 13,
2018

Matteo Di Fraia, Zvonimir Zelenika Final version after updates on sequence diagrams

Legal Notices
The information in this document is subject to change without notice.
The Members of the symbIoTe Consortium make no warranty of any kind with regard to this document,
including, but not limited to, the implied warranties of merchantability and fitness for a particular purpose. The
Members of the symbIoTe Consortium shall not be held liable for errors contained herein or direct, indirect,
special, incidental or consequential damages in connection with the furnishing, performance, or use of this
material.

688156 - symbIoTe - H2020-ICT-2015 D4.3 – Final symbIoTe middleware implementation
 Public

Version 0.6 Page 3 of 62
 © Copyright 2018, the Members of the symbIoTe consortium

Table of Contents

Executive Summary 6

1 Introduction 8

2 Requirements 9

2.1 Requirements for Smart Spaces 11

2.2 Security requirements for Smart Spaces 12

3 Final Design of L3/L4 components 15

3.1 Components: Administration 16

3.1.1 Administration description 16

3.1.2 Administration interfaces 17

3.2 Component: Innkeeper (INK) 19

3.2.1 Innkeeper description 19

3.2.2 Innkeeper interfaces 20

3.2.2.1 Platform / L3/L4 SDEV Registration 22

3.2.2.2 Platform / L3/L4 SDEV un-registration 23

3.2.2.3 Resource Registration 23

3.2.2.4 SDEV Core Registration/Modify/Delete 24

3.2.2.5 Keep Alive 24

3.2.2.6 Resource Core Registration / Modify / Delete 25

3.2.2.7 Public resources request 26

3.3 Component: SSP RAP 27

3.3.1 SSP RAP description 27

3.3.2 SSP RAP interfaces 28

3.4 Component: Local AAM 30

3.4.1 Local AAM description 30

3.4.2 Local AAM interfaces 31

3.5 Component: RAP GW 33

3.5.1 RAP GW description 33

3.5.2 RAP GW interfaces 33

3.6 Component: SDEV Agent 33

3.6.1 SDEV Agent description 33

3.6.2 SDEV Agent interfaces 33

3.7 Component: Platform Agent 38

3.7.1 Platform Agent description 38

3.7.2 Platform Agent interfaces 38

3.8 Security aspects: SDEV 38

688156 - symbIoTe - H2020-ICT-2015 D4.3 – Final symbIoTe middleware implementation
 Public

Version 0.6 Page 4 of 62
 © Copyright 2018, the Members of the symbIoTe consortium

3.8.1 Negotiation protocol 39

3.8.2 Pre-Shared Key Configuration 40

3.8.2.1 Basic level 40

3.8.2.2 Intermediate level 41

3.8.2.3 Advanced level 42

3.8.3 SDEV Hello message 42

3.8.3.1 AEAD Mode 43

3.8.4 GW_INK Hello message 44

3.8.5 SDEV AuthN message 44

3.8.6 GW_INK AuthN message 44

3.8.7 Data Confidentiality 44

3.8.7.1 Key Material Derivation 45

3.8.7.2 PBKDF2 45

3.9 Security aspects: Platform 45

3.9.1 Privacy between SSP Middleware and Third Party IoT Platform 45

4 Components basic information table 47

4.1 Administration 47

4.2 Innkeeper 47

4.3 Local AAM 47

4.4 SDEV agent 47

4.5 SSP RAP 47

5 Conclusions 48

6 References 49

7 Definition, acronyms, abbreviations 50

8 Appendix - Middleware deployment 51

8.1 Creating SSP owner 51

8.2 Installing the requirements 53

8.3 Downloading needed sources 53

8.4 Configuring and starting components 53

8.4.1 SAAM – SSP Authentication and Authorization Manager 53

8.4.1.1 Creating AAM certificate keystore 54

8.4.1.2 Configuring the SAAM component 55

8.4.1.3 Verifying functionality of SAAM 56

8.4.2 SSP Middleware 57

8.4.2.1 SDEV side configuration 59

9 Appendix – Component sequence diagrams 60

688156 - symbIoTe - H2020-ICT-2015 D4.3 – Final symbIoTe middleware implementation
 Public

Version 0.6 Page 5 of 62
 © Copyright 2018, the Members of the symbIoTe consortium

9.1 SDEV joining the SSP 60

9.2 Local Platform joining the SSP 61

9.3 Local access of resources 61

9.4 Remote access of resources 62

Table of Figures

Figure 1: symbIoTe Smart Space Architecture .. 16

Figure 2: Negotiation Protocol ... 40

Figure 3: Basic Security Level ... 41

Figure 4: Intermediate Security Level .. 42

Figure 5: SDEV joins SSP ... 60

Figure 6: Local platform joins SSP ... 61

Figure 7: Local access of resources .. 61

Figure 8: Remote access of resources .. 62

Table of Tables

Table 1: Smart Space Requirements ... 12

Table 2: Smart Space Security Requirements ... 14

Table 3: L3 and L4-specific Administration interfaces .. 18

Table 4: Innkeeper Interfaces .. 21

Table 5: SSP RAP's external interfaces ... 29

Table 6: Local AAM interfaces ... 32

Table 7: SDEV Agent interfaces ... 37

688156 - symbIoTe - H2020-ICT-2015 D4.3 – Final symbIoTe middleware implementation
 Public

Version 0.6 Page 6 of 62
 © Copyright 2018, the Members of the symbIoTe consortium

Executive Summary

The aim of deliverable 4.3 is to document the final set of components related to the
symbIoTe Smart Space (SSP) Middleware (S3M) and provide tools to enable
implementation of symbIoTe compliant local IoT environments.

As a documentation of the definitive version of the middleware, this document is intended
to be as technical and precise as possible: the components and their functionality will be
presented in a rigorous way.

After a general description of the architecture, presenting the final correlation between the
SSP middleware components and the rest of the symbIoTe ecosystem, every component
is described in detail. A chapter is dedicated to the security aspects of interaction between
local devices inside the Smart Space, called Smart Devices (SDEVs), the symbIoTe
compliant IoT Platform and the SSP middleware.

Inputs coming from Deliverable D4.1 [1] are used as base for this document and software
implementation, primarily for the architecture. Inputs are taken from other WPs like WP3
for the security related topics and WP2 for Core communication and interaction between
the SSP middleware and the Core, semantic description of the resources inside the SSP
and software module from Core/Cloud components. Goal is to reuse the as much as
possible from the already developed software modules and readapt these solutions in a
more lightweight way.

This S3M is primarily written in Java, apart from the SDEV Agent that is specific to SDEV
hardware platform and thus is implemented in C++ for Arduino ESP8266 platform. Java
implementation means that the SSP gateway running the middleware and forming the SSP
environment could be any machine that is capable of running Java Virtual Machine. A
detailed chapter is dedicated to the installation of the middleware and the environment set
up.

The main outcome of this Deliverable D4.3 is the source code and its documentation,
published as an open source project on GitHub service [2]. This document is formally an
accompanying report documenting the software.

688156 - symbIoTe - H2020-ICT-2015 D4.3 – Final symbIoTe middleware implementation
 Public

Version 0.6 Page 7 of 62
 © Copyright 2018, the Members of the symbIoTe consortium

(This page is left blank intentionally.)

688156 - symbIoTe - H2020-ICT-2015 D4.3 – Final symbIoTe middleware implementation
 Public

Version 0.6 Page 8 of 62
 © Copyright 2018, the Members of the symbIoTe consortium

1 Introduction

Deliverable D4.3 provides a final description of the set of components and associated
features implementing the symbIoTe Smart Space Middleware (S3M), the system acting
as a gateway in the physical Smart Spaces and implementing the two levels of
compliance, the Smart Devices compliance (Level 3) and the roaming devices compliance
(Level 4).

A Smart Space (SSP) is an environment where one or more IoT platforms coexist, each of
them providing some kind of service. Such environments are typically identified with
physical locations, which can range from wide spaces to small areas; a Smart Space
defines abstract boundaries for the IoT services and platforms it embraces, and acts as a
sort of gateway from local resources to the rest of the symbIoTe environment.

The system is composed of five components; four of which are implemented from scratch
and one is derived from commercial products and/or third party solutions. The existing
symbIoTe Libraries have been used and extended for the Smart Spaces necessities.

This document is meant to explain the decisions taken for the software and system design
according with the directives decided in the WP1 (described in deliverable D1.4 [3]) and to
report the state of its implementation.

The document is structured as follows:

 Chapter 2 contains a detailed description of the requirements the symbIoTe Smart
Space needed/used as guidelines for the software implementation.

 Chapter 3 contains description of the implemented components and their interface
specification. The main outcome of Task 4.3 is the symbIoTe software, published
on the project’s GitHub repository.

 In Appendix, additional resources are given, including the guide through Middleware
deployment and required sequence diagrams.

The repository contains the source code of all implemented components, configurations
and guidelines for software installation, setup and usage.

688156 - symbIoTe - H2020-ICT-2015 D4.3 – Final symbIoTe middleware implementation
 Public

Version 0.6 Page 9 of 62
 © Copyright 2018, the Members of the symbIoTe consortium

2 Requirements

The symbIoTe Smart Space Middleware is designed and implemented according to
requirements defined in the earlier stages of the project (in deliverable D1.4 [3]).
Table 1 lists the functional requirements relating to Smart Spaces, which support
symbIoTe Level-3 and Level-4 compliance (L3 and L4), while
Table 2 lists all the security requirements for Smart Spaces.

The majority of listed requirements relates only to Level-3 compliance, while some of the
requirements also relate to Level-4 compliance, which offers support for device roaming.
The compliance Level to which a certain requirement is related to is designated in column
“CL”.

All the listed requirements are functional, i.e., they describe the behaviour of the symbIoTe
system, i.e., what the symbIoTe architecture should do. All of the requirements fall into one
of the following categories: Interface, Management, or Security.

 Interface refers to the methods employed to enable the interaction between different
entities in the symbIoTe architecture, as well as between the symbIoTe system and
end users.

 Management refers to all types of functional and non-functional requirements
related to the handling or control of resources in symbIoTe.

 Security-related requirements are listed in a separate table, and encompass all
security aspects of the symbIoTe Smart Spaces architecture including
authentication, authorization, privacy, etc. The security requirements for Smart
Spaces are mostly shared with other compliance levels.

Each requirement is characterized by its importance level with respect to its fulfilment by
the symbIoTe architecture and system. The level of each requirement is expressed within
the corresponding description text using the appropriate terminology. Following the Best
Current Practices, the following levels are considered:

 MUST (SHALL): this is an absolute requirement, it is mandatory for the symbIoTe
architecture and system to conform to this requirement.

 SHOULD (RECOMMENDED): there may exist valid reasons within particular
circumstances to ignore this requirement.

 MAY (OPTIONAL): a requirement for a feature or a property of the symbIoTe
architecture that presents low priority within the project and may or may not be
fulfilled, subject to time or other constraints. Usually such features are selected by
different vendors subject to their market positioning or specific needs.

Each requirement is linked with the use case specified within the symbIoTe project. These
are indicated via the following indexes:

1. Smart Residence,
2. EduCampus,
3. Smart Stadium,
4. Smart Mobility & Ecological Routing, and
5. Smart Yachting.

688156 - symbIoTe - H2020-ICT-2015 D4.3 – Final symbIoTe middleware implementation
 Public

Version 0.6 Page 10 of 62
 © Copyright 2018, the Members of the symbIoTe consortium

Some requirements may appear to apply to none of the described use cases; such
requirements are considered generic and are applicable to additional use cases beyond
those defined within the scope of the symbIoTe project.

688156 - symbIoTe - H2020-ICT-2015 D4.3 – Final symbIoTe middleware implementation
Public

Version 0.6 Page 11 of 62
© Copyright 2018, the Members of the symbIoTe consortium

2.1 Requirements for Smart Spaces

Index CL Type Category Importance Note on importance Description Use Cases

54 3 Functional Interface MUST
The system MUST enable the discovery and registration of a
new device that is willing to be registered with symbIoTe
compatible platform middleware.

1, 2, 3, 5

55 3, 4 Functional Interface MUST
Any piece of equipment which needs to be integrated with
symbIoTe is required to have a documented digital interface,
providing either a standard or a properly described protocol.

