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1. The nlethods of the following paper are very Him.ilar to those
already well known for two-dimensional problenls in the diffraction of
sound and electric waves. The results, however, are different owing
to the different boundary conditions. Also, for the difthlCtion hy objects
whose linear dimensions are small conlpared with a wave length , the
interest in the results lies mainly in their form near the objects
themselves, which is not usually the ease for sound and electric waves.

We ·shall only consider free tidal motion of i:iheets of water of unifo l:‘ ill

depth.
A complete solution is obtained for the case of the diffraction of a

plane wave by a circular island, but the remaining solutions are all
approximations. They are based on Lord Rayleigh’s approximate theory
of diffraction,* and the method of conjugate functions is introduced so
that Schwarz ’s Inethod for conformal transformations becomes available.
The number of problems which can thus be approximately solved (at least
symbolically) is quite large, but, as examples, we shall only consider those
of the diffraction of a plane wave by an elliptic island , by a semi-elliptic
cape , by a rectangular bay, and by a passage between one sea and another.

Generαl Eqlιαliuns.

2. SuppoHe the sheet of water to be rotatin당 with COllstallt angular
velocity ω about an axis perpendicular to its plane, and let the depth

# “ On the Passage of 、TVaves through Apertures in Plane Screens, and Allied Problems,"
P h'£1. 끓αg . (5),Vol. XLIII, p. 259 (1897) , [SCI Papers , Vol. IV , p. 283]. Also , “ On the Incidence
of Aerial and Electric Waves upon Small Obstacles ... ," Phil. Mαg . (5), Vol. XLIV, p. 28
(1897) [Be. Papers, Vol. IV, p. 305] ‘
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of the water (as rotating in free relative equilibrium) be uniform and
eq뻐，I to h. Let' denote the elevation of the hee su펴，ce at any time.

Then, for a disturbance in which the time t only enters through the
factor eifT t, we have the equation ..

(V~+K2),= 0 , (1)

there being no disturbing force. Here 쩍 = d2/ dx2+'02/ 'iiy2 in Cartesian
coordinates, and

2 년-4ω2
K~ = ~ .....~， (2)

gk ’

g being the acceleration due to gravity.
The boundary condition is given by

iσ 몇 +2ω 썰 = 0, (3)
Jill OS

where a/dn denotes dift농rentiation along the outward drawn normal to the
boundary, and d/OS along the positive direction of the arc. vVe exclude
the cases in which σ = 0 and σ2=4ω2.

When we use polar coordinates r , e, normal solutions of (1) are given
by

J11~(Kr) e±i빼， D11~ (Kr) e± [m6 ,

m being any constant. Here J m (K1") , D IlL (Kr) are Bessel's functions of the
fil'st and second kind respectively, the latter being taken to be the form
appropriate for the disturbances pi'oduced by a finite object in an infinite
sea.

For small values of K1', taking only principal parts, we have

(K1·yn
Jo("r) = 1, Jm(K끼 =향과! ' (양)

2')‘ (m - l )’
DO(Kγ') = - 누 {log 훌K1'+ Y+환7r } ， D싸(Kr) = - \':v __\.,;" , (5)

껴·

y being. Euler’8 constant. 'fhese, with the associated functions of e, all
form two-dimensional harmonic functions.

Di한αction of α Plane Wave by α Circulαr Island.

3. Let the primary wave· be given in Cartesians by

,= 'oe싫 三 ei (KX+ CTt) , (6)

which obviously satisfies the equation (1).

