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XLIII. On Resiricted Lines and Planes of Closest Fit to
Systems of Points in any Number of Dimensions, By
E. . Sxow, M. 4.*

STATEMENT OF THE PROBLEM.

I. 'PHE theory of the lines and planes of closest fit

to systems of points when no restriction is placed
upon those lines and planes has been developed by Prof.
Pearson in various papers+t and is of frequent application.
The connexion of these lines and planes with the formule of
the theory of multiple correlationis indicated in those papers.
If the criterion of “ closest fit ” is that the sum of the squares
of the deviations from the line or plane measured in the
direction of the “ dependent ” variable is to be a minimum,
the equation of the line or plane is identical with the corre~
sponding multiple correlation formula. It the sum of the
squares of the deviations measured at right angles to the line or
plane is a minimum (and this, from the purely geometrical
point of view, is the more satisfactory criterion), the result is
not of such a simple form, but the determinant from which the
mean square residual is obtained is similar to the multiple
correlation determinant.

While working on certain vital statistics, it was desired
to obtain a formula connecting the ‘dependent” variable
with the “independent” variables when the values of all
the variables were known at the beginning and end of a
certain range, and the corrvelation between “ dependent”
and “independent” variables at all intermediate points was
a maximum. Thus, if «, denote the “ dependent”’ variable,
and &, &, ...&, the “independent” ones, we require to
make the correlation of z, with a;, #,,...2, a maximum,
with the condition that when &, ay,...2, take up the
values Py, Pots + + + Puts Prz; Paz -« - Puz Yespectively, x, is to
take the values py and pgs.

A similar problem occurs in certain branches of Physics,
especially in connexion with solutions and alloys. A
property-—e. g., the freezing-point—of a pure substance
may be definitely known, and it is required to investigate
the behaviour of that property as certain amounts of some
other substance or substances are added. Tixed conditions
will be imposed upon the law which is to be investigated by
the known properties of the pure substance. The law, then,

* Communicated by Prof. Karl Pearson, F.R.S,

+ See Phil. Mag. Nov. 1901, pp. 559 et seqq. ; Phil. Trans, vol. clxxxvii.
A, pp. 301 et seqq.
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has to give the best fit to the observations made of the
property as definite quantities of the other substances are
added. Two examples of such cases are given from the
figures of certain alloys (§7 below).

“The idea is capable of generalization, and the theory
for the general case will be investigated. Looked at from
the point of view of correlation, we shall require to assume
a linear law connecting z, w1th 2, &gy ... 2, and shall
make the sum of the squares of the deviations of the actual
observations from this linear law measured in the direction of
2, a minimum, making use of the exact conditions which are
imposed on the law. This will be first investigated. But a
better geometrical fit to the observations will be obtained
by measuring the deviations perpendicular to the * plane”
given by the linear law, and this will be worked out sub-
sequently.

ANALYTICAL INVESTIGATION.

First Method.

2. Let there be n “independent” variables and (k+1)
conditions connecting them with the * dependent™ variable.
(k+1) is necessarily less than n. Measuring from one of
these fixed conditions, we can assume our law 1s

Xy = a]xl + agxg"‘l" teae + Andn, . . . . (1)
with the % conditions

Por = &1 p1taspst .oer +@upass ‘i
Poz = Qi ProFAsPeat «v.. Qg

J (2)
Por = a1pu+aspo+ ... +&uPup.
Then we want to make

V = Slag—aye1—Gog— oo = aulty)?,

the sum of the square of the deviations in the direetion of z,,
a minimum, subject to the above conditions.
Hence we must have
0= S(v,—a10;—asxs— .... —a, @) (2. dag + 24 .day
+ evve Fan.da), (3)
with the conditions

O=p1,. doy+ pogdas+t ooov +ppeedan. (s=1,2,.... %) (4)
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Multiply equations (4) by As (s=1,2,....%), and add
to (3). Then, by the ordinary theory of maximum and
minimum values, we know that the coefficient of dat
(¢=1,2,....n) in the equation so obtained must vanish-
This gives the n equations

Mpa+tXpet oo FApu
= Smt(l‘o“-(llﬁl—aglb— DR _anmn)

= Rot—alth-—azR%—- P e e —aant, . . (5)

if Ru,=S(z.2,)=R,, for all positive integral values of u
and ».