1, 2, 3, 5

56 3 Functional Management SHOULD
The system SHOULD be able to prioritize the information
sent to the platform (IMPORTANT information 1st)

1, 3

57 3
Non-
Functional

Interface SHOULD
The system SHOULD support the dynamic configuration of a
subset of commercial sensors.

1, 3

58 3 Functional Interface MAY
Inside Smart Space multiple gateways MAY be used as an
alternative fallback router for a given device.

1, 2, 3

59 3 Functional Management SHOULD
 SymbIoTe smart spaces SHOULD be able to operate
without a permanent Internet connection.

1, 2, 3, 5

60 3 Functional
Management
/ Interface

SHOULD
Useful in case of limited
connectivity

Different local IoT Platforms SHOULD be able to interact
locally (i.e. without mediation from cloud-based L2 symbIoTe
components).

1, 2, 3, 5

61 3 Functional
Management
/ Interface

SHOULD
Different collocated IoT Platforms SHOULD (or even MUST)
be able to interact locally with mediation from symbIoTe
Cloud components.

1, 2, 3, 5

62 3 Functional Management SHOULD
Useful in case of limited
connectivity

A device running a symbIoTe app or a Smart Device
SHOULD be able to access a Smart Space even if Internet
connectivity is not available

1, 2, 3

63 3 Functional Management MUST

Important in case of limited
connectivity (similar to #62, but
the device is already
associated)

A device running a symbIoTe app, when already associated
to a Smart Space, MUST be able to access a Smart Device
in that same Space even if Internet connectivity is not
available.

1, 2, 3

64 3 Functional Management MUST
Important for identification of
roaming devices

An L4 Compliant Smart Device MUST have a globally unique
identifier.

1, 3

65 3 Functional
Management
/ Interface

SHOULD Useful for roaming devices
An app/enabler SHOULD be able to receive a notification
whenever an L4 Compliant resource it is using changes
Smart Space association.

1, 2, 3

66 3 Functional
Management
/ Interface

SHOULD
Useful in case of limited
connectivity

There SHOULD be a way for a local symbIoTe app to directly
interface with the hosting Smart Space, that is by accessing
it through the LAN rather than the Internet.

1, 2, 3, 5

67 3, 4 Functional
Management
/Interface

MUST
SymbIoTe MUST accept visiting devices to be merged in the
visited Smart Space.

1, 2, 3, 5

68 3 Functional Management MAY The system MAY support IoT service / platform operators to 1, 2, 3, 5

688156 - symbIoTe - H2020-ICT-2015 D4.3 – Final symbIoTe middleware implementation
Public

Version 0.6 Page 12 of 62
© Copyright 2018, the Members of the symbIoTe consortium

alter the registration of their resources during runtime of
applications.

69 3 Functional Interface SHOULD
The symbIoTe on board gateway shall support the following
digital interfaces: dry contacts, serial bus connections,
Ethernet connections, other standard buses to be evaluated

5

70 3 Functional Interface MUST

The symbIoTe middleware components MUST be able to
manage authentication and authorization functions.

1, 2, 3, 5

71 3 Functional Interface SHOULD
There SHOULD be a management interface to manage
authN/authZ mapping between the local IoT Platform and
symbIoTe core.

1, 2, 3

72 3 Functional Management SHOULD
The symbIoTe middleware SHOULD be able to interface with
the local IoT Platform's functions to manage resource
monitoring and accounting.

2, 3

73 3 Functional Management SHOULD
The symbIoTe middleware SHOULD be able to provide a
mapping between potentially different metrics used across
the Platform's border.

2, 3

74 3, 4 Functional Interface MUST

The symbIoTe middleware MUST be able to exchange
information with the local IoT Platform regarding currently
associated devices, as well as regarding devices leaving or
requesting to join the local space.

1, 2, 3, 5

Table 1: Smart Space Requirements

2.2 Security requirements for Smart Spaces

Index CL Type Category Importance Note on importance
Potential
barrier for
uptake

Description Use Cases

1
1,2,3,
4

Functional Security MUST

Important for interoperability and
to control the access to the
resources exposed by an IoT
platform. It is needed for the
authorization functionality.

The system MUST offer mechanisms for
the authentication of symbIoTe

entities/actors i.e., users/application
developers, IoT Platforms, developed
applications and clients.

1, 2, 3, 4, 5

2
1,2,3,
4

Functional Security MUST

Important for interoperability and
to control the access to the
resources exposed by an IoT
platform. Platforms want to
control the access over the

The system MUST offer mechanisms for
the authorization of symbIoTe

entities/actors i.e., users/application
developers, IoT Platforms, developed
applications and clients.

1, 2, 3, 4, 5

688156 - symbIoTe - H2020-ICT-2015 D4.3 – Final symbIoTe middleware implementation
Public

Version 0.6 Page 13 of 62
© Copyright 2018, the Members of the symbIoTe consortium

resources.

4 SSP Functional Security SHOULD

Useful to ensure the
authentication and authorization
requirements for use cases that
won't be online all the time.

The authentication and authorization to a
smart space SHOULD work even if the
smart space is disconnected from the
Internet.

1, 2, 3, 5

9
1, 2,
3

Functional Security MUST
Important to securely protect
data and that anyone else to
have access to it

The system MUST support encrypted
data communication between all involved
entities on level 1 and 2 (e.g. the
SymbIoTe core, Platforms, etc.).

1, 2, 3, 4, 5

10 3
Non-
Functional

Security MUST Important for privacy issues.

The system MUST ensure privacy
protection on each layer, do not publicly
expose e.g., devices information or
services used by applications.

1, 2, 3

16
1,2,3,
4

Functional Security MUST
To simplify the way the access
rules are defined.

Access rules MUST be defined as an
access policy.

17
1,2,3,
4

Functional Security MUST Important for interoperability.

The system MUST allow entities to
delegate access to specific resources to
other entities (e.g. by the usage of bearer
access tokens)

1, 2, 3, 4

20 1, 4 Functional Security MUST
To avoid to man-in-the-middle
attacks and identity spoofing.

Mutual authentication must be supported
by all security mechanisms.
(I.e. NOT only the
user/application/software/... must be
authenticated against the platform but
also vice versa in order to facilitate
malicious platform detection)
Mutual authentication must be provided
also in the communication between smart
devices

4

21 1, 3 Functional Security MUST

Important for interoperability.
Using ABAC it is possible to
cover more options. ABAC
allows higher level of flexibility.

The access to resource MUST be
handled through 'Attribute-Based Access
Control (ABAC)' schemes. An 'attribute'
refers to a generic
property/role/permission that the
application grants during the
authentication phases.

1

22 4 Functional Security MUST
Interoperability and security
between smart devices.

Constraints on
the device

The link-level communication between
two smart devices MUST be
authenticated, encrypted, and integrity-
protected. To this end, security
mechanisms MUST be properly designed
by considering specific security needs,

1, (5)

688156 - symbIoTe - H2020-ICT-2015 D4.3 – Final symbIoTe middleware implementation
Public

Version 0.6 Page 14 of 62
© Copyright 2018, the Members of the symbIoTe consortium

the set of requirements expressed in
terms of latencies, bandwidth and energy
consumption, as well as the used
communication technologies.

23
1,2,3,
4

Functional Security MUST
To detect security attacks and
discover not security related
malfunctions.

The system MUST detect anomalies that
appear in the usage of the system for
instance abnormal consumption of
resources like temperature sensors that
indicates an attempt of a DoS/DDoS
attack. Supposing that a temperature
sensor in Smart Home is polled 8 times
an hour on average. Suddenly we
observe that in a given time interval this
sensor has been polled 100 times in 10
minutes. Anomaly detection module
should detect it and send a log to the
Platform where the user that has polled
the sensor was registered.

1, 2, 3, 4, 5

24
1,2,3,
4

Functional Security MAY
To confirm or not the trust in the
platform federation.

The system MAY detect anomalies that
appear in the metadata provided by
Platforms and devices.
(e.g. The system MAY provide secure
mechanisms to provide trusted
location/proximity information.)

3

Table 2: Smart Space Security Requirements

688156 - symbIoTe - H2020-ICT-2015 D4.3 – Final symbIoTe middleware implementation
 Public

Version 0.6 Page 15 of 62
 © Copyright 2018, the Members of the symbIoTe consortium

3 Final Design of L3/L4 components

Smart Spaces are local environments (e.g. residence, campus, vessel, stadium, city area,
etc.) where multiple IoT Platforms, IoT Gateways and Smart Devices (SDEVs) co-exist. In
order to homogenize the communication between these entities and enable their
interaction with 3rd Party applications, proper software adapters are needed. This
document refers to the software implemented under symbIoTe project for that purpose as
symbIoTe Smart Space.

SymbIoTe Smart Spaces are entities exposing local registered resources in a
homogeneous manner, regardless of whether these resources belong to IoT Platforms,
exist behind IoT Gateways or are simply standalone SDEVs. Any entity inside the Smart
Space, after it is successfully recognized and authorized by the system, has to be able to
access any locally registered resources whose policies allow its access. Furthermore,
symbIoTe Smart Spaces should also facilitate 3rd party applications wanting to join the
Smart Space services, fully implementing the interoperable nature of symbIoTe. In any
case, any incoming entity should be identified and authorized in order to access any given
Smart Space resource and this has to be possible even in the case of temporary failure or
degradation of Internet connectivity.

Since IoT Platforms manage their resources according to their internal protocols, it is the
IoT Platforms which will be responsible for the discovery and management of their own
resources. IoT Platforms must register and unregister their resources according to those
availabilities within the symbIoTe Smart Space and symbIoTe Smart Space will then take
the charge of publishing this information to upper layers and within the SSP itself, the
same way it does for SDEV resources which are directly managed by the SSP middleware
software running on the SSP gateways. Hence, SDEV resources will be indistinguishable
from the resources of a native IoT platform by an application using symbIoTe SSP as
mean to manage those.

Among other functions, symbIoTe Smart Space is also responsible for advertising Level-4
(L4) compliant SDEVs (the roaming devices) to symbIoTe Core. To make this functionality
possible, a specific security scheme has been designed and implemented. For Level-3
(L3) compliant devices, advertising those local resources to symbIoTe Core is not
mandatory and can be selected by configuring it during the resource registration process.
Finally, the symbIoTe SSP software suite includes a Lightweight Security Protocol
implemented to let resource-restricted devices communicate with an adequate level of
confidentiality. All these are described in the paragraphs that follow.

The symbIoTe Smart Space software implementation is built upon software modules
already available and used for higher symbIoTe layers (namely L1 and L2), aiming to
maintain as much as possible the software architecture, the interfaces and maximize the
code modularity and reuse. In conclusion, symbIoTe Smart Space tries to achieve the
following high-level goals:

 Interact with the symbIoTe Core layer components, exposing local resources for
queries and actuation.

 Interact with local Smart Devices and IoT Platforms and gateways, providing the
means to connect and share new resources.

 Maintain a certain degree of autonomy allowing the middleware to function when no
internet connection is available.

688156 - symbIoTe - H2020-ICT-2015 D4.3 – Final symbIoTe middleware implementation
 Public

Version 0.6 Page 16 of 62
 © Copyright 2018, the Members of the symbIoTe consortium

The symbIoTe Smart Space consists of three main components; the Innkeeper (INK), the
Resource Access Proxy (RAP) and the Local Authentication and Authorization Manager
(Local AAM). Furthermore, there are three secondary components which facilitate the
integration of SDEVs and IoT Platforms to the symbIoTe Smart Space. These are the RAP
Gateway, Platform Agent and symbIoTe Agent. The basic architecture is presented in the
Figure 1:

Figure 1: symbIoTe Smart Space Architecture

The role of each of these components are described in the sections below.

3.1 Components: Administration

3.1.1 Administration description

This component facilitates the control and administration of the symbIoTe Core Services
by providing a web-based GUI. symbIoTe administrators have access to a control panel
that allows them to perform management actions such as removing specific Platforms from
the registry.

The administration will also provide features to non-administrator users. It will enable IoT
Platforms and Applications to register with symbIoTe and to receive credentials that are
required for the subsequent usage of symbIoTe services. Particularly for L3 and L4, Smart
Space owners will be able to create or delete their Smart Spaces from the symbIoTe
ecosystem.

The current Administration release provides the following L3/4-specific features:

 Operation management of Smart Spaces i.e. registration, update and delete from
symbIoTe ecosystem.

