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ASYMPTOTIC FORMULA FOR THE DISTRIBUTION OF
INTEGERS OF VARIOUS TYPES*

By G. H. HARDY AND S. RAMANUJAN.
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1.

Statement of the problem.

1.1. We denote by q a number of the form

(1.11) 2^ S"3 5as... p\

where 2, 3, 5, ..., p are primes and

(1.111) a2 > a3 > a5... > ap ;

aud by Q(x) the number of such numbers which do not exceed x : and our
problem is that of determining the order of Q(x). We prove that

(1.12) QW

that is to say that to every positive e corresponds an x0 = xo(e), such that

for x >• xQ. These functions are of course of higher order than any power
of log x, but of lower order than any power of x.

The interest of the problem is threefold. In the first place the result
itself, and the method by which it is obtained, are curious and interesting
in themselves. Secondly, the method of proof is one which, as we show
at the end of the paper, may be applied to a whole class of problems in
the analytic theory of numbers: it enables us, for example, to find

* This paper was originally communicated under the title " A problem in the Analytic
Theory of Numbers''.
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asymptotic formulse for the number of partitions of n into positive in-
tegers, or into different positive integers, or into primes. Finally, the
class of numbers q includes as a sub-class the " highly composite " num-
bers recently studied by Mr. Ramanujan in an elaborate memoir in these
Proceedings* The problem of determining, with any precision, the
number H(x) of highly composite numbers not exceeding x appears to be
one of extreme difficulty. Mr. Ramanujan has proved, by elementary
methods, that the order of H(x) is at any rate greater than that of logjct:
but it is still uncertain whether or no the order of H(x) is greater than that
of any power of log a;. In order to apply transcendental methods to this
problem, it would be necessary to study the properties of the function

1

where h is a highly composite number, and we have not been able to make
any progress in this direction. It is therefore very desirable to study the
distribution of wider classes of numbers which include the highly compo-
site numbers and possess some at any rate of their characteristic proper-
ties. The simplest and most natural such class is that of the numbers q ;
and here progress is comparatively easy, since the function

(1 • 13)

possesses a product expression analogous to Euler's product expression
for f(s), viz.

(1 . 14)

where ln = 2.3.5 ... p.a is the product of the first n primes.

We have not been able to apply to this problem the methods, depending
on the theory of functions of a complex variable, by which the Prime Number
Theorem was proved. The function Q(s) has the line <r = 01 as a line of
essential singularities, and we are not able to obtain sufficiently accurate

* Ramanujan, " Highly Composite Numbers ", Proc. London Math. Soc, Ser. 2, Vol. 14,
1915, pp. 347-409.

f As great as that of log a y/(log log a).
(log log log x) 3

see p. 385 of his memoir.

} We write as usual s = a + it.

SHE. 2. VOL. 16. NO. 1286. I
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information concerning the nature of these singularities. But it is easy
enough to determine the behaviour of Q(s) as a function of the real
variable s; and it proves sufficient for our purpose to determine an
asymptotic formula for Q(s) when s -*• 0, and then to apply a "Tauberian"
theorem similar to those proved by Messrs. Hardy and Littlewood in a
series of papers published in these Proceedings and elsewhere.*

This " Tauberian " theorem is in itself of considerable interest as
being (so far as we are aware) the first such theorem which deals with
functions or sequences tending to infinity more rapidly than any power
of the variable.

2.

Elementary results.

2 . 1 . Let us consider, before proceeding further, what information
concerning the order of Q(x) can be obtained by purely elementary
methods.

Let

(2.11) ln = 2.3.5...pn = e^"\

where 9 (x) is Tschebyschef's function

9 (a;) = 2 log p.
v <z

The class of numbers q is plainly identical with the class of numbers of
the form

(2.12) # £ . . . £ ,

where bx > 0, 6 2 >O, ..., bn > 0.

Now every 6 can be expressed in one and only one way in the form

(2. 13) h = ci,m2m+ci)m_12'"-1+.

* See, in particular, Hardy and Littlewood, "Tauberian theorems concerning power
series and Dirichlet's series whose coefficients are positive", Proc. London Math. Soc,
Ser. 2, Vol. 13, pp. 174-191; and "Some theorems concerning Dirichlet's series",
Messenger of Mathematics, Vol. 43, pp. 134-147.
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where every c is equal to zero or to unity. We have therefore
in

n / X C: • 2 \ mil m

(2.u) a = n u>-° ) = n n r^2 = nr2J,

say, where

(2.141) rJ=%>'$>J...l?J.