(5) gives n equations connecting the (n+£k} unknowns,
A1, Bay veve Bny Ay Agyonv. Ak (2) gives k& other equations
between the a’s, in which, however, the A’s are absent.
Thus we have the following set of equations from which to
determine the a’s and the \'s : —

”r
l><<s>
J

aRy+ @R+ oo +aRu+Mpa+ropat ..o +2Aepa = Ror
(¢=12,....n)
alplc+a2p2a+ eoss A Pns = Pos-
(s=1,2,.... %)
Let A denote
Roo Rlo Rno Por Poz +eoe Pok
Ry Ry .en Ry P11 Prg oo 1k
ROn Rln sese I{nn Pnl Pnz voev Puk
Por Pi1 e P 0 0 .... 0 N
Po2 12 e Pr2 0 0 .... 0
Por Pk see Puk 0 0 .... 0
a determinant of the order (n+k+1).
Then the solutions of equations (6) are :
A
a¢=-A—t° t=1,2,....n) . . . (O
00

and

A'uz\'.
A= — SR (=128 . .. ()
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A,y being the first minor of the constituent of the (u+1)th
column and (v+1)th row, and being positive or negative
according as (u+v) is even or odd.

Thus the coefficients in ihe required formula can be

found at once by the evaluation of a number of determinants
of order (n+4&)*.

Particular Cases.

3. The simplification of the above results in a few par-
ticular cases will be useful.

(A) k=0.—In this case we have a plane passing through
a single fixed point and closest fitting to a system of points.
Here all the Ms disappear, and the equation of the plane
becomes

2y = G+ X+ oo T Ondn,

B
AOO,

where
Oy =
A being
ROO RIO ve v R’SO es e Rn()
Ry Ry ... Ry .... R
Roys M s

Rpn oo vv i v i vl R

Ry being equal to R,,, and is the sum of the products
@ . i, taken throughout the system of points.

If #, and o; be the mean and standard deviation of a,
and 7, the correlation between the coordinates «, and z,, we
have

Ry = S(2way) = Noyoyrye+ Nayz, if v,
and R,,= No2+Nz? if u =0

The analogy between A and the determinant used in the

* Ttis not difficult to show that, by first finding the &’s in terms of the
A’s from the first » of equations (6), and substituting these values in the
last % of the same set—thus giving & equations for the X's,—the a’s can
be found in a form involving only detexminants of order =, though the
number of determinants it is necessary to evaluate is increased, If % is
large, this increase is considerable. The general result in this form
will not be given, but it is exemplified In a particular case below

(§3).
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theory of multiple correlation is now clear, for a: can be
/

written — A——,“’, where
00 I
A= z,2 z, Zy LoLn
14 _0_2,, ro1+ L—, ........ Ton+ ——»
oy 001 G¢Ta
xo) !
o1+ s o
0g01 gy
P 2
Lolg Lo
7'02 + Ty e e e s e 4 e 1 + )
002 oy
fi'oz'n ;ZTn2
Yon + g o s s & s s 4 s e a » . . 1 + —
CGoOn Ty

Thus this determinant can be derived from the multiple
correlation determinant by increasing 7, in the latter by
V,.V, and by increasing the constituents of the leading
term by the corresponding V.?, where V, and V; are the
coefficients of variation of the coordinates x, and .. If the
fixed point is at the mean of the system of given points, A’
becomes at once the ordinary multiple correlation deter-
minant.

Putlting n=1, we derive the two-dimensional case of a
line passing through the origin and giving closest fit (mea-
suring in the direction of y) to a system of points. The
equation of the line is easily seen to be

y= %‘;m = Sélzz:?y)) N (a)

Putting n=2, we reach the three-dimensional case of
a plane passing through the origin and giving closest fit
(measured in the direction of z) to a system of points. Its
equation is

R12R02 - R01R22 x+ R12R01 _R02Rll y
RIIRQQ - Rl22 R11R22 - :R’l‘l2

— S(ay) . S(yz) — S(xz) . S(y*) o S(zy) .S(wz)—8(yz) . 8(a?)
S(x?) . 8(y*) — {8(xy) S(a?) . S(y*) — {Slay) 42

For values of n>>2 it is more convenient to derive the
coefficients direct from the determinant, and there is no
need to write them in full.