688156 - symbIoTe - H2020-ICT-2015 D4.3 – Final symbIoTe middleware implementation
 Public

Version 0.6 Page 17 of 62
 © Copyright 2018, the Members of the symbIoTe consortium

 Creating Smart Space configuration for facilitating the deployment procedure.

3.1.2 Administration interfaces

Information on L3 and L4-specific Administration interfaces is presented in
Table 3 below.

688156 - symbIoTe - H2020-ICT-2015 D4.3 – Final symbIoTe middleware implementation
Public

Version 0.5 Page 18 of 62
© Copyright 2018, the Members of the symbIoTe consortium

Table 3: L3 and L4-specific Administration interfaces

Interface Name(s)

Message
Type

From
Message

Consumers
Address/Queue Payload Response Description

1
SSP

Manage
Request

SSP
Manage
Request

AMQP Administration Core AAM

Exchange:

symbIoTe.AuthenticationAuth

orizationManager

Routing key: symbIoTe-

AuthenticationAuthorization

Manager.manage_smartspace_r

equest

SmartSpaceManagement

Request

SmartSpaceManagement

Response

Administration informs Core AAM
for a SSP Manage Request e.g.

SSP registration, update, deletion

2
SSP

Registration
Request

SSP
Registrati

on
Request

AMQP Administration Registry

Exchange: symbIoTe.ssp

Routing key:

symbIoTe.ssp.creationReques

ted

SmartSpace SspRegistryResponse
Administration informs Registry
for a SSP registration request

3
SSP

Update
Request

SSP
Update

Request
AMQP Administration Registry

Exchange: symbIoTe.ssp

Routing key:

symbIoTe.ssp.updatedRequest

ed

SmartSpace SspRegistryResponse
Administration informs Registry

for a SSP update request

4
SSP

Deletion
Request

SSP
Deletion
Request

AMQP Administration Registry

Exchange: symbIoTe.ssp

Routing key:

symbIoTe.ssp.removalRequest

ed

SmartSpace SspRegistryResponse
Administration informs Registry

for a SSP deletion request

5
SSP

GetDetails
Request

SSP
GetDetails
Request

Administration Registry

Exchange: symbIoTe.ssp

Routing key:

symbIoTe.ssp.sspRequested

String sspId SspRegistryResponse
Administration requests SSP

Details from Registry

https://github.com/symbiote-h2020/SymbIoTeSecurity/blob/master/src/main/java/eu/h2020/symbiote/security/communication/payloads/SmartSpaceManagementRequest.java
https://github.com/symbiote-h2020/SymbIoTeSecurity/blob/master/src/main/java/eu/h2020/symbiote/security/communication/payloads/SmartSpaceManagementRequest.java
https://github.com/symbiote-h2020/SymbIoTeSecurity/blob/master/src/main/java/eu/h2020/symbiote/security/communication/payloads/SmartSpaceManagementResponse.java
https://github.com/symbiote-h2020/SymbIoTeSecurity/blob/master/src/main/java/eu/h2020/symbiote/security/communication/payloads/SmartSpaceManagementResponse.java
https://github.com/symbiote-h2020/SymbIoTeLibraries/blob/master/src/main/java/eu/h2020/symbiote/model/mim/SmartSpace.java
https://github.com/symbiote-h2020/SymbIoTeLibraries/blob/master/src/main/java/eu/h2020/symbiote/core/cci/SspRegistryResponse.java
https://github.com/symbiote-h2020/SymbIoTeLibraries/blob/master/src/main/java/eu/h2020/symbiote/model/mim/SmartSpace.java
https://github.com/symbiote-h2020/SymbIoTeLibraries/blob/master/src/main/java/eu/h2020/symbiote/core/cci/SspRegistryResponse.java
https://github.com/symbiote-h2020/SymbIoTeLibraries/blob/master/src/main/java/eu/h2020/symbiote/model/mim/SmartSpace.java
https://github.com/symbiote-h2020/SymbIoTeLibraries/blob/master/src/main/java/eu/h2020/symbiote/core/cci/SspRegistryResponse.java
https://github.com/symbiote-h2020/SymbIoTeLibraries/blob/master/src/main/java/eu/h2020/symbiote/core/cci/SspRegistryResponse.java

688156 - symbIoTe - H2020-ICT-2015 D4.3 – Final symbIoTe middleware implementation
Public

Version 0.6 Page 19 of 62
 © Copyright 2018, the Members of the symbIoTe consortium

3.2 Component: Innkeeper (INK)

3.2.1 Innkeeper description

The Innkeeper (INK) is the component in charge to receive registration from
devices/Platforms agents. It keeps the consistency of the Smart Space resources and
communicates to the RAP for their reachability. The Innkeeper is also in charge to
communicate with the core level components to let the Smart Space integrate with the rest
of the symbIoTe ecosystem.

The Innkeeper is also in charge of communicating with L3/L4-compliant applications and
devices in order to enable their registration and interaction with the SSP. It mainly fills the
role of a local registry in the SSP, providing a list of applications and resources currently
registered in the SSP. Furthermore, it could provide information about the SSP resources
such as the current status and location.

The Innkeeper is also required for interaction with upper layers. Specifically, it updates
information (e.g. location) of L4 roaming devices in upper layers by communicating with
the Registration Handler of the IoT platform owing to the roaming device. Then,
Registration Handler should forward the updated information to the symbIoTe core.

Innkeeper exposes REST interfaces to enable communication with L3/L4-compliant
applications and devices. In the following section, Table 4 lists the Innkeeper Interfaces.

688156 - symbIoTe - H2020-ICT-2015 D4.3 – Final symbIoTe middleware implementation
Public

Version 0.6 Page 20 of 62
© Copyright 2018, the Members of the symbIoTe consortium

3.2.2 Innkeeper interfaces

Interface Name(s)

Mess
age

Type
From

Msg
Consumer

s
Address/Queue Payload Description

1

Platform /
L3/L4
SDEV
Registratio
n

/innkeeper/platform/

register

/innkeeper/sdev/register

REST Sym-Agent Innkeeper POST

{

 String symId,

 String sspId,

 String pluginId,

 String pluginURL,

 String dk1,(only for SDEV)

 String hashField (only for SDEV)

}

The L3/L4 SDEVs register in the SSP through the
Innkeeper

NOTE: if the registration request is provided by an
L3 SDEV id is a “fresh Id”. If the registration is
provided by a L4 SDEV Id contains an unique Id.

2

Platform /
L3/L4
SDEV
Unregistrat
ion

/innkeeper/platform/unregiste

r

/innkeeper/sdev/unregister

REST Sym-Agent Innkeeper POST

{

 String sspId (or symId)

}

Unregistration SDEV request.

3

SDEV
Core
Registratio
n/Modify/D
elete

{coreIntefaceUrl}/ssps/{sspNa

me}/sdevs
REST Innkeeper Core

POST/PUT/
DELETE

{

 String symId,

 String sspId,

 String pluginId,

 String pluginURL,

 String dk1,

 String hashField

 }

4
Resource
Registratio
n

/innkeeper/platform/join

/innkeeper/sdev/join

REST Sym-Agent Innkeeper POST

{

 String internalIdResource,

 String sspIdResource,

 String sspIdParent

 IAccessPolicySpecifieraccessPolicy,

 IAccessPolicySpecifierfilteringPolicy,

Resourceresource

}

5 Keep Alive /innkeeper/keep_alive/ REST Sym-agent Innkeeper POST

{

 String sspId (or symId)

}

Send a keep-alive message.

https://github.com/symbiote-h2020/SymbIoTeSecurity/blob/25.5.0/src/main/java/eu/h2020/symbiote/security/accesspolicies/common/IAccessPolicySpecifier.java
https://github.com/symbiote-h2020/SymbIoTeSecurity/blob/25.5.0/src/main/java/eu/h2020/symbiote/security/accesspolicies/common/IAccessPolicySpecifier.java
https://github.com/symbiote-h2020/SymbIoTeSecurity/blob/25.5.0/src/main/java/eu/h2020/symbiote/security/accesspolicies/common/IAccessPolicySpecifier.java
https://github.com/symbiote-h2020/SymbIoTeLibraries/blob/5.2.0/src/main/java/eu/h2020/symbiote/model/cim/Resource.java

688156 - symbIoTe - H2020-ICT-2015 D4.3 – Final symbIoTe middleware implementation
Public

Version 0.6 Page 21 of 62
© Copyright 2018, the Members of the symbIoTe consortium

6

Resource
Core
Registratio
n / Modify /
Delete

{coreIntefaceUrl}/ssps/{sspNa

me}/{sdevId}/

resources

REST Innkeeper Core
POST/PUT/

DELETE

{

Resourceresource

}

7
Public
resources
request

innkeeper/

public_resources
REST Innkeeper App GET

See symbIoTe platform / SDEV L3/4
integration#3.3Searchforresources

Request the list of registered public resources in
SSP, return: a JSON list of public registered
resources

Table 4: Innkeeper Interfaces

https://github.com/symbiote-h2020/SymbIoTeLibraries/blob/5.2.0/src/main/java/eu/h2020/symbiote/model/cim/Resource.java
file:///C:/pages/viewpage.action%3fpageId=30050353%23symbIoTeplatform/SDEVL3/4integration-3.3Searchforresources
file:///C:/pages/viewpage.action%3fpageId=30050353%23symbIoTeplatform/SDEVL3/4integration-3.3Searchforresources

688156 - symbIoTe - H2020-ICT-2015 D4.3 – Final symbIoTe middleware implementation
 Public

Version 0.6 Page 22 of 62
 © Copyright 2018, the Members of the symbIoTe consortium

3.2.2.1 Platform / L3/L4 SDEV Registration

Platforms or Smart Devices (SDEV) can request to be registered in a Smart Space (SSP).
The Registration procedure for a Smart Device is provided by using the Lightweight
Security Protocol . The message body of the registration request is encrypted and
formatted as follow:

 Regarding the field symId (i.e. the symbIoTe id), if this is the first time the device
connects to symbIoTe, then it should be an empty field; the Innkeeper then
responds with the id that device should save in the Flash memory (if L4) and it
should re-use in future interactions with the symbIoTe ecosystem.

 PluginId and pluginURL are metadata used by the RAP. The pluginURL is the
ip:port/path where the RAP sends the request to the SDEV.

 Roaming indicates if the SDEV is a L3 or L4 device to the Innkeeper during the
registration

 The field dk1 represents the current session key.

 Regarding the hashField could be

o all 0 when the SDEV joins for the first time or

o hashField = H(symId || previous dk1)

If SSP has internet access, registration procedure returns a response message assigning an
unique symbIoTe Id provided by core e.g.:

{

 "symId":"sym787",
 "sspId":"4",

 "result":"OK",
 "registrationExpiration":3600
}

where:

 symId is the symbIoTe Id of SDEV, provided by the Core

 sspId is the local SSP id of the registered SDEV, which is unique in the Smart
Space domain

 result is a self-explained response message

 registrationExpiration is the lifetime of a Smart Device Registration.

Each Smart Device should implement a mechanism, which periodically sends a Keep-alive
message to the Innkeeper in order to inform its the presence in the network.

If SSP is OFFILNE, the registration response is like:

{
 "symId":"",

 "sspId":"3",
 "result":"OFFLINE",
 "registrationExpiration":3600

}

If the Smart Device is already registered:

688156 - symbIoTe - H2020-ICT-2015 D4.3 – Final symbIoTe middleware implementation
 Public

Version 0.6 Page 23 of 62
 © Copyright 2018, the Members of the symbIoTe consortium

{
 "symId":"sym941",

 "sspId":"6",
 "result":"ALREADY_REGISTERED",

 "registrationExpiration":3600
}

If a Smart Device, with a previously assigned Symbiote Id, tries to register to another
Smart Space, it should provide a registration request by filling the symId field, obtaining a
registration response with a new sspId. If a Smart Device tries to register using a non-
existent symbIoTe Id, the Innkeeper returns a reject message:

{

 "symId":"0100fakeId4053",
 "result":"REJECTED",

 "registrationExpiration":0
}

3.2.2.2 Platform / L3/L4 SDEV un-registration

If a Smart Device owner needs to disconnect the from the SSP, it should send a
unregistration message to the Innkeeper:

curl -H 'Content-Type: application/json'-d '

{

 "sspId":"3"

}

' -X POST -D - http://ssp.symbiote.org:8080/innkeeper/sdev/unregister

The only information needed is the sspId. The Innkeeper will provide to delete the Smart
Device instance with all its resources.