Let r denote, generally, a number of the form

(2.15) r=C#-C

where every c is zero or unity : and R{x) the number of sueh numbers
which do not exceed x. If q ̂  x, we have

x, a;

The number of possible values of r0, in the formula (2 . 14), cannot there-
fore exceed B(x); the number of possible values of i\ cannot exceed
and so on. The total number of values of q can therefore not exceed

(2.16) S(x) — B ( x ) R ( * 4 ) R ( x i ) . . . R ( x 2 " ) ,

where CT is the largest number such that

(2.161) «2~™'>2, x > 2 2 ^ .

Thus

(2.17) Q(x)<S(x).

2 . 2. We denote by /and g the largest numbers, such that

(2 . 211) lf < x,

(2.212) ... lg

It is known* (and may be proved by elementary methods) that constants
A and B exist, such that

(2 .221)

and

(2.222)

(x > 2),

pn ^s Bn log n 1).

* See Landau, Handbuch, pp. 79, 83, 214.

I 2
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We have therefore eApr.

(2.23)

and

" log /= O{logx),

l o g / = 0 (log log x);

2 f l o g i / = Ofloga:),

= 0 (logic),

log g- = O(\ogx),

But it is easy to obtain an upper bound for B(x) in terms of/ and g. The
number of numbers lu Z2, ..., not exceeding x, is not greater than / ; the
number of products, not exceeding x, of pairs of such numbers, is a fortiori
not greater than if(f— 1); and so on. Thus

where the summation need be extended to g terms only, since

l^l^ ... lg lg+l > X.

A fortiori, we have

E(x) IJ
Thus

(2. 25) B(x) = e
o(srlog/) =

by (2. 23) and (2 . 24). Finally, since

log \/x log log A/X < I log x log log x,

it follows from (2.16) and (2.17) that

(2 . 26) Q(x) = exp[o | ( l + - j + \ +••• + ^ ) VOoga! log log *) }]

_ gO{v(loga;logloga;)}

2 . 3. A Zower bound for Q (x) may be found as follows. If g is denned
as in 2 .2 , we have

l 1 . lg ^ x <C ' i tg • • • 0̂ ' j+1 •
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It follows from the analysis of 2 . 2 that

lg+1 = e*(p!7+i) =

f g

and ij / 2 . . . lg = exp • 2

Thus x<e°^loeg>;

which is only possible if g is greater than a constant positive multiple of

V \log log x)'

Now the numbers llt Z2) ..., lg can be combined in 2a different ways,
and each such combination gives a number q not greater than x. Thus

(2.31)

where K is a positive constant. From (2 . 26) and (2. 81) it follows that
there are positive constants K and L such that

< log Q(s) < Wllog x log log x).(2 . 32)

The inequalities (2.32) give a fairly accurate idea as to the order of
magnitude of Q{x). But they are much less precise than the inequalities
(1.121). To obtain these requires the use of less elementary methods.

3.

The behaviour of ©(s) when s -> 0 by positive values.

3 . 1 . From the fact, already used in 2 . 1 , that the class of numbers q
is identical with the class of numbers of the form (2.12), it follows at
once that

(1 • 14)

Both series and product are absolutely convergent for a > 0, and

(3.11) Io

where

(8. Ill) = 2
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We have also

i a-* 1 — 8~s 1 5~s

( 3 . 1 2 ) ^ ( 8 ) = i r J ^ ^ f

•• II fe

3 . 2. LEMMA.—I/" x > 1, s >• 0,

1 1
(3.21) A(s log x? 12 (xs-1)2 ^ (s log a;)2'

Write xs = eu : then we have to prove that

(3.22)
v? 12 (eu—If M2

for all positive values of u; or (writing w for \u) that

(3 _ 28) —-2 — <C < —

for all positive values of w. But it is easy to prove that the function

w1 sinh2 w

is a steadily decreasing function of w, and that its limit when w -*• 0 is
and this establishes the truth of the lemma.