(B) k=1.—Here we have the case of a plane~—in n dimen-
sions—passing through two fixed points and fitting most

Z=

y. B
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closely a system of other points. We have in this case
A = Roo Rlo----RnoPo
ROl Rn (AP Rnl y&!

ROn Riyn .0t Run Pn
po _pl .-..pn 0

Pos P1> + - -« Pa being the coordinates of one fixed point relative
to the other, which is taken as origin.

The coefficients in the required equation can be found from
the above in the form of determinants of order (n-+1).

But in this case the first » equations of (6) become

alth+ PR +anR,Lt=R0¢—7\pt (t=1,2,...‘n).

Solving these for a;, ay, .. .. a, in terms of A, we have

80&
Gy = — SE)’
where
d = Roo Rol ROn
B —Xpl Rn Rln
ROn")‘pn Rln le
= &-2a8
where
& = Roo Rm BOn
R()l Rll Rln
Ry, Riy .... B
and
8” = 1 Bo] ) Rgn
P B]l cren B‘ln
P2 : : H
])n Rm e Rm:
so that

80‘ Ay (t=1,2,....7n).
500

ag —
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When these values are substituted in the equation giving
the fixed eondition, viz.

Do=aipr+ oo Fa@pet oot 0

A can be found, and from this the @’s can be completely
determined. This method will be used in an example below.

No other particular cases of this method need be worked
out in detail. We see that it is always possible to obtain a
plane in n-dimensional space to pass through any number
(less than ») of fixed points and to be such that the sum of
the squares of the deviations of any number of other points
from the plane measured in a fized direction is a minimum.

Second Method.

4. We have now to investigate the equation of the
corresponding plane when the criterion for ¢ closest fit*’
is that the sum of the squares of the deviations from the
plane measured at right angles to the plane is the least
possible. From a purely geometrical point of view this
will give a closer plane to the system of points, but it
will not give the regression of one variable on the others,

Let I, ....1, be the generalized direction-cosines of the
plane, and take one of the points through which the plane
has to pass as origin.

Then the equation of the plane is

hay+ oo+l =0, . . . . (9)
the total number of variables being taken as n for convenience
of notation. There will also be the conditions

P+ oo +L2=1 . . . . . (10)
and Lpn+bpat oo +hpu =0,

Upietbpa+ oo +hpe=0, . an

llplk"" l2p2k+ ceee + lnpnlc = 01
(k+1) being the total number of fixed conditions.
The criterion for closest fit is
V=8S{lo+ .... +La,)?
to be minimum, subject to the above conditions.
Hence
O = S(llxl + PP + lnxn)(a’"1dh+ esea + a'nlllﬂ),
together with
Ldl, + ... + Ldl, =0,
i+ oo Fpudl =0,

« s s s s a2 e

plkl]ll+ evee +pnk‘llﬂ = 0.
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The conditions for a minimum give

............

Xituli+p put pepist oo +Hpepy = O’}
(12)

Xnt+ulntppatpspaz+ oo o+ pi pua = 0,
where w, w;, . ... wr are undetermined constants, and
Xe =She + ... )
= LR+ .... +LR.,

where, as before,
Ry = S(2u.2,) = Ry ..

Multiply equations {12) by I, Iy, .... [, respectively, and
add. Remembering the conditions (10) and (11), we at
once obtain

p+l X+ LXK+ ... +1X, =0,

where [, .... 1, have the values which make V a minimum.
But then {;X; +4,X,+ .... +1,X, becomes V,, the minimum
value of V.

It follows that p= =V

Substituting this value of u in (12), we shall have with (11)
(n+ k) equations between &, ... .0, pu; . ... ur. and V,.. Hence
we can eliminate the I’s and the u’s and obtain an equation
to determine V.