The response from the Innkeeper is just an HTTP OK 200 with no payload.

3.2.2.3 Resource Registration

In SSP a Resource is defined as a Json message obtained by SspResource class. The
field contained are:

 internalIdResource is an internal id of the resource, it is not compliant with
symbIoTe ecosystem and can be a MAC address or other type of identifier defined
by Smart Device vendor;

 sspIdResource should be empty in first resource registration;

 sspIdParent is the SSP id of the Smart Device which contains the resource;

 symIdParent is the symbIoTe ID of the Smart Device which contains the resource;

 accessPolicy is a JSON of serialized AccessPolicySpecifier;

 filteringPolicy is a JSON of serialized AccessPolicySpecifier;

 resource is a JSON of serialized Resource instance.

A Smart Device can contain more Resources and each Smart Device should perform a
resource registration for each resource. A resource registration response provided by the
Innkeeper is a JSON message containing following information:

{

 "symIdResource":"sym970",

https://github.com/symbiote-h2020/SymbioteSmartSpace/blob/rap-innk-lwsp-develop/src/main/java/eu/h2020/symbiote/ssp/resources/SspResource.java
https://github.com/symbiote-h2020/SymbIoTeSecurity/blob/25.5.0/src/main/java/eu/h2020/symbiote/security/accesspolicies/common/IAccessPolicySpecifier.java
https://github.com/symbiote-h2020/SymbIoTeSecurity/blob/25.5.0/src/main/java/eu/h2020/symbiote/security/accesspolicies/common/IAccessPolicySpecifier.java
https://github.com/symbiote-h2020/SymbIoTeLibraries/blob/5.2.0/src/main/java/eu/h2020/symbiote/model/cim/Resource.java

688156 - symbIoTe - H2020-ICT-2015 D4.3 – Final symbIoTe middleware implementation
 Public

Version 0.6 Page 24 of 62
 © Copyright 2018, the Members of the symbIoTe consortium

 "sspIdResource":"1",

 "symId":"sym609",

 "sspId":"0",

 "result":"OK"

}

where:

 symIdResource is the Symbiote ID of the registered resource and it is generated
by the Core during the first registration of the Smart Device and stored in the Flash
memory;

 sspIdResource is the local SSP id for a resource which is unique in the Smart
Space domain;

 symId is the symbIoTe Id of the parent Smart Device which contains the registered
resource. symId is unique and stored in Flash Memory of the Smart Device and
obtained during the first registration;

 sspId is the local SSP id of the parent Smart Device which is unique in the Smart
Space domain;

 result is a self-explained response message.

3.2.2.4 SDEV Core Registration/Modify/Delete

This is the payload of a SDEV registration to Core:

{

"body": {

"symId":null,

"sspId":null,

"pluginId":"SSP_TEST",

"pluginURL":"https://symbiote.tti.unipa.it",

"roaming":true,

"dk1":"newkey",

"hashField":"hashedsecret"

 }

}

3.2.2.5 Keep Alive

Keep alive messages provide two functionalities:

1. Announce periodically to the Smart Space that a Smart Device is working.

2. Update the symbIoTe Id for a Smart Device and its resources if an offline
registration occurred. The message contains only the ssp ID.

An example of such a message is the following:

curl -H 'Content-Type: application/json'-d '

{

 "sspId":"6"

}

' -X POST -D - http://ssp.symbiote.org:8080/innkeeper/keep_alive

Show below is a JSON keep-alive response message to a Smart Device which contains
four resources.

688156 - symbIoTe - H2020-ICT-2015 D4.3 – Final symbIoTe middleware implementation
 Public

Version 0.6 Page 25 of 62
 © Copyright 2018, the Members of the symbIoTe consortium

{

 "symId":"sym941",

 "sspId":"6",

 "result":"OK",

 "updatedSymId":[

 {

 "sspIdResource":"0",

 "symIdResource":"sym510"

 },

 {

 "sspIdResource":"1",

 "symIdResource":"sym728"

 },

 {

 "sspIdResource":"2",

 "symIdResource":"sym493"

 },

 {

 "sspIdResource":"3",

 "symIdResource":"sym843"

 }

]

}

3.2.2.6 Resource Core Registration / Modify / Delete

Some description would be useful, one-liner is more than OK.

body":

{

"5c:cf:7f:3a:6b:76":

{

"@c": ".StationarySensor",

"name": "Stationary 1",

"description": [

"This is stationary 1"

],

"interworkingServiceURL": "https://www.example.com/Test1Platform",

"locatedAt":

{

"@c": ".WGS84Location",

"longitude": 5.349014,

"latitude": 25.864716,

"altitude": 35,

"name": "SomeLocation",

"description": [

"Secret location"

]

},

"featureOfInterest":

{

"name": "Room1",

"description": [

"This is room 1"

688156 - symbIoTe - H2020-ICT-2015 D4.3 – Final symbIoTe middleware implementation
 Public

Version 0.6 Page 26 of 62
 © Copyright 2018, the Members of the symbIoTe consortium

],

"hasProperty": [

"temperature"

]

},

"observesProperty": [

"temperature",

"humidity"

]

}

},

"filteringPolicy":

{

"policyType": "PUBLIC",

"requiredClaims": {}

},

}

3.2.2.7 Public resources request

The SSP allows external applications to obtain the available resources. Currently, SSP
implements an endpoint that returns the list of all PUBLIC resources:

curl -x GET http://ssp.symbiote.org:8080/innkeeper/public_resources

Here an example of the response message:

[

 {
 "internalIdResource":"5c:cf:7f:3a:6b:76",

 "sspIdResource":null,
 "sspIdParent":"0",
 "symIdParent":"sym48",

 "resource":{
 "@c":".Actuator",

 "id":"",
 "name":"ACT-aggeggio",
 "description":null,

 "interworkingServiceURL":",
 "locatedAt":null,

 "services":null,
 "capabilities":[

 {
 "parameters":[
 {

 "name":"r",
 "mandatory":true,

 "restrictions":[
 {
 "@c":".RangeRestriction",

 "min":0.0,
 "max":255.0

 }
],

 "datatype":{
 "@c":".PrimitiveDatatype",
 "array":false,

 "isArray":false,
 "baseDatatype":"xsd:unsignedByte"

688156 - symbIoTe - H2020-ICT-2015 D4.3 – Final symbIoTe middleware implementation
 Public

Version 0.6 Page 27 of 62
 © Copyright 2018, the Members of the symbIoTe consortium

 }
 },

 {
 "name":"g",

 "mandatory":true,
 "restrictions":[
 {

 "@c":".RangeRestriction",
 "min":0.0,

 "max":255.0
 }
],

 "datatype":{
 "@c":".PrimitiveDatatype",

 "array":false,
 "isArray":false,

 "baseDatatype":"xsd:unsignedByte"
 }
 },

 {
 "name":"b",

 "mandatory":true,
 "restrictions":[
 {

 "@c":".RangeRestriction",
 "min":0.0,

 "max":255.0
 }

],
 "datatype":{
 "@c":".PrimitiveDatatype",

 "array":false,
 "isArray":false,

 "baseDatatype":"xsd:unsignedByte"
 }
 }

],
 "effects":null,

 "name":"RGBCapability"
 }

]
 }
 }

]

3.3 Component: SSP RAP

3.3.1 SSP RAP description

Smart Space (SSP) Resource Access Proxy (RAP) component enables symbIoTe-
compliant access to resources within IoT Platforms located in a SSP or to SDEVs. It
receives incoming access requests from applications/platform agents using a symbIoTe-
compliant communication protocol and data format. A request must contain a unique
identifier assigned to a resource. It checks if those security policies included in the request
are valid and that access to a particular resource can be granted.

688156 - symbIoTe - H2020-ICT-2015 D4.3 – Final symbIoTe middleware implementation
 Public

Version 0.6 Page 28 of 62
 © Copyright 2018, the Members of the symbIoTe consortium

The data generated by IoT platform / SDEV must be returned in a format which complies
with the symbIoTe information model.

3.3.2 SSP RAP interfaces

The SSP RAP exposes both REST and OData interfaces for direct resources’ access. It
also communicates with the Innkeeper component via function calls (both resides in the
Middleware application). An additional interface is used for push mechanism, where
notifications are linked via WebSocket with the client application.

Table 5 below contains a summary of SSP RAP's external interfaces.

688156 - symbIoTe - H2020-ICT-2015 D4.3 – Final symbIoTe middleware implementation
Public

Version 0.6 Page 29 of 62
© Copyright 2018, the Members of the symbIoTe consortium

Interface Name Message
Type

From Msg
Consumers

Address/
Queue

Payload Description

1a
Resource
access
read

/rap/Sensor/{resourceId} REST Application / Agent RAP GET
None - replies with the value of
the resource

Event reading
the value of a
resource

1b
Resource
access
read

/rap/Sensor({resourceId})/Observations?$top=1 OData Application / Agent RAP GET
None - replies with the value of
the resource

Event reading
the value of a
resource

2a
Resource
access
read history

/rap/Sensor/{resourceId}/history REST Application / Agent RAP GET
None - replies with the history
values of the resource

Event reading
the value of a
resource

2b
Resource
access
read history

/rap/Sensor({resourceId})/Observations OData Application / Agent RAP GET
None - replies with the history
values of the resource

Event reading
the value of a
resource

3a
Resource
access

/rap/Service/{resourceId} REST Application / Agent RAP POST

{
 [
“param_name”:“param_value”,
 ..]
}

Event sending
the value to a
service

3b
Resource
access

/rap/Service({resourceId}) OData Application / Agent RAP PUT

{
 [
{“param_name”:“param_value”},
 ..]
}

Event sending
the value to a
service

4a
Resource
access
write

/rap/Actuator/{resourceId} REST Application / Agent RAP POST

{
 [
 { “capabiliy_name”: [
{“param_name”:”param_value”},
 ..]
 }, ..
]
}

Event writing
the value of a
resource

4b
Resource
access
write

/rap/Actuator{resourceId} OData Application / Agent RAP PUT

{
 [
 { “capabiliy_name”: [
{“param_name”:”param_value”},
 ..]
 }, ..
]
}

Event writing
the value of a
resource

5
Resource
notifications

/notification WebSocket Application / Agent RAP
client /
server

the value of the resource
Event reading
the value of a
resource

Table 5: SSP RAP's external interfaces

688156 - symbIoTe - H2020-ICT-2015 D4.3 – Final symbIoTe middleware implementation
 Public

Version 0.6 Page 30 of 62
 © Copyright 2018, the Members of the symbIoTe consortium

3.4 Component: Local AAM

3.4.1 Local AAM description

Local Authentication and Authorization Manager (Local AAM) is a component that handles
the authentication procedure for Smart Space (SSP) components, applications registered
in a particular Smart Space federated with symbIoTe and Platform Agents (Table 6). It
enables the core centric security function while internet connection is established, but it
becomes Smart Space centric when no internet connection is available (allowing the SSP
to work also when disconnected). After a successful authentication, the Local AAM
releases a home token storing attributes, properties, roles and permission assigned to the
component or application within the SSP where it is registered.

Local AAM performs the same function as Platform and Core AAMs on L2: it handles
token validation, issuing the certificates, revocation of compromised credentials and user
management. Additionally, all services are updated to work with SSP (getAvailableAAMs),
and registration was extended for Platform Agents.