• See Lamb, Hyd1"odynαηties ， 3rd ed. , p. ;)03.
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Transforming to polar coordinates, we have

to == eiIC ,. cos 6 = J o(I(I')+2 ~ 'it~Jn(I(J') cos nO. (7)

Let us assume that the disturbance produced by the island is given
by t == 화eicrt ， where

tl == AoDo(μ')+2 ~ inDn(I(I') ';An cos nO+Bn Sill nO ~， (8)

(9)(iσ 앓+2ω싫) (tO+(l) == 0,

An, B “ being constants whose values are to be determined.
If the shore of the island be given by r == α， the bOllnda.ry condition

will be

for r == α， and all values of O. Substitnting in this from (7) and (8), we
obtain

I , " 2ωn
iσI(Jt: (I(α) co님 nO- τz- JlL (Kμ) sin nO+ io-KD:~ (I(u) -; ‘1 11 cos μO+Bn sin nO;

- 펀Dμ (I(α) {A It sin nO- Bμ cos nθ } == 0, (10)

which holds for all the values of 'It, including zero, if we take B o == o.
On equating to zero the coet죄cients of co섭 nO and sin μ 8 in (10) we

obtain
, , ，ι. 、 'It

iσI(D:~ (I(a ) An+ 二= D“1(((，) Bn+-iσKJt: (I(α) = 0 ,
α

원렐D j • (I(α) A ，~- 'iσI(D;~ (I(α) Bι+폈ι(I(α) == o.

Solving these algebraically, we obtain

A II. = - σ2 (l(a)2J:~ (I(，α) DμKα) - 갚ω펴.2 Jn (1(α) D /I ( l(a)
샤 - σ2 (1(α)2 D~; (I(α) - 4삶/1;2 D~(l(a)

B lI.=-i 2ωησKα {J“ (I(α)Dj~(1(α)-J:~(I(α) Dn(l(a ) :
κ =-t σ.2 (I(α)2 D섣 (I(α) -4ω2서D~ (l(a)

for all the values of n , including zero.
、-，;e therefore have

ι J~ (I(a ) T\ 1 •• \ I 0 ~-(, == ~←''''''， Dn(I('1')+ 2 ~ 21 _\2 T'’.-.... • .~ n_.‘
~J. DO(l(a ) - U ,._. r' n=l

xDκ (κ?’) [{ σ2 (1(α)2 J:~ (I(α) n:，， (1(α) - 4ω，21년 J/i(1(α) D“ (I(“ )} cos nθ

十2ωnσ1((l .: J샤 (I(α) n;i (I(α) -J~ (I(α) Dn(Kι f 'l, 8Ul .,• 0] .

(11)

(12)

(1엉)
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Now let us take the principal part of this for points near the island
when Ka is very small. We have, on substituting from (4) and (5),

MR. J. PROUDl\I AN92

(14)~l = 판월똥 {(앤+4해 i cos 6-4 l.tlff sin 6}.

To the same approxim따ion the total elevation is given by

r .. I ( 감+4ω2 α ). f\ 4wσKα
~ = L1 + -I K1"+κα강고강 수 i ico88- 「-- (15)

the real port of which may be written

자
V

@%AO·mguα
-
r

m
-삶

m--
4
-
3
σ

--
(16)

(. t σ2十4ω2 α I /\
E = - i KT+Kα ----꺼 - ηl ’ I n.\N Q"'2- 4ω2 r ) v

(17)

theapproximation,ofordersametheto

where

Similarly written, and
primary wave is given by

(18)

The change in the height of high tide can be obtained from (16) , and
the change in phase from (17).

EO - -Kl' COS e.~ == cos (σt-EO)'

Approx'i1nαte Theory.

4. Lord Rayleigh ’s approximate theory of diffraction depends on the
fact that over a region the linear dimensions of which are small compared
with a wave-length , a solution of (1) is sensibly a two-dimensional harmonic
function. Over such a region , therefore, in the present application , we
treat ~ as such a function, and proceed to satisfy the boundary conditions.
This is facilitated by the use of conjugate functions.

