# Version info: R 4.2.2, Biobase 2.58.0, GEOquery 2.66.0, limma 3.54.0 ################################################################ # Differential expression analysis with limma library(GEOquery) library(limma) library(umap) # load series and platform data from GEO gset <- getGEO("GSE34933", GSEMatrix =TRUE, AnnotGPL=FALSE) if (length(gset) > 1) idx <- grep("GPL11487", attr(gset, "names")) else idx <- 1 gset <- gset[[idx]] # make proper column names to match toptable fvarLabels(gset) <- make.names(fvarLabels(gset)) # group membership for all samples gsms <- "00000111111XXXXX" sml <- strsplit(gsms, split="")[[1]] # filter out excluded samples (marked as "X") sel <- which(sml != "X") sml <- sml[sel] gset <- gset[ ,sel] # log2 transformation ex <- exprs(gset) qx <- as.numeric(quantile(ex, c(0., 0.25, 0.5, 0.75, 0.99, 1.0), na.rm=T)) LogC <- (qx[5] > 100) || (qx[6]-qx[1] > 50 && qx[2] > 0) if (LogC) { ex[which(ex <= 0)] <- NaN exprs(gset) <- log2(ex) } # assign samples to groups and set up design matrix gs <- factor(sml) groups <- make.names(c("PC","NORM")) levels(gs) <- groups gset$group <- gs design <- model.matrix(~group + 0, gset) colnames(design) <- levels(gs) gset <- gset[complete.cases(exprs(gset)), ] # skip missing values fit <- lmFit(gset, design) # fit linear model # set up contrasts of interest and recalculate model coefficients cts <- paste(groups[1], groups[2], sep="-") cont.matrix <- makeContrasts(contrasts=cts, levels=design) fit2 <- contrasts.fit(fit, cont.matrix) # compute statistics and table of top significant genes fit2 <- eBayes(fit2, 0.01) tT <- topTable(fit2, adjust="fdr", sort.by="B", number=250) tT <- subset(tT, select=c("ID","adj.P.Val","P.Value","t","B","logFC","miRNA_ID","SPOT_ID")) write.table(tT, file=stdout(), row.names=F, sep="\t") # Visualize and quality control test results. # Build histogram of P-values for all genes. Normal test # assumption is that most genes are not differentially expressed. tT2 <- topTable(fit2, adjust="fdr", sort.by="B", number=Inf) hist(tT2$adj.P.Val, col = "grey", border = "white", xlab = "P-adj", ylab = "Number of genes", main = "P-adj value distribution") # summarize test results as "up", "down" or "not expressed" dT <- decideTests(fit2, adjust.method="fdr", p.value=0.5, lfc=1) # Venn diagram of results vennDiagram(dT, circle.col=palette()) # create Q-Q plot for t-statistic t.good <- which(!is.na(fit2$F)) # filter out bad probes qqt(fit2$t[t.good], fit2$df.total[t.good], main="Moderated t statistic") # volcano plot (log P-value vs log fold change) colnames(fit2) # list contrast names ct <- 1 # choose contrast of interest # Please note that the code provided to generate graphs serves as a guidance to # the users. It does not replicate the exact GEO2R web display due to multitude # of graphical options. # # The following will produce basic volcano plot using limma function: volcanoplot(fit2, coef=ct, main=colnames(fit2)[ct], pch=20, highlight=length(which(dT[,ct]!=0)), names=rep('+', nrow(fit2))) # MD plot (log fold change vs mean log expression) # highlight statistically significant (p-adj < 0.5) probes plotMD(fit2, column=ct, status=dT[,ct], legend=F, pch=20, cex=1) abline(h=0) ################################################################ # General expression data analysis ex <- exprs(gset) # box-and-whisker plot ord <- order(gs) # order samples by group palette(c("#1B9E77", "#7570B3", "#E7298A", "#E6AB02", "#D95F02", "#66A61E", "#A6761D", "#B32424", "#B324B3", "#666666")) par(mar=c(7,4,2,1)) title <- paste ("GSE34933", "/", annotation(gset), sep ="") boxplot(ex[,ord], boxwex=0.6, notch=T, main=title, outline=FALSE, las=2, col=gs[ord]) legend("topleft", groups, fill=palette(), bty="n") # expression value distribution par(mar=c(4,4,2,1)) title <- paste ("GSE34933", "/", annotation(gset), " value distribution", sep ="") plotDensities(ex, group=gs, main=title, legend ="topright") # UMAP plot (dimensionality reduction) ex <- na.omit(ex) # eliminate rows with NAs ex <- ex[!duplicated(ex), ] # remove duplicates ump <- umap(t(ex), n_neighbors = 5, random_state = 123) par(mar=c(3,3,2,6), xpd=TRUE) plot(ump$layout, main="UMAP plot, nbrs=5", xlab="", ylab="", col=gs, pch=20, cex=1.5) legend("topright", inset=c(-0.15,0), legend=levels(gs), pch=20, col=1:nlevels(gs), title="Group", pt.cex=1.5) library("maptools") # point labels without overlaps pointLabel(ump$layout, labels = rownames(ump$layout), method="SANN", cex=0.6) # mean-variance trend, helps to see if precision weights are needed plotSA(fit2, main="Mean variance trend, GSE34933")