688156 - symbIoTe - H2020-ICT-2015 D4.3 – Final symbIoTe middleware implementation
Public

Version 0.6 Page 31 of 62
© Copyright 2018, the Members of the symbIoTe consortium

3.4.2 Local AAM interfaces

Interface Name Messag
e Type

From Msg
Consumers

Address/
Queue

Payload Description

1
Get
available
AAM

/get_available_aams HTTP REST client AAM GET
AvailableAAMsCollection,
HTTP status: 200 on ok and
500 on error

Returns information
about all available AAMs
in the system

2
Get
internally
AAM

/get_internally_aams HTTP REST client AAM GET
AvailableAAMsCollection,
HTTP status: 200 on ok and
500 on error

Returns information
about all available AAMs
in the system containing
internal urls

3
Get
component
certificate

/get_component_certificate/platform/{pla

tformIdentifier}/component/{componentIde

ntifier}

HTTP REST client AAM GET
component certificate in PEM
format, HTTP status 200 or
404 on missing, 500 on error

Returns component
certificate in PEM format

4
GET user
detail

/get_user_details HTTP REST client AAM POST
UserDetails, HTTP status code
(200, 400 missing user, 401
bad user password)

Return registered user
details

5
Manage
user

/manage_users HTTP REST client AAM POST
ManagementStatus, HTTP
status code

Used to manage users
(create, update, delete…)

6
Issue new
certificate

/sign_certificate_request HTTP REST client AAM POST
certificate in PEM format,
HTTP status

Used to issue new
certificate for
client/component/platfor
m

7
Get home
token

/get_home_token HTTP REST client AAM POST
Headers with X-Auth-token
containing token String for that
client

Returns HOME token
used to access restricted
resources offered in
SymbIoTe

8
Get foreign
token

/get_foreign_token HTTP REST client AAM POST

Headers with X-Auth-token
containing
FOREIGN/ROAMED/FEDERAT
ED token String for that client

Returns FOREIGN token
used to access restricted
resources offered in
SymbIoTe federations

9
Get guest
token

/get_guest_token HTTP REST client AAM POST
Headers with X-Auth-token
containing GUEST token String

Returns GUEST token
used to access public
resources offered in
SymbIoTe

10
Validate
token

/validate_credentials HTTP REST client AAM POST

Headers with:

X-Auth-token containing
Authorization Token String for
that client;
(opt) X-Auth-Client-Cert
containing PEM Certificate
String matching SPK from token
(opt) X-Auth-AAM-Cert
containing PEM Certificate
String used to sign the client

Verifies, if provided token
is valid

https://github.com/symbiote-h2020/SymbIoTeSecurity/blob/develop/src/main/java/eu/h2020/symbiote/security/communication/payloads/AvailableAAMsCollection.java
https://github.com/symbiote-h2020/SymbIoTeSecurity/blob/develop/src/main/java/eu/h2020/symbiote/security/communication/payloads/AvailableAAMsCollection.java
https://github.com/symbiote-h2020/SymbIoTeSecurity/blob/develop/src/main/java/eu/h2020/symbiote/security/communication/payloads/UserDetails.java
https://github.com/symbiote-h2020/SymbIoTeSecurity/blob/develop/src/main/java/eu/h2020/symbiote/security/commons/enums/ManagementStatus.java

688156 - symbIoTe - H2020-ICT-2015 D4.3 – Final symbIoTe middleware implementation
Public

Version 0.6 Page 32 of 62
© Copyright 2018, the Members of the symbIoTe consortium

certificate
(opt) X-Auth-ISS-Cert
containing PEM Certificate
String matching the ISS, IPK
and signature from the
FOREIGN token

11
Validate
revocation

/validate_foreign_token_origin_credentia

ls
HTTP AAM AAM POST Foreign token String in body

Allows to confirm that the
origin (HOME)
credentials (SUB & SPK)
used to issue the given
FOREIGN token in
another AAM have not
been revoked

12
Revoke
credential

/revoke_credentials HTTP REST client AAM POST RevocationRequest
Allows to revoke
compromised tokens
and certificates

Table 6: Local AAM interfaces

https://github.com/symbiote-h2020/SymbIoTeSecurity/blob/develop/src/main/java/eu/h2020/symbiote/security/communication/payloads/RevocationRequest.java

688156 - symbIoTe - H2020-ICT-2015 D4.3 – Final symbIoTe middleware implementation
Public

Version 0.6 Page 33 of 62
 © Copyright 2018, the Members of the symbIoTe consortium

3.5 Component: RAP GW

3.5.1 RAP GW description

Resource Access Proxy (RAP) Gateway (GW) component acts as a gateway for allowing
access to local Smart Space resources for clients that are outside the SSP itself. This is
necessary because the Smart Space Middleware could run inside a Local Area Network,
which means that it does not necessarily have a public IP. RAP Gateway simply forwards
messages from the external world (e.g. applications, enablers) to the SSP RAP. For this
reason, a specific component is not needed, as many solutions and tools already exist. For
instance, configuring a port forwarding on the local network router between the local IP
address and a public IP is one of the solutions. A tool that would act as a RAP Gateway is
ngrok [2], a commercial product that offers public URLs for exposing local web servers can
be used for demo and testing purposes.

3.5.2 RAP GW interfaces

RAP Gateway exposes REST / OData interfaces in the place of symbIoTe SSP RAP
component, so that they are reachable from the external world. Consequently, it does not
expose any specific interfaces, but it just processes the request path in order to forward
the message to the SSP RAP, that afterward will send to the appropriate recipient.

3.6 Component: SDEV Agent

3.6.1 SDEV Agent description

Smart Device (SDEV) Agent is a component that enables a device made from 3rd Parties
to speak the symbIoTe language. Based on the interfaces defined in the following section,
a device manufacturer that wants to transform its device in a symbIoTe enabled one
(SDEV) should develop this agent on top of its system.

In the software release of the S3M, an agent for the Arduino platform ESP8266 is
developed: the maker community is very active around the ESP8266 platform, so it is a
good starting point to quickly create an SDEV.

The agent itself is composedof three main library parts:

 The lightweight security library, handling the security related registration process.

 The semantic library, building the semantic description of the SDEV resources,
mandatory to present the resource to the symbIoTe ecosystem.

 The symbIoTe-agent library itself, linking the previous libraries together and it is the
only class that should be embedded in the Arduino firmware of your SDEV.

The symbIoTe Agent library (named sym-agent) also links the custom function defined in
the firmware for two types of possible behaviour of the SDEV: actuation and sensing.

A more detailed information is available in the last section of this Deliverable D4.3.

3.6.2 SDEV Agent interfaces

SymbIoTe Smart Device Agent interfaces are based on HTTP protocol. Two types of
payload are defined: the encrypted payload, named SDEVP in the table below (??), and
the non-encrypted payload as application/json in plain text.

688156 - symbIoTe - H2020-ICT-2015 D4.3 – Final symbIoTe middleware implementation
Public

Version 0.6 Page 34 of 62
 © Copyright 2018, the Members of the symbIoTe consortium

Regarding the SDEVP, this is a custom name used to define the encrypted data payload
carried by the HTTP POST json. Following example shows the body used in the SDEVP
payload:

Where:

 mti is the code defined in the Lightweight Security Protocol ;

 sessionId is the session identifier for the communication between Innkeeper and
SDEV;

 data contains the encrypted JSON described as plain text in the table in the next
page;

The two actors with whom the agent speaks are the Innkeeper and the SSP RAP. In Table
7 below, there is the list of interfaces the agent exposes:

{

 "mti": "0x50",

 "sessionId": "RoOgqkr6",

 "data": "

/qRzoJJUdScoyt5amdL/qQW8CHkQjmMgCUycjlHOhAB/+99/+lyI9qIB/GKOog6"

}

688156 - symbIoTe - H2020-ICT-2015 D4.3 – Final symbIoTe middleware implementation
Public

Version 0.6 Page 35 of 62
© Copyright 2018, the Members of the symbIoTe consortium

Interface Name Messag
e Type

From Msg
Consumers

Address/
Queue

Payload Description

1 Registry /innkeeper/sdev/registry/ SDEVP sym-agent Innkeeper POST

{
 String symId,

 String pluginId,

 String sspId,

 Bool roaming,

 String pluginURL,

 String dk1,

StringhashField

}

Registers
SDEV.
See note

1

2 Join
/innkeeper/sdev/join

SDEVP sym-agent Innkeeper POST

{

 String internalIdResource,

 String sspIdResource,

 String sspIdParent,

 String symIdParent,

 "accessPolicy":{

 "policyType": "PUBLIC",

 "requiredClaims": {}

 },

 "filteringPolicy": {

 "policyType": "PUBLIC",

 "requiredClaims": {}

},

 "resource":{Resource}

}

Register every
single resource
of the agent.
See note

2

3
Keep-
alive

/innkeeper/keep_alive/ SDEVP
sym-agent

Innkeeper POST

{
 StringsspId
}

Notify that
SDEV is alive

4
GET
Resource
query

/rap/v1/request REST SSP RAP sym-agent POST

{
 "resourceInfo": [{
 String symbioteId,
 String internalIdResource,
 String type

},{
 String type="Observation"
}],
 String type="GET"
}

Get the value
of a SDEV’s
resource

5 HISTORY /rap/v1/request REST SSP RAP sym-agent POST { Get the history

1
 When the device connects to symbIoTe for the first time field symIdSDEV should be empty; the Innkeeper then responds with the id that device should save

in the Flash memory (in case of L4) and device should re-use it in all future interaction with the symbIoTe ecosystem.

When the SDEV joins for the first time hashField could be (1) all “0” or (2) hashField = H(symIdSDEV || (previous dk1))

The field dk1 represents the current session key.
2
resource is a string containing the description of the SDEV using a semantic description compliant to symbIoTe ecosystem.

internalIdResource is the internal Id assigned from the agent to the resource, e.g. the mac address.

688156 - symbIoTe - H2020-ICT-2015 D4.3 – Final symbIoTe middleware implementation
Public

Version 0.6 Page 36 of 62
© Copyright 2018, the Members of the symbIoTe consortium

Resource
query

 "resourceInfo": [{
 String symbioteId,
 String internalIdResource,
 String type

 },{
 String type="Observation"
 }],

“filter”: {

 String type,

 String param,

 String cmp,

 String val

},
 Stringtype="HISTORY"
}

value of a
SDEV’s
resource.
filter can be
null.

6
SET
Resource

/rap/v1/request REST SSP RAP sym-agent POST

{

 "resourceInfo": [{

 String symbioteId,

 String internalIdResource,

 String type

}],

“body”:{

"{capability}": [{

 "{restriction}": "{value}"

 }]

}

 String type="SET"

}

Actuate an
action on the
SDEV

7
Subscribe
Resource

/rap/v1/request REST SSP RAP sym-agent POST

{
 "resourceInfo": [{
 String symbioteId,
 String internalIdResource,
 String type

 },{
 String type="Observation"
 }],
 String type="SUBSCRIBE"
}

Subscribe to a
resource.
SDEV
periodically
sends updates
to RAP.

8
Un-
subscribe
Resource

/rap/v1/request REST SSP RAP sym-agent POST

{
 "resourceInfo": [{
 String symbioteId,
 String internalIdResource,
 String type

 },{
 String type="Observation"
 }],
 String type="UNSUBSCRIBE"
}

Unsubscribe to
a resource.

688156 - symbIoTe - H2020-ICT-2015 D4.3 – Final symbIoTe middleware implementation
Public

Version 0.6 Page 37 of 62
© Copyright 2018, the Members of the symbIoTe consortium

9 PUSH
data

/rap/v1/plugin/notification REST sym-agent SSP RAP POST {

 String resourceId,

 "location": {location},

 String resultTime,

StringsamplingTime,

 "obsValues": [{ObservationValue}]

}

Data packet
sent from sym-
agent to RAP.

10 Unregistry /innkeeper/sdev/unregister SDEVP sym-agent Innkeeper POST {
 StringsspId
}

Unregistration
SDEV

Table 7: SDEV Agent interfaces

688156 - symbIoTe - H2020-ICT-2015 D4.3 – Final symbIoTe middleware implementation
 Public

Version 0.6 Page 38 of 62
 © Copyright 2018, the Members of the symbIoTe consortium

3.7 Component: Platform Agent

3.7.1 Platform Agent description

The Platform Agent component is the counterpart of the SDEV Agent for IoT Platforms.
From one side, it is registering platform resources towards the SSP Innkeeper and, on the
other side; it handles the access to these resources.

An IoT Platform provider/owner needs to provide the following information from the
symbIoTe information model:

 IoT Device or Composite IoT Service description.

 Location with its properties.

 Observed Properties description and name.

Platform Agent will send the metadata describing resources to be registered to the
Innkeeper that will store this information in a local registry and forwards (if needed) the
registration to the symbIoTe Core. Moreover, when an external actor (i.e. application,
enabler) is requesting the access to some platform resource, the agent needs to forward
and adapt the request coming from the SSP RAP, to the proprietary platform APIs.

3.7.2 Platform Agent interfaces

The Platform Agent exposes a REST interface for receiving incoming SSP RAP messages
that request access to resources. This endpoint is custom, and it is provided by the IoT
Platform provider during the registration procedure, inside the resource description.

The interfaces of the platform agent are the same as the SDEV ones, the only two
differences are:

 The path where the agent sends the request is /innkeeper/platform/*

instead of /innkeeper/sdev/* .
 The keep-alive interfaces for Platform agents does not exist.