3 . 3 . We have therefore

(8 .81) <p(s) = — ^ y ~<Pi(s) =

where
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From the second of these inequalities, and (2. 221), it follows that

f " e~Asx dx e~2As

2 (logo;)2 x s log 2 J2 logo;

0 — Asx

• dx

and so that

(3 . 82)

slog 2 J2 log a;
dx+O(l);

On the other hand there is a positive constant B, such that

9(as) < Bx (x > 2).*

Thus

e~Bs* dx
( S ) > T ] 2 t(ioi^-i2fe ¥ = T],

— B T ;

and so

(3 . 33)
log a;

s log 2 J2 log x

dx + O(l).

3 . 4. LEMMA.—If H is any positive number, then

1
J(s) log a; s log (1/s)'

ichen s -> 0.

Given any positive number e, we can choose £ and X, so that

( He~Hxdx < e, f He~Hxdx < e.
Jo Jx

NOW Slog I ) J(S) = : 1 1 /i / \ ̂ M = + + + \
h\sJ )2» log M+log(l/s) 12, Jvs Jj Ji

Landau, Handbuch, I.e.
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say. And we have

0 <;9(«) < 2 [ He~mdu < 2e,
Jo

his) =

[May 11,

and so L-slog(-J-) J(s)

< 5e+o(l) < 6e,

for all sufficiently small values of s.

(3 .51)

3 . 5. From (8 . 82), (3 . 33), and the lemma just proved, it follows that

^ , - 1
s log (1/s)'

From this formula we can deduce an asymptotic formula for log <©(s). We
choose N so that

(3 . 52)

and we write

N<n

(8.58) log©(s) = S— <t>{ns) = S + 2 + S + 2

say.
In the first place

(8.541)

In the second place

and

v

= O

r

l0g(l/s)

( «s log (1/ns))
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if N •< n < 1/^/s. It follows that a constant K exists such that

2 -4(3 .,542)

Thirdly,

Thus

(3 .648)

" 2 w ^ s log (1/s) „<» n2 ^ s log (1/s) *

' ws ̂  1 in #3(s), and a constant L exists such that

L
^ V s log (1/s)"

L Vf 1 . 2L

for all sufficiently small values of s.
Finally, in 3?4(s) we have ns > 1, and a constant M" exists such that

Thus

(8 . 544) *4(«) < M 2 =— < 2 2-BS < r - ^ r s = 0(1).
i/s<,t 1 — '/

From (3 . 53), (8 . 541)-(8 . 544), and (3 . 52) it follows that

<3 . 55) log ««) = s l

+ 0
1

•log (1/s),
.1 + 0(1),

where

Thus

{8 . 56)

or

<8. 57)

4.

A Tauberian theorem,.

4 . 1 . The passage from (8. 57) to (1.12) depends upon a theorem of
the " Tauberian " type.
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THEOREM A.—Suppose that

(1) \ > 0, Xn > Xn_i, \n -> <» ;

(2) v^-i-»-'!;

(8) are > 0 ;

(4) A > 0, a > 0 ;

(5) 2ame"~V is convergent for s > 0 ;

(6) /(«) = 2a»e-V= exp[ j l+o( l )M«"" {log (-j-

-> 0. TAew

= O i + a j + . - . + o . = exp [{l+o(D} _BX;/(1+a) (log Xn)-

B =

- > oo .

We are. given that

(4 .11) ( l -

for every positive S and all sufficiently small values of s ; and we have to
show that

(4 .12) ( l -

for every positive e and all sufficiently large values of n.
In the argument which follows we shall be dealing with three variables,

S, s, and n (or TO), the two latter variables being connected by an equation
or by inequalities, and with an auxiliary parameter f. We shall use the
letter t\, without a suffix, to denote generally a function of 8, s, and
n (or TO) *, which is not the same in different formulae, but in all cases
tends to zero when S and s tend to zero and n (or TO) to infinity; so that,
given any positive e, we have

for 0 < S < So, 0 < s < s0, n> n0.

* i) may, of course, in some oases be a function of some of these variables only.

.
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We shall use the symbol vc to denote a function of £ only which tends
to zero with £, so that

0<\ii\<e,

if £ is small enough. It is to he understood that the choice of a £ to
satisfy certain conditions is in all cases prior to that of S, s, and n (or ra).
Finally, we use the letters H, K, ... to denote positive numbers indepen-
dent of these variables and of f.

