Numerical Density Threshold for Cosmic Emergence: A Theoretical Prediction Matched at z ≈ 16
Creators
Description
This work presents a remarkably precise theoretical prediction of the numerical density threshold for cosmic structure emergence, validated by the latest JWST observations at z ~ 16
_______
Scientific Context : Recent James Webb Space Telescope observations reveal an unexpected abundance of luminous galaxies at very high redshifts (z > 10), challenging standard ΛCDM predictions. This "JWST crisis" suggests that a more fundamental mechanism may govern cosmic structure emergence.
Theoretical Approach : Building upon a metageometric framework developed in our previous work, we derive — without free parameters — a universal critical threshold for the manifestation of observable structures in spacetime. This threshold emerges naturally from causal injections from an external space Z₀ into our observable universe M.
Central Prediction : Our theory predicts a numerical density threshold: log₁₀(φ_th [Mpc⁻³]) ≈ –3.47
Observational Validation : JWST/NIRCam observations by Kokorev et al. (2025) report: log₁₀(φₒᵦₛ [Mpc⁻³]) = -3.47⁺⁰·¹³₋₀.₁₀
Significance : This quantitative correspondence, achieved without parameter fitting, provides striking empirical validation of our theoretical framework. Like Mercury's perihelion precession for general relativity, this precise agreement may signal the need for fundamental extensions to our current cosmological models.
Impact : This successful prediction suggests that cosmic dawn may be governed by physics beyond the standard model, offering a fresh perspective on the apparent overabundance of high-redshift galaxies observed by JWST.
_______
Keywords : cosmic emergence • density threshold • ΛCDM tension • JWST observations • high redshift galaxies • metageometric framework • z≈16 epoch • theoretical prediction • cosmic dawn • external causal space • early universe • galaxy number density • primordial cosmology • observational validation •
Files
Numerical Density Threshold for Cosmic Emergence.pdf
Files
(262.9 kB)
Name | Size | Download all |
---|---|---|
md5:57c66715eda53b0fb97b586e27810d93
|
262.9 kB | Preview Download |
Additional details
Related works
- Is derived from
- Preprint: 10.5281/zenodo.15466391 (DOI)
Dates
- Created
-
2025-05-28PrePrint
References
- Adams, N. J., Conselice, C. J., Ferreira, L., et al. 2023, MNRAS, 518, 4755
- Atek, H., Chemerynska, I., Wang, B., et al. 2023, MNRAS, 524, 5486
- Boylan-Kolchin, M. 2023, Nature Astronomy, 7, 731
- Bullock, J. S., & Boylan-Kolchin, M. 2017, ARA&A, 55, 343
- Dekel, A., Sarkar, K. C., Birnboim, Y., Mandelker, N., & Li, Z. 2023, MNRAS, 523, 3201
- Einstein, A. 1915, Sitzungsber. K. Preuss. Akad. Wiss., 47, 831
- Finkelstein, S. L., Leung, G. C. K., Bagley, M. B., et al. 2024, ApJL, 969, L2
- Kokorev, V., Atek, H., Chisholm, J., et al. 2025, ApJL, 983, L22 - DOI : 10.3847/2041-8213/adc458
- Nottale, L. 2011, Scale Relativity and Fractal Space-Time, Imperial College Press, London
- Petit, J.-P., & D'Agostini, G. 2014, Modern Physics Letters A, 29, 1450182
- Régent, X. J. (2025). Toward a Unified Theory of Quantum Mechanics and General Relativity: Metageometric Framework via External Causal Space and Scale Relativity, Zenodo. DOI : 10.5281/zenodo.15466391
- Robertson, B., Johnson, B. D., Tacchella, S., et al. 2024, ApJ, 970, 31
- Weinberg, D. H., Bullock, J. S., Governato, F., Kuzio de Naray, R., & Peter, A. H. G. 2013, Proceedings of the National Academy of Science, 112, 12249