Suppose that ~ ==~l十i흉， where ~l' 강 are real. Take t’ = 피+ 'i강，

where 화， 장 are real and such that ~l+펴， 화+않 are functions of x+ψ，

X , Y being Cartesian coordinates in the plane of the sheet of water. ~'is

now determined except to an arbitrary additive constant.
At the boundary we shall have

않 a강
on - as ’

않
-
&

--;
상
-
야

[U
-(
[

:_at I () o~ _ :_o~’ o~
σ~~ +2ω~=/;σ ← +2ω~~ == 0on I ....t.V as - IIU' aS , .... tLI asand consequently
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If then we take
ψ== i(j~’ + 2ω￡ (19)

ψ will be a two-dimensional harmonic function which is constant along a
coast-line. Let us also take

φ == i(j~- 2ωt’ ， (20)

so that if φ = φl+iφ2' and ψ =ψl+iψ2' when φl' cjl'J ψl' ψ2 are real, we
shall have

φ1 ==- σ~2-2ω화 ， φ2- σ효-2ω값 ，

ψ1 ==- σ화+2ω~1' ψ2- σ화+2ω~2'

We then see that φl+iψl' φ'J+iψ2 are functions of x +ψ， and that
when either φ or ψ is known the other is determinate except to an
arbitrary additive constant.

From (19) and (20) we have the reI따Ion

~==-월짧(썩+2ωψ) (21)

Let us use ~o， 회， φ。， ψ。to denote the respective values of ~， ~'， φ， ψ

for the primary wave only.
We require further conditions for the functions φ-φ。， ψ-ψ。， and

these are to be determined by the principal parts near the diffracting
object of the possible forms for the complete expression of the disturbance.

\Ve shall assume that .for the seas in question the possible forms for
φ - φo are such as vanish at infinity or else take the form

log(쉰r)+y+윈τ. (22)

The form (22) will only be required when the effect at a distance is that
due to a source.

Of course, the consideration of forms at infinity is only auxiliary, the
results being applicable only over a very small region.

On the above principles the exprel3sion (14) can be very easily
reproduced.

D~ffrαction bν an Elliptic 1slαnd.

5. Let the equation of the shore of the island be given by 양 == a , where

x == c cosh f cos η， y == c sinh f' sin '1,
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and let the primary wave be given by

( ~ eilC (lx +mll)+짜t，

￦here ZS+m9 = 1.
Then, in the neighbourhood of the island, we have

(o = 1+iK(lx+my), 값 = 상(띠- 'I1tx) ，

on dropping the time factor, so th따

1>0 = io-+(iσl+2wm)iκx+(iσ'I1t-2ωl)iKy，

ψ。 = 2ω+<상l+2ωm) iKy- (io-'I1t- 2ωl) iKX .

(28)

(24)

(25)

(26)

In terms of 얄， η， ψ。 becomes

ψ。 = 2ω+“σl+ 2ωm) ilCc sinh 흥 Sin η-(짜'In - 2(,,1) 1:KC cosh f cos η.

For the total disturbance we shall then have

ψ =2ω+iKC (io-l+ 2ωm)(sinh양-ea.- 홍 sinh a) sin '1

-iKC(iσηt-2ωl) (cosh g-ea.- ~ cosh a) cos η，

since this is constant over f = a, and differs frOll1 ψ。 by a function which
tends to vanish as 릎 • ∞ .

Simplifying, we have

ψ =2ω+iKcea. “σl+ 2ω'm) sinh (~-a) sin '1

-iKCetx.(iσm-2ωl) sinh (양- a) COSη，

and then φ must be given by

ep = 1:17"+ iKceo. (iσl+ 2(t»n) cosh (릎一a) COS '1

+iκceO. (iO"-m - 2ωl) cosh 않-a) sin η， (27)

in accorda.nce with § 4.

Substituting from these into (21), we obtain, after a little reduction ,

{=1-화C얀 g { 2utea-훌 (lsin η-mcosη)

-i[강 cosh (f-띠 - 싫 sinh (f- α)J (l cos η+m sin 71) }. (28)

Restor ing the time factor , and taking only the real part, we have, to
our order of approximation,

( 2tiXTKCe2a.-양 l
{= i1- 강-4ω2 (l sin η-짜 cos η) rcos (o- t-타， (29)
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Kce'"where e =-τ-→-π {σ2 cosh (~-a)-4ω，2 sinh (~-a) } (lcos 'l-msin ηI). (80)

Similarly written, the prima.ry wave is

t = cos (σt - e，J ， eo = - Kc(l cosh 양 cos η+m sinh 흥 sin η). (81)

DifJraction by α Semi-Elliptic Oa,pe.