The second of the inequalities (4 .12) is very easily proved. For

(4 .181) 4,e-) l»l<a1«-x's+ai!e-X2!+...+a,i«-A»1

</(«) < exp | (1+3) A s - (log y

An < exp x .(4 . 182)

where

(4.1321)
x = «-(logy)

We can choose a value of s, corresponding to every large value of n,
such that

(4.14) (l-S)Aas- ^j) < \n < (1+S)Aas-l~a (log Y) •

From these inequalities we deduce, by an elementary process of approxi-
mation,

(4 .151) (l-i,)Wa)-1K1+a>\V(1+a> (log-J-)

-I / -I \ /3/(l + a)

< (l+)U)-1«1+»>Xj/(1+a) (log-)
\ S /

(4 .152)

(4 /168) ( 1 - I

log \n < log -i- < log K,

aB .
1 + a "

(4. 154)
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We have therefore

(4 .16) log 4 . <

for every positive e and all sufficiently large values of n.*

4 . 2. We have

(4 . 21) f{s) =

- I_ P
e sxdx—s\ A(x)e~sxdx,

J

where A (x) is the discontinuous function defined by

A(x) — An (X,, < x < Xa+i),t

so that, by (4.16),

(4.22) log A (x) < (l+e)Bx^1+^ (log x)~^1+a)

for every positive e and all sufficiently, large values of x.
We have therefore

(4 . 28) exp | (1 -S)A s~« (log y ) " j < s j A (x)e~sx dx

for every positive S and all sufficiently small values of s.
We define Xx, a steadily increasing and continuous function of the

continuous variable x, by the equation

X* = \n+(x—n){\n+i—\n) {n < x

We can then choose m so that

(4 .24)
aB

We shall now show that the limits of the integral in (4.23) may be re-

* We use the second inequality (4 .12) in the proof of the first. It would be sufficient
for our purpose to begin by proving a result cruder than (4 . 16), with any constant K on the
right-hand side instead of (1 + e) B. But it is equally easy to obtain the more precise in-
equality. Compare the argument in the second of the two papers by Hardy and Littlewood
quoted on p. 114 (pp. 143 et seq.).

t Compare Hardy and Eiesz, "The General Theory of Dirichlet's Series", Cambridge
Tracts in Mathematics, No. 18, 1915, p. 24.
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placed by (1—f) Am and (l + f)Am, where f is an arbitrary positive number
less than unity.

We write

(4. 25)

w>\,
JHKm •

where H is a constant, in any case greater than 1, and large enough to
satisfy certain further conditions which will appear in a moment; and we
proceed to show that Ju J2, Jit and J5 are negligible in comparison with
the exponentials which occur in (4. 23), and so in comparison with J3.

4 .3 . The integrals J1 and Js are easily disposed of. In the first
place we have

Jx = «£"' " A(x)e~sxdx < A Q=(4 . 31)

by (4. 22).* It will be found, by a straightforward calculation, that this
expression is less than

(4 . 32) exp |

and is therefore certainly negligible if H is sufficiently large.

Thus Ji is negligible. To prove that J5 is negligible we prove first that

sx > 4Ba;a/a+a) (logcc)-^(1+a),

if s > H\m and H is large enough t. It follows that

J = s\ A(x)e~sxdx < s \ exp a) (log -sx \ dx

< s \ e-isxdx = I,
Jo

and is therefore negligible.

* With 5 in the place of e.
I We suppress the details of the calculation, which is quite straightforward.
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4 . 4. The integrals J2 and J4 may be discussed in practically the same
way, and we may confine ourselves to the latter.

We have

(4 . 41) Jt(s) = s A(x) e~sxdx < s e*dx,
J(l + OXm J d + f)Xm

where

(4.411) \[r = (l+<S).Ba;a/(1+")(loga;)-wll+a)—sx.

The maximum of the function \]s occurs for x = «0, where

(4 .42) -f = (1+,)

From this equation, and (4. 24), it plainly results that

(4 . 48) (l-^)X™ < x0 < (l+^)Xm,

and that a:0 falls (when <5 and s are small enough) between (1—£)\m and

Let us write

in <74. Then

a; =

where a;0 < a;x < a; and a fortiori

It follows that

(4 .44) J p {a?;'*1-1—> (log »I)-«
(1+«)} < - Z\;/<1+"'-s (log Xm)-«ll+a».