Since X, = hRi+ ... + LRy,

this eliminant can be written in the determinantal form

Ru—Va. Ry R P Pz +ee0 P

D = 1{12 R22—V-m cene an Pa1 Poz «-ve Pax
Rln R2n s Rnn—v;n Prl Pr2 cose Prk
Pu Pa cere  Pm 00 .... 0
P12 ng ) png 0 O Sa e 0
Pue Dok eere  Puk 0O 0 .... 0

This is an equation of the (n—£k)th degree in Vnu. Its
roots are necessarily positive (being the sum of a number of
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squares of real quantities), and the smallest of these must be
taken. When this value of V,, is substitated in (11) and (12),
(n+4) homogeneous equations in Il .... ln, pyfg 0o Mz
are obtained, (n+k 1) of which, togethm with (10), suffice
to determme all the I’s and the w’s. As before, this can be
done in determinant form, the order of the determinants
involved being (n +k—1).

Particular Cases.

5. Useful particular cases of the general formnla are
obtained by taking k=0 and k=1.

(A) If k=0, we derive the case analogous to (A) ubove.
The equation to determine V. takes the well-known form

Ru—=Vse Ry .... Ra
Ry Res=Vm.... R

»

Rin Ry ooi i Ru—Va

Putting n=2, we have the two-dimensional case, and V,,
is the least root of the quadratic
Rll—Vm R21 = 0:
Riy  Rp—Va | 7
so that
2V, = (Ri+Rew) = {(Rn—Rn)*+4R2} ",

since Ry = R,,,

and
2(Ry—V,) = (R —Ray) + {(Ru— Ryz)? + 4R, 212,
Put Ru—Ry _ 2Ry _
cos@  sinf
Then P
2(R;;— V) = p(1+cos 6) = 2p cos? 5
and 2R;, = 2p sin fcos g

The first of equations (12) now gives

4 . 6
§+l2sln:2=0,

since the p’s vanish when Z=0.

[, cos
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The equation of the line, therefore, is

-j0_+ 'ose—O
@sin 5 +ycos 5= 0,

where 2R,
t( 9 - lz“
T Ru—Ry

. 28(ay)
T8-S

and the notation is altered to agree with the usual form.
This value of tan @ gives rise to two values of g each less
than 180°. In a particular numerical example, however, it
is not difficult to pick out the value required ; while it can
be verified that the other value corresponds to the * worst-
fitting * line.

In cases of n>2 it is better to substitute the values of the
R’s direct in the determinant above, and to find V, by
the usual methods of approximating to the roots of an
equation.

(B'y If k=1, the equation to determine V,, is

g — Ru—-V. Ra e R;u', y o
o Ry (Rzz— Vm) cene R, P2
: : Tt =0,
Rln R2n LA (Rnn_vm>, pn
21 P2 ceee Py 0

the origin and the point (p,ps....p,) being the fixed
points.
In this case, equations (12) take the form

LBu—=Va)+LRa+ ... +LRy = —Apy

llRln -+ 12R2n+ cers + Zn(R,m "-Vm) = - lpn.

Hence [, is proportional to d;, the first minor of the con-
siituent in the ¢th colamn and bottom row of d, and V,, is
given the value which is the least root of d=0. Using (10),
the actual values of the I’s can be found.

6. It will be secen from the foregoing analysis that the
work involved in determining the * closest fitting ”” plane by
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the second criterion is much greater, at any rate in all cases
of »> 2, than that necessitated by the first criterion. In the
second method, if (n—%) is three or more, the smallest root
of an equation of the third or higher degree has to be
approximated to. This in itself is no light task, and is
not necessary in the first method. The methods do not
necessarily lead to results at all alike (see Example 3, below),
and only the terms of the particular question in hand can
decide which method is to be used. The second gives the
best geometrical fit, considered in a direction perpendicular
to the plane. The first gives the “ regression” plane—i. ¢.,
the most probable value of one variable in terms of the
others. This is the most frequently needed in practical
cases, as is exemplified in Examples 1 and 2.