3.8 Security aspects: SDEV

In case of an SDEV, the challenge is to use a secure registration process without using
complex computational power due to the lack of this resource in constrained devices as
the SDEV typically are.

To resolve this issue, symbIoTe consortium defines a negotiation procedure that can be
scalable in terms of computational power required by the end device. This procedure is
called Lightweight Security Protocol .

Security services to be implemented between device and Gateway/Innkeeper, include:

1. algorithm negotiation,

2. peer authentication,

3. key agreement,

4. protection from attacks, including replay,

5. data confidentiality/authentication/integrity.

688156 - symbIoTe - H2020-ICT-2015 D4.3 – Final symbIoTe middleware implementation
 Public

Version 0.6 Page 39 of 62
 © Copyright 2018, the Members of the symbIoTe consortium

The protocol ensures a secure interaction: negotiated secrets are unavailable to
eavesdroppers, even by an attacker who can place himself in the middle of the connection.
Moreover, in the case the protocol ends successfully, communicating peers can protect
their communication through symmetric cryptography (e.g., AES, ChaCha20, etc.) and
reliable mechanisms (i.e., messages include an authentication tag which protects them
against tampering). Indeed, the protocol provides in output all the details needed to
support the 5-th goal of data confidentiality/authentication/integrity.

3.8.1 Negotiation protocol

Negotiation is initiated by the Smart Device (SDEV). Device and Gateway/Innkeeper agree
on the cipher suite (i.e., cryptographic algorithms to use), negotiate and/or generate key
material, and provide a proof of their authenticity. The protocol is designed to support
simple approaches like pre-shared symmetric key (PSK), or more complex ones like
Elliptic-Curve Diffie-Hellman (ECDH) with RSA or ECDSA (when a certificate is used)
exchange modes. The key agreement mechanism is chosen based on device capabilities.
As commonly accepted, key materials are generated through a Key Derivation Function
(KDF).

Let Security Context be the set of security parameters useful to setup security services.

Figure 2 provides a high-level picture of the negotiation protocol. Let Message Type
Indicator (MTI) be a field that identifies the type of message. It may assume the following
values:

 0x10: SDEV Hello
 0x20: GW_INK Hello
 0x30: SDEV AuthN
 0x40: GW_INK AuthN

688156 - symbIoTe - H2020-ICT-2015 D4.3 – Final symbIoTe middleware implementation
 Public

Version 0.6 Page 40 of 62
 © Copyright 2018, the Members of the symbIoTe consortium

Figure 2: Negotiation Protocol

3.8.2 Pre-Shared Key Configuration

A unique PSK for each device must be defined to circumvent the problem of a
compromised PSK in a smart space. Only one key natively must be stored at the
Gateway/Innkeeper side. Three different levels of security can be identified:

3.8.2.1 Basic level

 Gateway/Inkeeper (GW/INK) stores a Master Secret Key (MSK), unique with the
symbIoTe environment and shared among all SSPs.

 Every device directly stores the PSK = H(MACADDR||MSK), where H is a hashing
function.

 GW/INK calculates PSK in real time.

688156 - symbIoTe - H2020-ICT-2015 D4.3 – Final symbIoTe middleware implementation
 Public

Version 0.6 Page 41 of 62
 © Copyright 2018, the Members of the symbIoTe consortium

Figure 3: Basic Security Level

3.8.2.2 Intermediate level

 GW/INK stores a Master Secret Key (MSK), defined by the SSP owner for a given
SSP. The core should know the MSK assigned to each SSP

 Each device belonging to the considered SSP is configured to store the PSK
= H(MACADDR||MSK), where H is a hashing function

 GW/INK calculates PSK in real time
 In case of roaming, GW/INK of the new SSP could contact the core for obtaining the

unique PSK assigned to a given device.

688156 - symbIoTe - H2020-ICT-2015 D4.3 – Final symbIoTe middleware implementation
 Public

Version 0.6 Page 42 of 62
 © Copyright 2018, the Members of the symbIoTe consortium

Figure 4: Intermediate Security Level

3.8.2.3 Advanced level

 Each device is configured with a unique PSK.
 The PSK is stored in GW/INK and core by the device owner
 In case of roaming, GW/INK could contact the core for obtaining the unique PSK

assigned to a given device.

Despite the definition of multiple security levels, only the basic level is implemented at the
time of the writing of the Deliverable. Other levels of security can be easily integrated in
the future.

3.8.3 SDEV Hello message

SDEV Hello message is sent in plaintext by SDEV. It contains the related MTI code (that is
MTI=0x10), the MAC address of the SDEV (namely SDEVMAC), the supported Cipher
Suites (namely CRYPTOPROPOSAL) that contain a list with the related Cipher Suite IDs (It is
recommended to use the ID defined by IANA for TLS Parameters [4]), the preferred Key
Derivation Function (namely KDFPROPOSAL) and a cryptographic nonce (namely
SDEVNONCE).

Optionally additional key material (namely SDEVMATERIAL) is present when Public Key
Cryptography is implemented. It stores a X.509 certificate.

SDEVMAC is used for identifying the Smart Device.

CRYPTOPROPOSAL describes the list of cryptographic algorithms supported by SDEV. They
are expressed according to the following structure:

688156 - symbIoTe - H2020-ICT-2015 D4.3 – Final symbIoTe middleware implementation
 Public

Version 0.6 Page 43 of 62
 © Copyright 2018, the Members of the symbIoTe consortium

 Key Exchange Algorithm (to establish a mechanism by which both parties will
negotiate a key to communicate authentically)

 Symmetric Encryption Algorithm (to encrypt the messages)

 Message Authentication Code Algorithm (to create a message digest of message)

More than one proposal can be reported within the list. The resulting protocol is, indeed,
flexible. Possible examples include:

 PSK_WITH_AES_128_GCM_SHA256, where PSK is used to set a pre-shared key,
AES as symmetric encryption algorithm with a 128 bit key, SHA256 as a
pseudorandom function (PRF) based on HMAC (Hash-based message
authentication code) with the SHA-256 hash function

 PSK_WITH_CHACHA20_POLY1305_SHA256, where PSK is used to set a pre-
shared key, CHACHA20 as symmetric cipher with a 256 bit key, POLY1305 as a
message authentication code that requires a 256 bit key and a message and
produces a 128 bit tag

 PSK_WITH_AES_128_CBC_SHA, where PSK is used to set a pre-shared key,
AES as symmetric encryption algorithm with a 128 bit key, SHA as a
pseudorandom function (PRF) based on HMAC with the SHA hash function or as a
message authentication code algorithm

 ECDH_ECDSA_WITH_AES_128_CBC_SHA, which requires that the GW/INK
certificate’s contain an ECDH-capable public key signed with ECDSA (both device
and Gateway/Innkeeper perform an ECDH operation and use the resultant shared
secret as the premaster secret), AES as symmetric encryption algorithm with a 128
bit key, SHA as a pseudorandom function (PRF) based on HMAC with the SHA
hash function or as a message authentication code algorithm

 ECDH_ECDSA_WITH_AES_256_CBC_SHA, which requires that the GW/INK
certificate’s contain an ECDH-capable public key signed with ECDSA (both device
and GW/Innkeeper perform an ECDH operation and use the resultant shared secret
as the premaster secret), AES as symmetric encryption algorithm with a 256 bit key,
SHA as a pseudorandom function (PRF) based on HMAC with the SHA hash
function or as a message authentication code algorithm

The KDFPROPOSAL field proposes the Key Derivation Function (KDF) to be used for
generating session keys. Possible proposal includes PBKDF2 or HKDF. SDEVNONCE is
used to protect the communication from replay attack together with GW_INKNONCE. It builds
the salt value in the KDF function. Optionally, SDEVMATERIAL is present when Public Key
Cryptography is implemented. Therefore, it stores a X.509 certificate.

3.8.3.1 AEAD Mode

Some encryption algorithm like AES_128 with GCM or CHACHA20_POLY135, support
AEAD. AEAD stands for “Authenticated Encryption with Additional Data” meaning there is
a built-in message authentication code for integrity checking both the ciphertext and
optionally additional authenticated (but unencrypted) data. In this protocol,
SDEVMAC||sequence_number is used as Additional Authenticated Data (AAD). The
sequence number is the number of messages sent since the last handshake. It is
incremented by 1 for each message. The sequence number could be start from a value
obtained by the SDEVNONCE and GW_INKNONCE sum, and it is used also to avoid replay

688156 - symbIoTe - H2020-ICT-2015 D4.3 – Final symbIoTe middleware implementation
 Public

Version 0.6 Page 44 of 62
 © Copyright 2018, the Members of the symbIoTe consortium

attacks. In fact, for "AEADless" encryption algorithms, a sequence number field (sn) must
be defined.

3.8.4 GW_INK Hello message

As soon as the SDEV Hello is received, Gateway or Innkeeper verifies that SDEVNONCE is
acceptable, SDEVMAC is stored within a database, and CRYPTOPROPOSAL contains an
acceptable proposal. Then, it selects the most suitable Cipher Suite and sent back a new
message containing the related MTI code (that is MTI=0x20), the selected Cipher Suite
(namely CRYPTOCHOICE), an optional Initialization Vector (IV), the nonce (namely
GW_INKNONCE), and optionally additional key material (namely GW_INKMATERIAL).
CRYPTOCHOICE uses the same structure as the CRYPTOPROPOSAL. IV can be used along
with a secret key for data encryption. GW_INKNONCE is used to protect the communication
from replay attack and together with SDEVNONCE. It builds the salt value in the KDF
function. Optionally, GW_INKMATERIAL is present when Public Key Cryptography is
implemented. Therefore, it stores an X.509 certificate.

At this moment, SDEV and Gateway or Innkeeper calculate symmetric keys, according to
the algorithm negotiated before. What however is important to remark is that
communicating peers will calculate the following keys:

 DK1: derived key used to provide data confidentiality

 DK2: derived key used to provide data authenticity

3.8.5 SDEV AuthN message

This message is sent by SDEV that means the negotiation is completed and that the
cipher suite is activated. It contains the related MTI code (that is MTI=0x30), the nonce
(namely SDEVNONCE_2) to prevent replay attacks, and the encrypted hash of
SDEVnonce||GWnonce. It should be encrypted since the negotiation is successfully done.
After that the message is sent to GW/Innkeeper, the GW/Innkeeper can decrypt it and
check if the received hashes match the calculated hashes.

3.8.6 GW_INK AuthN message

This message is sent by GW/Innkeeper that means the negotiation is completed, that the
cipher suite is activated. It contains the related MTI code (that is MTI=0x40), the nonce
(namely GW_INKNONCE_2) to prevent replay attacks, and the encrypted hash
SDEVnonce||GWnonce. It should be encrypted since the negotiation is successfully done.
After that the message is sent to SDEV, the SDEV can decrypt it and check if the received
hashes match the calculated hashes. At this point, SDEV and gateway/Innkeeper are
authenticated.

3.8.7 Data Confidentiality

The encrypted messages can be exchanged by using HTTP Protocol, including an object
(i.e. JSON [5] in the HTTP Message Body. If the AEAD algorithm is used, the payload is
only encrypted by using DK1.

ENC_DATA = ENCDK1 (Data||sequence_number)

Otherwise, an HMAC signature must be calculated by using DK2:

688156 - symbIoTe - H2020-ICT-2015 D4.3 – Final symbIoTe middleware implementation
 Public

Version 0.6 Page 45 of 62
 © Copyright 2018, the Members of the symbIoTe consortium

ENC_DATA = ENCDK1 (Data||sequence_number)

SIGNATURE = HMACDK2(ENC_DATA||sequence_number)

3.8.7.1 Key Material Derivation

The session key is derived through the KDF: the one used in the middleware is Password-
Based Key Derivation Function 2. This process is typically known as key stretching.

3.8.7.2 PBKDF2

The PBKDF2 key derivation function has five input parameters:

DK1 = PBKDF2(PRF, PSK, SDEVNONCE||GW_INKNONCE,i, dkLen)
where:

 PRF: pseudorandom function of two parameters with output length hLen (e.g. a
keyed HMAC-SHA-1)

 PSK: the master key (or premaster key) from which a derived key is generated

 SDEVNONCE||GW_INKNONCE: cryptographic salt

 i: number of iterations desired

 dkLen: the desired length of the derived key (it depends by the chosen cipher suite)

 DK1 is the derived key

If AEAD algorithm is not used, derive another key for sign the data is recommended.