6. We consider a cape projecting from a straight cosst. Let the equa.­
tion of the shore of the cape be given by f = a , where

x = c sinh f cos t], y = c cosh ~ sin η，

for 0 <; η 같 τ， the equation of the coast-line being y = 0 or η = 0 and 7r.

Let the primary wave be given by

t = e- IC ν(u2 - 4ωJ) . ( ierx+ 2ωy) + ftt， (32)*

which satisfies (1) and gives no velocity perpendicular to the straight
coast-line.

Near the cape we have, on dropping the time factot,

to = 1- Ii • 2 X A --꺼 (iπx+ 2ων) ，

giving φ。 = iCT+ν(감-4ω，2) KX,

값 -- ν(감r4ω~ (삶y- 2ωX)，

ψ。 = 2ω+ν(σ2_4삶) ICy. (83)

(84)

As the change in φ produced by the cape will be real, and the change in
ψ will vanish onthe straight coast, we see from (21) that on the ca.pe and
the neighbouring coast the high tide will have its original coastal height.

In terms of 혼， η， ψ。 becomes

ψ。 = 2ω+ 、I(σ2- 4ω，~ ICC cosh ~ sin t],

and then for the total disturbance it is easily seen that we have

ψ =2ω+、1(，σ~- 4ω，2) Kce'" sinh (￥- a) sin η，

φ =~σ+、I(σ2_ 4ω，2) Kce (J. cosh (￥-a) COS t]. (35)

• This is the solution first given by Lord Kelvin with reference to a. rota.ting can따. see
Lamb, Z.c.
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Substituting from these into (21) we obtain

1- KceO- 씨σ cosh (홍-a) COS η+2ω sinh «(- α) sin η }. (36)- ν(삼-4ω，2)

Restoring the time factor and taking only the real part, we have, to
our order of approximation,

~= {1- .../魔싫) sinh(종- a)뼈 } co8빠

where Kcea. osh (f-a) cos η.
- ν(σ2-4ω커

Similarly written, the primary wave is

(38)

~= {1- ...1(，앓얀짧) cosh 흥 sin η } cos빠eo) ， (39)

where 탬 = // axci 2、 sinh 흥 cos η.

Coαst-lines μ，ilk Projecting Corηeγs.

(40)

7. If WA 빠ke a == 0 in the preceding section, we have a formal solution
for the case of a straight narrow promontory of length C projecting
perpendicular’ly from astra핑ht coast.

The expressions found , however, lead to an infinite velocity for the
water at the projecting end of the promontory, owing to the vanishing
there of the Jacobian 0(x , y)/o(홍， η). The question then arises whether
the formal solution gives an approximate solution of the physical pro­
blem Axcept in the immediate neighbourhood of the end of the pro­
montory, or whether it fails altogether. The question applies to all cases
in which an acute-angled portion of land projects into the sea. *

Below are given arguments, tending to show, that with a more
stringent condition on the size of the motion in the incident wave, the
formal solutions will be approximate representations of the physical facts ,
except in the immediate neighbourhood of the projecting sharp corners.

"" This question was raised by the referee. It would appear to apply also to certain solu­
tions of problems in the diffraction of sound waves given in the papers of Lord Rayleigh
already quoted , and to be then answerable in a manner similar to that of the present
section.
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Except in these neighbourhoods, the formal solutions only undergo
small changes in character owing to a small change in the shape of the
disturbing object. This remains true even though a round corner changes
into a sharp point, as in the case of the promontory.

We assume that the same continuity holds for the actual physical
state.

If therefore we can show that it is possible to round off the sharp
corners, without materially altering the general configuration of the object,
but making the curvatures everywhere small enough for the formal solu­
tion in the modified case to be a trufl representation of the physical facts
in this case, we may perhaps assume that the formal solution in the
original case (i.e. , with the sharp corners), gives an approximate represen­
tation of the physical facts in that case, except in the neighbourhood of
the corners.