7. ILLUSTRATIONS.

I. The second column in Table I.* gives the temperatures
(Centigrade) at solidification of a series of alloys of iron and

TapLE I,
x : Temperature b Temperature b
11?8‘;%‘0%5 T:?E::ia;? re 1st IL)xlet.hc'd toy 2nd method toy

preseut. solidification, | Denrest degree. | nearest degree.
02 1470 1501 1501
12 1470 1483 1483
‘16 1465 1476 1476
17 1450 1474 1474
24 1448 1461 1461
*38 1416 1436 1436
b3 1404 1409 1409
681 1394 1395 1394
-80 1351 1360 1359
‘81 1351 1358 1357
131 1286 1268 1267
15t 1244 123t 1230
1-85 1179 1171 1169
212 1110 1122 1120
221 1107 1105 1103

carbon. The percentage of earbon in the various alloys is
given in the first column. The solidifying temperature of
pure iron is 1505° C. Any curve, therefore, which attempts

* The table is taken from a paper on “ The Range of Solidification
and the Critical Ranges of Iron-Cerbon Alloys,” by H. C. H. Carpenter,
M.A., and B. F, E. Keeling, B.A., in the Journal of the Iron and Steel
Tnstitute, No. 1, for 1904.

Phil. Mug. S. 6. Vol. 21. No. 123. March 1911, 2 C
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to express a relationship between the percentage of carbon
present and the solidifying. point of the alloy should
pass through the fixed point (0 9, 1505° C.). TUp to
2 9/,. of carbon a straight line seems to be the most likely
fit. The two methods will therefore be applied to get a line
to pass through the point (0 9/, 1505° C.) and to fit the
series of observations. It will be seen from the figure that
up to a percentage of carbon of 0-5 ¢/, the results are ir-
regular, but from that point up to 2 9, the irregularities
are small and within the limits of experimental error.
Measuring 2 positively from zero and y negatively from

1505, we find

S(«?) = 19-0176,

S(xy) = 343841,

S(y®) = 624986.
By the first method the. equation of the line (measured
from 09/, and 1505° (.) is

_Sle.y) — 180
y _——S-@éj‘ & or y=180801x.

The relationship between the temperature of solidification
and percentage of carbon present is therefore

T = 1505 - 180-801 2.
If we apply the second method, we find
tan § = —-01100335,

whence
= 89° 41’ 5'-23

(SRS .

and
tan g = 181-80843,

which gives the relationship
T = 1505—181-808 2.

The actual temperatures obtained from the two formuls
are given in columns 3 and 4 of Table I. We see that, to
the nearest degree, there is no difference in the results up
to. 05 9/, of carbon, and the difference beyond that point
is small. - The two lines cannot be distingunished on a diagram
of the size shown. The line OP in the diagram represents,
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therefore, the best fit to the system of points of a line
through O by both methods.

0. ) X %2 P

\\PJ

1109 T

T

IT.* In this case we will take the figures of an alloy of
three metals—copper, aluminium, and manganese. The
percentage of manganese present varies from 0 to 10-24,
and of aluminimin from 0 to 7-40. It is not possible to tell
from the mere figures if the distribution is approximately
coplanar or not, but the material seemed good enough to
work upon. The freezing-point of pure copper is 1084° C. ;
in this case, therefore, we require to find a relationship of
the form

T—-1084 =p.2+q.y,

where T is the temperature at solidification of an alloy con-
taining %/, of aluminium and y %/, of manganese. Taking
our origin at zero percentages of aluminium and manganese
and 1084° C., we require to obtain a plane throug%l the
origin and fitting most closely the observations in the second,
third, and fourth columns of Table II.

* The figures for this example were taken from Table 43 (p. 229) of
the “ Ninth Report to the Atloys Research Committee” to the Inst.
of Mechaunical Engineers, by Dr, W. Rosenhain and Mr. F. C. A. H.