On the other hand, an easy calculation shows that

(4 .45) ( I - , ) A s - (log -i-)"" < V'W <

Thus

(4.46) J 4 < e x p J ( l + i,M«-"(log

X f exp{ -L£*XW+*-* dog

< exp J ( (

< exp
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Since f is independent of <5 and s, this inequality shows that / 4 is negligible;
and a similar argument may be applied to Ja.

4 . 5. We may therefore replace the inequalities (4 . 23) by

(4. 51) exp | (1 -<S) A s~" (log y ) }

< s f1+f)Xm A(x)e~sxdx < exp {(l+^)^s-a(log—) "1 .

Since A (x) is a steadily increasing function of a;, it follows that

(4.521) exp j(l-<$Ms-° (logy) "} < sA{(l+O\m

(4.522) exp j (1+8)A s~a (logy) "} >«4{(l-f)Xm} f " e"" dx ;

or

(4 . 581) (e«*—e-

(4. 532)

< exp (logy) "+X»a|,

exp J ( l _

If we substitute for s, in terms of Am, in the right-hand sides of (4. 531)
and (4 . 532), we obtain expressions of the form

exp {(1+,) £X;'<1+"' (log XJ

On the other hand ef*m_e-f»\»

is of the form exp

We have thus

\m)-m+a)}.

(4 . 541) A { ( W ) X 4 < exp

(4 . 542) A I d + D M > exp {tt-i,r-i,)BX#n+">aog

Now let v be any number such that

(4.55) (l

Since \nj\n-\ -*• 1, it is clear that <x2Z numbers w from a certain point on-
wards will fall among the numbers v. It follows from (4 . 541) and
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(4.542) that

(4 . 56) exp{(l-iJf-ij)(l->js)BX;K1+")(log X,)-"/(1+a)} < A(\v)

< exp {(1+^+^(1+^)JBA:"1 + <" (log K

and therefore that, given e, we can choose first f and then n0 so that

(4 . 57) exp|(l-e)BX»«1+a»(logXJ-W(1+a) < A (K)

< exp |(l+e)BX««1+a)(log \nr
mi^\,

for n ̂  n0. This completes the proof of the theorem.

4 . 6 . There is of course a corresponding " Abelian " theorem, which we
content ourselves with enunciating. This theorem is naturally not limited
by the restriction that the coefficients an are positive.

THBOEEM B.—Suppose that

(1) \ > 0, Xn > X»_i, K -> cc ;

(2) Xvi/Xu_! -* 1;

"(8) A>0, 0 < a < l ;

(4) ^B = a1+aa+...+an = exp[{(l+o(l)}ilX:(logX(l)-'
r],

when n-*• co . Then the series 2a»e"A»' is convergent for s > 0, and

] 1+o(D }-Bs-a/(1-a) ( logy) J,

where B = 41"1-) d»/a->(i_a)i+WO-)]],

when s -> 0.

The proof of this theorem, which is naturally easier than that of the
correlative Tauberian theorem, should present no difficulty to anyone who
has followed the analysis which precedes.

4 . 7. The simplest and most interesting cases of Theorems A and B
are those in which ^ n

Xn = n, /3 = 0.
It is then convenient to write x for e~s. We thus obtain
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THEOREM C—If A > 0, 0 < a < l , and

log An = log (a1+a2+ • • • +««.) ~ Ana,

then the series 1.a%x% is convergent for \ x | < 1, and

\ogf(x) = log (2 a»a:™) ~ B(l-^a;)~'l/(1~a),

wAere B = (l-a)aa / ( 1-aU1 / ( 1-a ) ,

to/tew a; -*• 1 6,y reaZ values.
If the coefficients are positive the converse inference is also correct.

That is to say, if A>Q> ^ ^

and \ogf(x) ~ A (1 — x) ~a,

then 1

where B =

5.

Application to our problem, and to other problems in the Theory of
Numbers.

5 . 1 . We proved in 8 that

(8 . 56) log

In Theorem A take

X,j = log n,

7T2

IT

T'
Then all the conditions of the theorem are satisfied. And An is Q (n), the
number of numbers q not exceeding n. We have therefore

(5 .11)

where

(5.12)

5 . 2. The method which we have followed in solving this problem is
one capable of many other interesting applications.