Taking a primary wave of the general type

t == Aei(.,.t + ICx),

it is necessary for the validity of the equations of § 2 that the velocity of
the water, which is proportional to the gradient of t, shall be small com­
pared with (gh)lj. This requires that AIλ shall be small.*

Now let c denote the linear order of magnitude of the disturbing object,
and α the smallest radius of curvature of the coast-line. We must then
have KC small, while at the points of greatest curvature on the coast-line,
the order of magnitude of the velocity will bear to that of the primary
wave the ratio cia.

We must then have Aclha small, while the purpose of the present
section requires that αIc shall also be small. Together, these conditions
require that (Alh션 shall be small.

If then (AI h)윷 and not merely AJh may be considered as small, the
modification mentioned above will be a possible one. If, however, (AJh) 1.l

cannot be considered as small, the partial justification of the present sec­
tion breaks down.

In the remaining sections we shall assume that the motion in he
primary wave is small enough to satisfy the condition just obtained.

,., Cf. , L a.mb, l.e. , p. 243.

8BB. 2. VOL. 14. NO. 1227. 표
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Diffraction by α BectαngulαrBαy.

8. Let the three sides of the bay be given in Cartesians by x = ± α，

y = 0; and the remaining coast-line by the portions of the line y = b
for which Ix I> α (Fig. 1).

D
a +ib
Ie

ttla--- - •••-•--------- -­.'l:

D낀

:0
A

FIG. 1. - z plane.

Let us take the same primary wave as in § 6, so that again

φ。 = ia-+、I(허- 4ω장 KX, ψ。=2ω+‘I(σ2-4ω，2) Ky. (33)

Let us also write w= ,/ 01 · ”‘ {φ+iψ-i(σ+2ωr)} . (41)

Then w will be a function of x 十ψ which is purely imaginary on x = 0,
while the imaginary part will be equal to ,iKb on the coast-line, and to iKy
at infinity. The correspondence between wand z iR shown in Figs. 1
and 2, where corresponding points are similarly lettered.

D’l

빨 B C D

FIG.2.-wp.빠nee

Taking an auxil뻐ry t plane, to the upper half of which both the regions
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ABODD’A of :Figs. 1 and 2 correspond, we may use Schwarz’s transfor­
mation.

Supposing the points A , B , 0 , D to correspond respectively to
t = 0 , 1, 1/k2, ∞ , where k has to be found, we have

llI(1-k2렐 dt Ndtdz = ""-L~: I~ .., :~. ON" , dw == -L'J';v, (42)
행 ( l - t)~ ’ - t융

M, N being constants whose values are to be determined.

Since dψ/dz == K at infinity, we have N = MKk.

l

’l깐:0 l
D' A B C D

FIG. 3.-t plane.

Let us now ,vrite t1J = sn 'it , the ordinary Jacobian elliptic function.
We shall have

w = ~Kb+2MKk sn u , (43)

and dz = 2M dn2~Ldμ，

z = 2ME(μ) . (44)giVing

Here E(μ.) is the elliptic integral usually 80 denoted, and the corresponding
part of the it plane is shown in Fig. 4.
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Now from the correspondences for Band C, we have

α == 2ME(K) == 2JYIE,

α+ib = 2ME(K+iK’) == 2M {E+i(K ’ -E’) } ,
K,K’,E, E ’ being the constants usually so denoted in the theory of
elliptic functions.

Thus M = a/2E,

and (45)

the latter determining the modulus k.
If we take ttl = g+씨， where g, η are real, we shall have

k sn 양 dn η I ," _ k en,dn f sn η en
~Kb+Kα .;, .. ~4: ~9. :'44.' 9. +ιK n , (46)

E l-dn2g sn2 η -r ~Ka 힘 l-dn2g sn2η

from the ordinaryaddition formula, and the imaginary transformation, k
being the mod때IS for the functions of g, and k ’ that for the functions
of η.