Lantsbergy.
202
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TasLi II,

Actual | Deviation | Percentage| Percentage Deviation Deviation
Freezing-| of Temp. of 8 of ¢ %e mp. ll)y from %“emp. {)y from
Point, from |Alnminium|Manganese o(mm B Actual ormuia | Actual
©0. [1084° O.| present. | present. ) Temp. (e)- Terp.
1077 7 1419 114 10678 — 92 1067-7 - 93
1045 39 137 2:75 1053-2 + 82 10529 + 79
1051 33 104 4-92 10566 —~144 10366 ~14:4
1023 6J 1-42 538 10307 + 77 10302 + 72
1015 69 094 648 10240 + 90 10234 + 84
1007 77 1-43 772 10108 + 38 1010-8 + 38
1011 73 091 816 1012-1 + 11 1009-2 — 18
985 92 1-91 1024 987-2 + 22 9859 + 09
1075 9 269 1 ... 1089-3 — 57 1069-2 -~ 58
1057 27 236 1-95 10h4-6 — 24 1054-4 - 26
1045 39 2:31 382 1039-0 — 60 10386 — 64
1010 74 227 7-80 1006-5 — 856 10042 - 52
996 88 237 976 9884 — 76 9875 — 85
1059 25 326 097 10580 - 10 10578 - 12
1042 42 371 297 10386 — 34 10382 - 38
1043 41 393 2-99 1037-2 — 58 10368 - 62
1024 60 329 4-80 10254 + 14 1023-1 + 09
1022 62 357 564 101687 — 53 1016-1 - 59
1015 69 308 688 10089 -~ 61 10082 - 68
995 89 395 795 995°1 + 01 994-3 - 07
1067 17 467 | ... 10585 — 85 10584 — 86
1054 30 414 177 1046'4 — 76 10461 - 79
1031 53 462 326 1031-1 + 01 1080-7 - 03
1036 48 4-48 3-86 1026-8 -~ 92 10274 - 96
987 97 4'51 774 993-8 + 68 993-0 + 60
975 109 412 960 980-2 + 52 9792 + 42
1050 34 521 098 1047°3 - 27 10470 — 30
1035 49 566 258 1031-2 - 38 10308 — 42
1018 66 521 486 1014-4 — 36 10138 — 42
1001 83 586 600 1001-2 + 02 1005-5 — 05
998 86 519 672 9987 + 07 9980 0-0
986 93 562 850 9827 —~ 33 9804 — 56
076 108 599 950 9708 — 52 9698 - 62
1025 59 688 098 1038-1 +131 1037-8 +12-8
1030 54 654 1-98 1031-56 + 15 1031-1 + 141
1022 62 629 350 10200 — 20 10195 - 25
995 89 662 482 10070 +12-0 1006-4 +11-4
978 106 6°26 802 9819 + 39 981-0 + 30
957 127 691 906 9695 +126 9685 +115
1042 42 740 1043 8 + 16 10434 + 14

If z denote deviation of the temperature from 1084° C.,
we find

S(a?) = 779:1338, S (y2) =15421-230,
S(y?)=1336-0155, S(ez) =10617-960,
S(e?) =190296+0, S(ay)= T51-017.
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Using equation (B) above, we quickly reach

z = 546052+ 84732y,
and therefore
T =1084—546052—84732y. . . . (v)

The values of T obtained by this formula are given in
column 5 of Table Il. The differences between these values
and the experimental results are shown in the next column.
It will be seen from the figures that the fit is a good one
except at the ends of the range. Had the last seven obser-
vations been omitted, 4. ¢. had the amount of aluminium
present in the alloy been less than 6 9/, a linear Jaw such as
the above one would have agreed quite well with the observed
results. . As .the authors of the original paper state that
“ the precise temperatures given in the table possess no very
great significance,” it seems quite reasonable to assume that
the observations, up to 6 9/, of aluminium, follow a linear
law.

The sum of the squares of the deviations from the observed
temperatures in this case is 1641-0210, and the * root mean
square” is 6'41 *. The sum of the squares of the deviations
measured perpendicular to the plane can be obtained from
the above figure by dividing by {(5186)*+ (8:392)*+1},
i, e. 102:6120. It is found to be 15-9924.