DK2 = PBKDF2(PRF, firstpart(PSK/2)||SDEVNONCE||GW_INKNONCE,
SDEVNONCE||GW_INKNONCE, i, dkLen)

where DK2 is the derived key used to sign the Message Authentication Code.

Please note that at this point of implementation LWSP supports only PBKDF23 and
AES128 CBC with SHA1 as cypher suite. Other levels of security can be easily integrated
in the future.

3.9 Security aspects: Platform

The SSP owners can create users and assigns users’ properties (i.e. attributes) in the
Local AAM. For a resource under its (SSP) control, the SSP owner defines access policies
in the RAP to permit or deny access to resources. The SSP owner can also register
Platform Agents, responsible for registering non-symbIoTe platform resources thanks to
which they may be visible and accessible for the rest of the symbIoTe system. What’s
more, Platform Agent handles the access to those resources.

3.9.1 Privacy between SSP Middleware and Third Party IoT Platform

To avoid privacy issue between User/App, SSP Middleware Owner and 3rd Party IoT
Platform and the escrow issue, the challenge and response mechanism already defined in
L1/L2 is reused.

3
 Calculated with 4 iterations.

688156 - symbIoTe - H2020-ICT-2015 D4.3 – Final symbIoTe middleware implementation
 Public

Version 0.6 Page 46 of 62
 © Copyright 2018, the Members of the symbIoTe consortium

For L3 clients, symbIoTe offers a proprietary security payload holder in the
SecurityRequest extension which can be implemented by customized clients needed to
use by e.g. a hashing algorithm which could concatenate a secret (delivered to the client
through a 3rd Party channel, therefore unknown in the symbIoTe ecosystem) and the
username and/or clientID along with the operation timestamp available for the 3rd Party
RAP plugin to be read from the symbIoTe Authorization token SUB claim.

This way the Platform Agent's authorization extension is able to recreate the hash on its
side and verify if they match. The username/clientID and timestamp are delivered as
already implemented in the L1/L2 CH-RESP mechanism.

688156 - symbIoTe - H2020-ICT-2015 D4.3 – Final symbIoTe middleware implementation
 Public

Version 0.6 Page 47 of 62
 © Copyright 2018, the Members of the symbIoTe consortium

4 Components basic information table

This chapter contains all basic information about symbIoTe system components
implemented for the Release 2. For a better reading purpose, the information is presented
in tabular style for each component in alphabetical order. The list misses RAP GW and
Platform agent because the first is intended to be done with commercially available
services and the latter should be in charge of the specific IoT platform owner.

4.1 Administration

Component/service name Administration
URL of source codes https://github.com/symbiote-h2020/Administration

4.2 Innkeeper

Component/service name Innkeeper
URL of source codes https://github.com/symbiote-h2020/SymbioteSmartSpace

4.3 Local AAM

Component/service name Local AAM
URL of source codes https://github.com/symbiote-h2020/SymbioteSmartSpace

4.4 SDEV agent

Component/service name SDEV agent
URL of source codes https://github.com/symbiote-h2020/SymbioteSmartSpace

Component/service name Innkeeper
URL of source codes https://github.com/symbiote-h2020/LWSPLibrary

Additional information Generic C++ code to implement the Lightweight Security Protocol

4.5 SSP RAP

Component/service name SSP RAP
URL of source codes https://github.com/symbiote-h2020/SymbioteSmartSpace

https://github.com/symbiote-h2020/Administration
https://github.com/symbiote-h2020/SymbioteSmartSpace
https://github.com/symbiote-h2020/SymbioteSmartSpace
https://github.com/symbiote-h2020/SymbioteSmartSpace
https://github.com/symbiote-h2020/LWSPLibrary
https://github.com/symbiote-h2020/SymbioteSmartSpace

688156 - symbIoTe - H2020-ICT-2015 D4.3 – Final symbIoTe middleware implementation
 Public

Version 0.6 Page 48 of 62
 © Copyright 2018, the Members of the symbIoTe consortium

5 Conclusions

The current document reports the final implementation of symbIoTe software related to
L3/4 compliancy. The main outcome of this work is the source code and its documentation,
published as an open source project in the GitHub service: https://github.com/symbiote-
h2020 [2].

There are three major middleware components for the symbIoTe GW deployment plus an
additional service based on the existing solution to address the RAP GW functionality, a
component for the administration of the SSP and the external agent firmware for Arduino
ESP8266 based devices. For our perspective, addressing a big makers community as
Arduino one’s is a great added value for the symbIoTe project.

There is also a wiki on the GitHub repository that illustrates the various step to build own
gateway and setup the Smart Space; these steps are also reported in the appendix of this
document.

https://github.com/symbiote-h2020
https://github.com/symbiote-h2020

688156 - symbIoTe - H2020-ICT-2015 D4.3 – Final symbIoTe middleware implementation
 Public

Version 0.6 Page 49 of 62
 © Copyright 2018, the Members of the symbIoTe consortium

6 References

[1] symbIoTe project Deliverable D4.1 - symbIoTe Smart Space Middleware Tools,
Protocols and Core Mechanisms; February 2017.

[2] H-2020 symbIoTe Cloud Github Repository;
https://github.com/symbioteh2020/SymbioteCloud; accessed on 11/09/2018

[3] symbIoTe project Deliverable D1.4 - Final Report on System Requirements and
Architecture; July 2017.

[4] IANA Transport Layer Security (TLS) Extensions; accessed on 11/09/2018:
https://www.iana.org/assignments/tls-extensiontype-values/tls-extensiontype-
values.xml

[5] RFC-7159 The JavaScript Object Notation (JSON) Data Interchange Format; IETF;
March 2014.

[6] RFC-4868 Using HMAC-SHA-256, HMAC-SHA-384, and HMAC-SHA-512 with IPsec;
IETF; May 2007

[7] RFC-5869 HMAC-based Extract-and-Expand Key Derivation Function (HKDF); IETF;
May 2010

[8] RFC-8018 PKCS #5: Password-Based Cryptography Specification Version 2.1; IETF;
January 2017

https://github.com/symbioteh2020/SymbioteCloud
https://www.iana.org/assignments/tls-extensiontype-values/tls-extensiontype-values.xml
https://www.iana.org/assignments/tls-extensiontype-values/tls-extensiontype-values.xml

688156 - symbIoTe - H2020-ICT-2015 D4.3 – Final symbIoTe middleware implementation
 Public

Version 0.6 Page 50 of 62
 © Copyright 2018, the Members of the symbIoTe consortium

7 Definition, acronyms, abbreviations

AEAD Authenticated Encryption with Associated Data

AAM Authorization and Authentication Manager

ECDH Elliptic Curve Diffie–Hellman protocol

ECDSA Elliptic Curve Digital Signature Algorithm

GUI Graphical User Interface

GW Gateway

HTTP Hypertext Transfer Protocol

IANA Internet Assigned Numbers Authority

ICT Information and Communications Technology

INK Innkeeper

IoT Internet of Things

JSON JavaScript Object Notation

KDF Key Derivation Function

LAAM Local Authentication and Authorization Manager

LWSP Light Weight Security Protocol

MAC Media Access Control address

MSK Master Secret Key

MTI Message Type Identifier

OData Open Data protocol

PBKDF Password Based Key Derivation Function

POPD Protection of Personal Data

PSK Pre-Shared Key

RAP Resource Access Proxy

REST Representational State Transfer

RSA Rivest–Shamir–Adleman cryptosystem

S3M symbIoTe Smart Space Middleware

SAAM SSP Authentication and Authorization Manager

SDEV Smart Device

SDEVP Smart Device encrypted data Payload

SHA Secure Hash Algorithm

SSP Smart Space

TLS Transport Layer Security

688156 - symbIoTe - H2020-ICT-2015 D4.3 – Final symbIoTe middleware implementation
 Public

Version 0.6 Page 51 of 62
 © Copyright 2018, the Members of the symbIoTe consortium

8 Appendix - Middleware deployment

8.1 Creating SSP owner

To create a SSP owner user, go to the symbIoTe Core Admin webpage (e.g.
https://symbiote-open.man.poznan.pl/administration). During registration, you have to
provide:

 username
 password
 email
 user role (i.e. Service Owner in this case)

Afterwards, you can log in as the new user and register your smart space. To this end, you
have to click on the SSP Details panel and then on Register New SSP button on the
upper right corner.

Then, you have to provide the following details:

 Preferable SSP id (or leave empty for autogeneration)

 SSP Name

 External Address: a valid https url for the address where the SSP is available from
the Internet

 Site Local Address: a valid https url for the address where the SSP is available for
clients residing in the same network

 Choose if the site local address should be exposed

https://symbiote-open.man.poznan.pl/administration

688156 - symbIoTe - H2020-ICT-2015 D4.3 – Final symbIoTe middleware implementation
 Public

Version 0.6 Page 52 of 62
 © Copyright 2018, the Members of the symbIoTe consortium

By this procedure your SSP is registered in the symbIoTe Core. You will see the panel of
the newly registered SSP and check its details by clicking on its header.

Finally, you can delete the SSP by clicking the delete button on the bottom right corner of
the SSP details.

688156 - symbIoTe - H2020-ICT-2015 D4.3 – Final symbIoTe middleware implementation
 Public

Version 0.6 Page 53 of 62
 © Copyright 2018, the Members of the symbIoTe consortium

8.2 Installing the requirements

SSP require the following software to be installed:

 Java Development Kit - You need Oracle Java 8 version 8u131+ or OpenJDK
version 8u101+ (Letsencrypt certificate compatibility) because all services are
implemented in Java.

 MongoDB - (latest stable, verifierd working 3.6.+) database used by cloud
components.

 Gradle - (latest stable, verified working 4.6)

8.3 Downloading needed sources

The SSP components are available in github, in the repositories shown in Chapter 1. For a
concrete example, let’s say that we will install everything in directory /opt/symbiote on
Linux machine.

You can download then using the following commands:

$ git clone https://github.com/symbiote-h2020/AuthenticationAuthorizationManager.git

$ git clone https://github.com/symbiote-h2020/SymbioteSmartSpace.git

Master branches contain the latest stable symbIoTe release version, develop branch is a
general development branch containing newest features that are added during
development and particular feature branches are where new features are developed. For
symbIoTe smart spaces installation, the following components are currently being used
and required to properly deploy a smart space in L3/4compliance:

 AuthenticationAuthorizationManager (abbr. LAAM or SAAM) - service
responsible for providing a common authentication and authorization mechanism for
symbIoTe

 SymbioteSmartSpace - service responsible for storing and searching for metadata
as well as provide access to resources

8.4 Configuring and starting components

In this chapter, we describe the procedure to deploy the components required in L3/L4. In
this example, we clone our components in the folder /opt/symbiote.

 Start MongoDB server;

 Build and run S3M by using the following commands:

gradle assemble --refresh-dependencies

java -jar build/libs/{Component}

which need to be done in each directory. They is general remark, the concrete steps can
be found in the following paragraphs.

8.4.1 SAAM – SSP Authentication and Authorization Manager

688156 - symbIoTe - H2020-ICT-2015 D4.3 – Final symbIoTe middleware implementation
 Public

Version 0.6 Page 54 of 62
 © Copyright 2018, the Members of the symbIoTe consortium

In order to configure SAAM (SSP Authentication and Authorization Manager) we need
some symbIoTe certificates in a new keystore. Certificates needs to be created by using
SymbIoTeSecuriy.

8.4.1.1 Creating AAM certificate keystore

 Open https://jitpack.io/#symbiote-h2020/SymbIoTeSecurity

At the time of writing this document latest release is e.g. 25.6.0

 Download JAR from link that is release dependent e.g.:
https://jitpack.io/com/github/symbiote-
h2020/SymbIoTeSecurity/25.6.0/SymbIoTeSecurity-25.6.0-helper.jar

 Download JAR from link: https://www.bouncycastle.org/download/bcprov-jdk15on-
159.jar

From CloudConfigPropertiesapplication.properties file:

symbIoTe.core.interface.url

coreAAMAddress=https://symbiote-open.man.poznan.pl/coreInterface

The user registered through administration in the symbIoTe Core

serviceOwnerUsername=TODO_YOUR_USER_IN_CORE_ADMINISTRATION

serviceOwnerPassword=TODO_YOUR_PASSWORD

The SSP ID registered to the given service Owner

serviceId=SSP_<TODO_WHAT_YOU_REGISTERED_IN_CORE>

Generated keystore file name

keyStoreFileName=saam-keystore.p12

used to access the keystore. MUST NOT be longer than 7 chars

from spring bootstrap file: aam.security.KEY_STORE_PASSWORD

Further more as the Java security package is working totally against the API -

ignores the privateKeyPassword.