SER. 2. VOL. 16. NO. 1287.
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Suppose, for example, that Br{n) is the number of ways in which n
can be represented as the sum of any number of r-th powers of positive
integers.* We shall prove that

(5 . 21)

In particular, if P(n) = B^n) is the number of partitions of n, then

(5.22) logP(»)~

We need only sketch the proof, which is in principle similar to the
main proof of this paper. We have

and so

(5 . 23) f(s) = 2 \Br(n)-Br{n-l)} e~ns= 5 ( 1 _ , ) ^
i 2 \ 1 — e i

It is obvious that Br{n) increases with wand that all the coefficients in
f(s) are positive. Again,

(5 .24) log/(s) = I log ^ H - • • •)

= 2, -r t]>(ks),
A = l *

<p(s) —

where

(5 .241)

But

(5 . 25)

when s -*• 0 ; and we can deduce, by an argument similar to that of 3 . 5 ,
that

(5.26) logf(s) ~ T [\ +1) £ (-1 +1)

* Thus 28 = 33+lb = 3.23 + 4.1:i = 2.23 + 12.13 = 23 + 20.13 = 28.13:

and i?s(28) = 5.

The order of the powers is supposed to be indifferent, so that (e.g.) 33 + l3 and l3 + 33 are not
reokoned as separate representations.

t Rr (0) is to be interpreted as zero.
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We now obtain (5 . 21) by an application of Theorem A, taking

\n = n, a = ± 0 = 0, 4 = r(-i-

In a similar manner we can show that, if S{ri) is the number of partitions
of n into different positive integers, so that

then

(5. 27)

that if Tr (n) is the number of representations of n as the sum of r-th
powers of primes, then

f / 1 \ I \ \ ) r/<r+1>
(5.28) logTr(«)~(r+l) r — + 2 U - + 1 TC1/(r+1)(log»)-r/(r+1>;

{ \ r J \ T / i

and, in particular, that if T(n) = T1{?i) is the number of partitions of n
into primes, then

O17P If IV)

(5.281) logT(? i )~^

Finally, we can show that if r and s are positive integers, a > 0, and
0 < b < 1, and

log <p(n)

(5 . 291)

then

(5 . 292)

where

(5 . 2921)
Jo £ Jo

In particular, if a = 1, b = 1, and r = s, we have

(5.293) 2^>(n)a;"=(l

(5 . 294) log

c =
log ( l -

March 28th, 1917.—Since this paper was written M. G.
Valiron (" Sur la croissance du module maximum des series entieres ",
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Bulletin de la Societe mathematique de France, Vol. 44, 1916, pp. 45-64)
has published a number of very interesting theorems concerning power-
series which are more or less directly related to ours. M. Valiron con-
siders power-series only, and his point of view is different from ours, in
some respects more restricted and in others more general.

He proves in particular that the necessary and sufficient conditions
that

log M(r) - _ ,

where M(r) is the maximum modulus of f(x) = ~Eanx
n for \x\ = r, are

that

for n > n0 (e), and

log I an | a)

for n = np (p = 1, 2, 3, . . . ) , where np+ijnp -*• 1 and ep -» 0 as p -> oo .

M. Valiron refers to previous, but less general or less precise, results
given by Borel (Lecons sur les series a termes positifs, 1902, Ch. 5) and
by Wiman (" Uber dem Zusammenhang zwischen dem Maximal-betrage
einer analytischen Funktion und dem grossten Gliede der zugehorigen
Taylor'schen Eeihe", Ada Mathematica, Vol. 37, 1914, pp. 805-326).
We may add a reference to Le Roy, " Valeors asymptotiques de certaines
series procedant suivant les puissances entieres et positives d'une variable
re'elle", Bulletin des sciences mathematiques, Ser. 2, Vol. 24, 1900,
pp. 245-268.

We have more recently obtained results concerning P(n), the number
of partitions of n, far more precise than (5.22). A preliminary account
of these researches has appeared, under the title " Une formule asymp-
totique pour le nombre des partitions de n", in the Comptes Rendus of
January 2nd, 1917; and a fuller account has been presented to the
Society. See Becords of Proceedings at Meetings, March 1st, 1917.]
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