When the second method is used, the equation in V,, is

779-134-V,, 751-017 10617-96
751-017 1336-015—-V,, 15421-23 = 0.
10617-96 15421-23 190296 -V,

This when expanded becomes
V3, —192411 V2 452425892 V,,— 786607941 =0.

We want the least root of this cubic. It is quickly seen
to be in the neighbourhood of 15, and by successive approxi-
mations is found to be

V.. = 159362,
very nearly.

* The second decimal place was taken into account in finding this
figure. This was done in order to compare with the results of (¢), which
do not greatly differ from (y).
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If le+my+nz =

is the equation of required plane, the equations to find the
ratios of [, m, and n are

763-1981+ 751:017m+ 10617°960n = 0,
751:01714+1320°07%m + 15421-230n = 0.
From these we find
l m »

54908 T 85582 T —1°
The equation of the plane is

z = 549082 + 8:5582y
and
T = 1084 —549082—83582y. . . . . (€)

The temperatures given by this formula are shown in
column 7 of the table, and the deviations from the observed
values in colamn 8. They do not differ greatly from the
results given by (). The sum of the squares of the devia-
tions in the table is 1658-9718, which is, of course, greater
than the corresponding number given by the first method.
The “ root mean square ” is 644, not greatly different from
the first nethod value. Also 24m?+n? becomes 104-3923.
The actual sum of the squares of the deviations perpendicular
to the plane is therefore 15-8917, which is less than the
value given by the first method, as it should be, but is not a
very great improvement on it. Thus in this example, as in
the last, the two metbods lead to very similar results,

II1. For a third example we will take the case of a plane
in three dimeunsions to pass through two fixed points and to
be closest fitting to a series of other points. The data for
this case are taken froma railway time-table. The two fixed
points are two terminal stations, and the variables are , the
distance (in miles) from one of these stations to some other
station ; y, the scheduled time (in minutes) allowed for a
train between those stations; and z, the first-class single
fare (in pence) between the stations. The figures are :—

r. Y- z.

30 49 69
52 80 117
60 97 135
69 115 156
81 136 182

100 164 224
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the corresponding figures up to the other terminus being
114, 187, and 244 respectively. The figures should be
expected to be fairly coplanar, and any formula obtained to
represent them ought to give a good ¢ fit.” Four cases can
be worked out here, viz. those obtained by making the sum
of the square of the deviations in the directions of z, y, 2
and perpendicular to the plane respectively a minimum. We

find :

S(a?)= 28526, S(yz)=105264,
S@P)= 76827, S(za)= 64160,
(2% =144311, S(zy)= 46801.

For the best fit in the direction of z, the equation of the
plane will be
&= az+by,
with the condition
224 = 114a+1876. . . . . . (n)

In this case we have

A= 1 64160-114A 105264-187 A
64160-114 2 28526 46801
105264-137T A 46801 76827
Using the relations
__ Ay _ Qi
a = E;), b= AOO’

we obtain
a= 22376 +-00526 A,

b= -D0706—-00077 A.
Substituting in (), A becomes —27-2290, and therefore
a = 2-0943,
b= 0281,
and the best fitting plane in the direction of z is
z=20943r4+-0281y.. . . . . ()

In a similar manner we find the best fitting plane in the
direction of y is
y=1632724-0036z, . . . . . (©
and in the direction of & it ix

=303y +-0817 . . o . . (§)
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When the deviations are measured in a direction perpen-
dieular to the plane, the equation to determine V,, (the least
sum of the squares of these deviations) is, by § 5 above,

0 114 187 244
114 28526-V, 46801 64160 —0
187 46801 76827—V,, 105264 {7 7
244 64160 105264 144311V,

the determinant being reversed for convenience in evalua-
tion, 7. e.