For the tidal problem we have therefore

2\ k snfdn η
φ == iff +ν(σ2-4ω )Kα .;;: .. OL~_~2 "::'~_:2 , (47)

E l-dn2g Sn211

2\ ( ..7, I .. _ k en f dn 홍 sn η en η !
ψ =2ω+ν(단-4ω ) 1Kb+Ka ; \J~， ':> ~~~~ ;L:~2~~~ " i· , (48)( α효 l-dn2f sn2 η j

and ~onsequently

( .:__ k sn 흥 dnt = 1- 11_2 .A. A ..2、 i iffKα 람 l-dn2흥 gZ2 η +2ωKb

k en 흥 dn g sn η en η1
+2ωKa .:.: 'U~..":> ~-; ~ :44 .'9.~4~ ., \. , (49)

E l-dn2f sn2η )

f , 1] being given by x+ψ = 융 E(종+써)，

and the modulus k by (45).
Restoring the time factor, and taking only the real part, we have, to

our order of approximation,

2ω ( 1. I _ k cn 흥dnf snηenη\)t == ·t 1- μ(담-4해 \Kb+Kα 효 l-dn2ε gn2 n ) t G% (σt- e) ， (50}

where e=
σKa 효 sn 홍 dn η-

‘
I(강-4삶) E l-dn2흥 an2'1'

(51)
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It is interesting to notice such particular cases 뼈 are easily evaluated.
The changes in phase at A and B are instances.

At A , g= η = 0, and therefore € = 0, so th따 there is no change in
phase.

At B we have, for €,
fTKα k

‘I (σ.2- 4삶) E ’

as against

for the primary wave.

σKα

ν(휴-4감) ’

Passage bet~oeen Two Seas.

9. Let the two seas be given by the upper and lower portions of the
z plane, the passage lying between the two points z = + c, c being real.

Let us take
x = c cosh f cos '7, y = c sinh f sin η，

and suppose that 흥 ranges from - ∞ to ∞ , while η is restricted to lie be­
tween 0 and 7r. Then the coast-lines are given by each side of η = 0 and
of η = τ， and the passage by 흥 =0.

Let us take the primary wave to be given by (32) for the upper sea
only. Then we have

φ。 = ifT+ν(σ.2-4ω，2) KC cosh 흥 cos '7, ψ。=2ω+ ‘/(，σ，2_4ω12)
KC sinh f sin η，

(52)

for the upper sea, while over the lower sea we may conveniently take
회 =2ωIiσ， so that Li쇄

1>0=- 짧， +0 = 2ω. (53)

vVhen I히 is large, we have

log 융K'I' = I~ I + log (항c) ，

so that at infinity the only effect of the passage on the value of φ must be
a cons빠nt multiple of

I g I+log (함C) + 'Y+휩7r.

It is then easily seen that the solution is given by

φ --앓(강+4삶) +스 (σ2_4ω꺼 흥
loge항C)+.，，+할T

+융‘1(~-4ω12) Kcef cos η， (54)

ψ=2ω+옳 (강-해 l ~_ / l ‘、끽 I L:_+μ(~냉f)2) KC냥 sIn η (55)
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These give

「 f+ 쏟 '1 '~fiO~ 1
t= 훌 Ll-lnσ{.!....시4r;-L4싸 - ‘ /(f2-4t.、야 (샀 COS η+2ω sin η)Je

i야. (56)

In tbe middle of the passage we have 양 ==0, η = 훌7('， and consequently

「 ω τ 2ωKC 1
t= 훌 | 1 - - - IL ‘σ log(한ψ+y+훤τ 、/(강- 4ω2) J

the height of high tide being changed in the ratio

1 : 융 [1+옳 f 1 /' 、 유 I 9. I , 'J. - / 딴상 ?、1，

and. the phase being changed by

Tω log (훌KC)+y

σ {log (훌KC) +꺼 :.1 +울쉰 ’

providing this be small.