IT MUST BE THE SAME as spring bootstrap file: aam.security.PV_KEY_PASSWORD

keyStorePassword=pass123

platform AAM key/certificate alias... case INSENSITIVE (all lowercase)

from spring bootstrap file: aam.security.CERTIFICATE_ALIAS

aamCertificateAlias=saam

root CA certificate alias... case INSENSITIVE (all lowercase)

from spring bootstrap file: aam.security.ROOT_CA_CERTIFICATE_ALIAS

rootCACertificateAlias=caam

 Start generation of certificate:
o On Linux/Mac use the following command:

java -cp SymbIoTeSecurity-$symbIoTeSecurityVersion-helper.jar:bcprov-jdk15on-

159.jar

eu.h2020.symbiote.security.helpers.ServiceAAMCertificateKeyStoreFactory

cert.properties

https://jitpack.io/#symbiote-h2020/SymbIoTeSecurity
https://jitpack.io/com/github/symbiote-h2020/SymbIoTeSecurity/25.6.0/SymbIoTeSecurity-25.6.0-helper.jar
https://jitpack.io/com/github/symbiote-h2020/SymbIoTeSecurity/25.6.0/SymbIoTeSecurity-25.6.0-helper.jar
https://www.bouncycastle.org/download/bcprov-jdk15on-159.jar
https://www.bouncycastle.org/download/bcprov-jdk15on-159.jar

688156 - symbIoTe - H2020-ICT-2015 D4.3 – Final symbIoTe middleware implementation
 Public

Version 0.6 Page 55 of 62
 © Copyright 2018, the Members of the symbIoTe consortium

 On Windows use:

java.exe -cp SymbIoTeSecurity-helper-$symbIoTeSecurityVersion-

helper.jar;bcprov-jdk15on-159.jar

eu.h2020.symbiote.security.helpers.ServiceAAMCertificateKeyStoreFactory

.\cert.properties

If everything is OK it will generate paam-keystore.p12 file.

8.4.1.2 Configuring the SAAM component

Build the AAM module using command:

$ cd /opt/symbiote/SymbioteSmartSpace/AuthenticationAuthorizationManager

$ gradle assemble --refresh-dependencies

Once one has done previous actions, you need to create bootstrap.properties as in the
following example:

spring.application.name=AuthenticationAuthorizationManager

spring.cloud.config.enabled=false

eureka.client.enabled=false

spring.zipkin.enabled=false

#port on which the AAM should listen for operations

server.port=8443

aam.database.name=symbiote-aam-database

logging.file=logs/AuthenticationAuthorizationManager.log

AAM settings

username and password of the AAM module (of your choice) -- master password

used to manage your AAM (e.g. register new users), not your credentials in the

Core, you need to put matching values in the SSP middleware configuration

aam.deployment.owner.username=sspAdmin

aam.deployment.owner.password=sspAdminP@ssw0rd

absolute path to the saam-keystore.p12 file

aam.security.KEY_STORE_FILE_NAME=TODO

name of the root ca certificate entry in the Keystore you produced using the

SymbIoTeSecurity Factory

aam.security.ROOT_CA_CERTIFICATE_ALIAS=caam

name of the certificate entry in the Keystore you produced using the

SymbIoTeSecurity Factory

aam.security.CERTIFICATE_ALIAS=saam

symbiotekeystore password

aam.security.KEY_STORE_PASSWORD=pass123

symbiote certificate private key password

aam.security.PV_KEY_PASSWORD=pass123

HTTPS only

name of the keystore containing the letsencrypt (or other) certificate and key

pair for your AAM host's SSL, you need to put it also in your src/main/resources

directory

#server.ssl.key-store=classpath:TODO.p12

SSL keystore password

#server.ssl.key-store-password=TODO

SSL certificate private key password

#server.ssl.key-password=TODO

688156 - symbIoTe - H2020-ICT-2015 D4.3 – Final symbIoTe middleware implementation
 Public

Version 0.6 Page 56 of 62
 © Copyright 2018, the Members of the symbIoTe consortium

http to https redirect

#security.require-ssl=TODO

Cache settings. If validated token is in cache, component certificate or

available AAMs were aquired recently, value from cache is returned to avoid

communication with another AAM. In case of missing, default values are used.

time (in milliseconds) for which valid token should be cached (DEFAULT: 60000)

aam.cache.validToken.expireMillis=60000

size of validToken cache. If size set to -1, validToken cache has no limit.

(DEFAULT: 1000)

aam.cache.validToken.size=1000

time (in seconds) for which componentCertificate should be cached (DEFAULT:

60)

aam.cache.componentCertificate.expireSeconds=60

time (in seconds) for which availableAAMs should be cached (DEFAULT: 60)

aam.cache.availableAAMs.expireSeconds=60

#JWT validity time in milliseconds - how long the tokens issued to your users

(apps) are valid... think maybe of an hour, day, week?

aam.deployment.token.validityMillis=60000

allowing offline validation of foreign tokens by signature trust-chain only.

Useful when foreign tokens are expected to be used along with no internet access

aam.deployment.validation.allow-offline=true

needed to offer available aams service

symbIoTe.core.interface.url=https://symbiote-open.man.poznan.pl/coreInterface

needed to expose oneself to other components

symbIoTe.localaam.url=http://localhost

the external address for client to reach the AAM from the Internet

symbIoTe.interworking.interface.url=https://localhost

symbIoTe.siteLocal.url=http://localhost

profile activating smart space AAM functionalities (do not change the value!)

spring.profiles.active=smart_space

After you have both, the:

 saam-keystore.p

 bootstrap.properties

files ready, then you need to put them in the directory next to the built jar file and run the
aam as:

$ java -jar AuthenticationAuthorizationManager-3.1. 1 -run.jar

8.4.1.3 Verifying functionality of SAAM

Verify all is ok by going to:

http://localhost:8443/get_available_aams

If everything is OK there you should see the connection green and the content are the
symbIoTe security endpoints fetched from the core.

http://localhost:8443/get_available_aams

688156 - symbIoTe - H2020-ICT-2015 D4.3 – Final symbIoTe middleware implementation
 Public

Version 0.6 Page 57 of 62
 © Copyright 2018, the Members of the symbIoTe consortium

8.4.2 SSP Middleware

In order to configure the SSP you need to create an application.properties file and put it
inside the SSP directory. In this file you need to specify the SSP id and local username
and password according to the following template:

ssp.id=<TODO the id of the SSP as registered in the Administration Panel of the

symbIoTe Core>

The credentials of the SSP Owner account in the LAAM

symbIoTe.component.username=TODO

symbIoTe.component.password=TODO

This is a concrete file for our example:

ssp.id=SSP_UNIDATA

The credentials of the SSP Owner account in the LAAM

symbIoTe.component.username=loc_sspunidata

symbIoTe.component.password=loc_sspunidata123

Note:
Username and password assigned in application.properties file should be different
from the Service Owner credentials in symbIoTe core.

Before starting the middleware, you have to have a wifi access point service configured
and running. The broadcasted SSID should respect the following syntax (Regex):

^sym-[0-9a-f]{20}$

While the psw associated should be the hex value where each 'f' should be replaced by '9'
and each '5' should be replaced by 'a'.

For example, this is a valid symbiotic SSP-wifi:

SSID: "sym-00010203040506070809"

psw: "00010203040a06070809"

Also, ensure that you have installed a dhcp server and a dns server to resolve the name
"ssp.symbiote.org".

The following are an example of configuration files for the SSP wifi infrastructure using the
following software: hostapd, isc-dhcpserver and bind9.

 hostapd.conf

interface=wlp2s0

hw_mode=g

ssid=sym-00010203040506070809

hw_mode=g

channel=1

wpa=3

wpa_passphrase=00010203040a06070809

wpa_key_mgmt=WPA-PSK

wpa_pairwise=TKIP

rsn_pairwise=CCMP

beacon_int=100

688156 - symbIoTe - H2020-ICT-2015 D4.3 – Final symbIoTe middleware implementation
 Public

Version 0.6 Page 58 of 62
 © Copyright 2018, the Members of the symbIoTe consortium

auth_algs=3

macaddr_acl=0

wmm_enabled=1

eap_reauth_period=360000000

ctrl_interface=/var/run/hostapd

 dhcpd.conf

ddns-update-style none;

log-facility local7;

subnet 10.20.30.0 netmask 255.255.255.0 {

 range 10.20.30.2 10.20.30.40;

 option routers 10.20.30.1;

 option domain-name "symbiote.org";

 option domain-name-servers 10.20.30.1;

 default-lease-time 600;

max-lease-time 7200;

}

 bind9/symbiote.org

$ORIGIN .

$TTL 907200 ; 1 week 3 days 12 hours

symbiote.org IN SOA ns.symbiote.org. ns.symbiote.org. (

1263535758 ; serial

10800 ; refresh (3 hours)

 3600 ; retry (1 hour)

 604800 ; expire (1 week)

38400 ; minimum (10 hours 40 minutes)

)

 NS ns.symbiote.org.

 A 10.20.30.1

 MX 10 ns.symbiote.org.

$ORIGIN symbiote.org.

Innkeeper A 10.20.30.1

ns A 10.20.30.1

You have to link the bind9 config file usually named named.conf.local with the previously
symbiote.org zone. E.g. adding this line in the named.conf.local file:

zone "symbiote.org" IN { type master; file "symbiote.org"; };

So this is the result of the file named.conf.local:

include "/etc/bind/rndc.key";

acl trusted {

 10.20.30.0/24;

 localhost;

 };

view "trusted-view"

{

match-clients { trusted; };

688156 - symbIoTe - H2020-ICT-2015 D4.3 – Final symbIoTe middleware implementation
 Public

Version 0.6 Page 59 of 62
 © Copyright 2018, the Members of the symbIoTe consortium

zone "symbiote.org" IN { type master; file "symbiote.org"; };

zone "255.in-addr.arpa" IN { type master; file "/etc/bind/db.255"; };

 };

Then you can use the following command to set-up the network (example if using debian
distribution):

hostapdhostapd.conf>/dev/null &

ifconfig wlp2s0 10.20.30.1/24

/etc/init.d/isc-dhcp-server start

/etc/init.d/bind9 restart

Then, issue the following commands to deploy the SSP:

$ cd /opt/symbiote/SymbioteSmartSpace

$ gradle assemble --refresh-dependencies

$ java -jar build/libs/SymbioteSmartSpace-1.0.0.jar

Now the Smart Space Middleware should be running.

8.4.2.1 SDEV side configuration

Once the SSP is up and running, you can fire up the SDEV burned with the example
firmware4 from the GitHub Repo. It will connect to the SSP WiFi, establish the secure
communication tunnel session using the Lightweight Security Protocol and the begin to
register its resources. After that, it handles the RAP request.

4
The firmware is available for the Arduino ESP8266 platform.

688156 - symbIoTe - H2020-ICT-2015 D4.3 – Final symbIoTe middleware implementation
 Public

Version 0.6 Page 60 of 62
 © Copyright 2018, the Members of the symbIoTe consortium

9 Appendix – Component sequence diagrams

This section reports the schematic interaction of the S3M middleware components in 4
type of scenarios:

 SDEV that joins the SSP;

 Local platform that joins the SSP;

 Local access of resources;

 Remote access of resources;

9.1 SDEV joining the SSP

Figure 5: SDEV joins SSP

688156 - symbIoTe - H2020-ICT-2015 D4.3 – Final symbIoTe middleware implementation
 Public

Version 0.6 Page 61 of 62
 © Copyright 2018, the Members of the symbIoTe consortium

9.2 Local Platform joining the SSP

Figure 6: Local platform joins SSP

9.3 Local access of resources

Figure 7: Local access of resources

688156 - symbIoTe - H2020-ICT-2015 D4.3 – Final symbIoTe middleware implementation
 Public

Version 0.6 Page 62 of 62
 © Copyright 2018, the Members of the symbIoTe consortium

9.4 Remote access of resources

Figure 8: Remote access of resources