107501 V2, —19413930V,, + 191936824 =0,

giving
V.. = 10-49664.
Then
de | 1 114 187u 244p

1144 285155 46801 64160
187 46801 768165 105264
244u 64160 105264 144301°5

and

l1=—%g, lg=—~%z> ls=‘—g—gz’
where

ll.’v+l2y+]32 = O

is the equation of the required plane. Since only the ratios
of I}, I, and [; are required, it is sufficient to find dy, dy, and
dg (each of which contains u as a factor). When we find
these ratios we must divide each by {I;+ 24 12}! in order to
have the sum of their squares unity. In this way we find
the equation of the plane is

-88430— 4632y —0582:=0. . . . (¢)

The deviations of the results given by the formule (6),
(©), (§), and (¢$) from the actual values are (the deviation
being positive when the formula gives a valuo greater than
the actual value) :—
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Deviation Deviation Deviation Deviation
in direction  in direction  in direction  perpendicular
of z %, of y. of . to plane.
—4-795 + 227 + 285 — 181

—5850 + 5319 - 2200 +2:122
—6-619 +1-445 - 178 + 275

—8265 —1-787 +1-592 —1-325
—~ 8544 —3101 +2-281 —1:952
—9-966 + 070 + 796 — 563

The sum of the squares of these deviations are
(6) 341-6570,
(&) 432458,
(&) 133240,

(¢) 10°4942 (the exact value here should be.10°4966,
the value of V,, above).

The sum of the squares of the deviations given by (6), (£),
and (£) in directions perpendicular to those planes are found
to be (by dividing the above values by the sum of the squares
of the coeflicients of the various equations) 63:4239, 117969,
and 10°5767 respectively, all these, of course, being greater
than the corresponding value given by (¢).

Equation (¢§) can be written in the three forms :

¢ =1520482—T-964dy . . . . (&)
y= 1909lzg— -1256: . . . . (¢
x= -5238y+ ‘0658z . . . . (&)

These equations should be compared with (6), (¢), and (§)
respectively. The sum of the squares of the deviations

* At first sight it seems remarkable that all the deviations given by
(0) are of the same sign, but & moment’s consideration will show that
this is quite possible. For a line in the plane is fixed, and the plane can
only swing about this line. All the points may be on one side of the
plane, but on either side of the line. Swinging the plane about the line
to_become closor (measured in a particular direction) to some of the
points, therefore, may take it farther from come others. To verify (6)
the results given by the planes 2=2-1404z and z=2x2-+-0856, one on
either side of (8), were found. The sum of the squares of the deviations
given by these formuls were 841-6991 and 341-8112, hoth greater than
the corresponding number for (8). Thus (6) gives a true minimum.
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given by these equations in the directions of z, y, and
respectively are

3102-9568, 489069, and 13-4189.

Comparing these with the results given by (#), (), and
(&) above brings out clearly the fact that the plane which
satisfies one criterion for closest fit may give a very bad fit
if measured by another criterion. This is particularly the
case with (6) and (8'), though (£') is not greatly inferior to
() as the best fitting plane in the direction of «.

The Sir John Cass Technical Institute,

London, E.C.
December 1910.

XLIV. A Method of Calibrating Fine Capillary Tubes.
By Tromas RaLra MerroN, B.Se. (Owon.)*.

HE methods commonly used in the determination of the

bore of capillary tubes are direct optical measurement

of the bore at the orifice, or weighing a drop of mercury

which occupies a known length in the capillary. When very

fine capillaries, having an internal diameter of the order of

‘1 mm,, are to be measured, these methods present serious
difficulties.

For many purposes it is necessary to obtain a value of the
mean bore, and as no glass capillary is uniform for any
censiderable length, a measurement of the hore at the orifices
is liable to serious error. 'The weight of a column of mercury
10 cm. long contained in a capillary tube of ‘1 mm. bore is
about 0-01 grm., so that to obtain an accuracy of 1 per cent.
the weighing must be correct to 0°1 mgrm.

The following experiments were performed with the object
of investigating the accuracy with which a measurement of
the electrical resistance of a fine glass capillary filled with
mercury can be made. From this a mean value of #* (where
v is the internal radius) can be calculated.

The first series of experiments was conducted in a large
water-bath, containing about 30 litres, kept at 18°C. by an
electric-filament lamp which was governed by a large spiral
toluene regulator ; and other experiments were performed in
a bath kept at 25° by a small gas-flame governed by a fluted
toluene regulator. In both buths the temperature could be
kept constant to 0°°01 C,

* Communicated by the Author.



