
Gotham
Remote Logins Monitoring System

20 June 2016 – 21 August 2016

Author:
Mrinal Dhar

Supervisor(s):
Vincent Brillault

CERN openlab Summer Student Report 2016

CERN openlab Summer Student Report 2016

Project Specification
In order to detect abused credentials, CERN is running a remote login monitoring system,
called Gotham.

This systems compares, for each user, the location of remote logins with the user’s past
behaviour, notifying them of any new location. Unfortunately, the design and code used
by this system is outdated and requires a complete rewrite.

The requirements of this projects are:

 Build a system with the same features as the existing one, but without any
dependency on old CERN libraries (e.g. perl-LC), which would include:

◦ Pulling data from a login database (running an hourly cron-job)

◦ Enriching the data with geolocation and domains

◦ Support for whitelisting, in particular for CERN IPs

◦ Maintaining a ‘known location’ database

 Build a Command Line Interface (CLI) for administrator to manually list or
remove locations for users

 Add support for IPv6 (currently unsupported)

 Design a new system running in real-time streaming mode (instead of using an
hourly cron-job) by running the code in an Apache Spark (http://spark.apache.org/)
cluster and pulling data from Apache Kafka (http://kafka.apache.org/). Special care
should be taken to ensure that no data is lost in case of crashes.

In addition, extensions of this project can be considered:

 A SSO-enabled web front-end, allowing CERN users (and the CERN Computer
Security Team) to review their known login locations.

 Reviewing the current location definition and evaluate alternatives.
For example using ‘ISPs’ instead of ‘Organisations’, using ‘City’ geolocalization,
etc

http://spark.apache.org/
http://kafka.apache.org/

CERN openlab Summer Student Report 2016

Abstract

This project aims to completely rewrite the Gotham Remote Logins Monitoring System
currently in use at CERN. The existing system has been written in Perl, and it makes use
of some really old CERN libraries that make the system difficult to maintain.

Python is a modern, widely used, high-level, interpreted programming language and, as a
result, was chosen as the programming language for this project. There are a number of
well-maintained open source libraries in Python that have been used for the purposes of
this project,drastically decreasing the chances of security flaws in the libraries and thus
simplifying the project maintenance.

Apart from the equivalent functionality that was achieved with respect to the earlier
version of Gotham, a number of new features have been added, like real-time processing
of input login streams, a web based frontend to be integrated with the central account
management page at CERN, a REST API for accessing previous login information by
other applications.

CERN openlab Summer Student Report 2016

Table of Contents

1. Introduction ... 5

2. Workflow ... 6

3. Input Module .. 8

3.1 Realtime .. 8

3.2 Database ... 9

4. Processing Module ... 9

4.1 CERN Internal Whitelist ... 9

4.2 Enrichment ... 9

4.3 Judgement .. 10

5. Output Module ... 11

5.1 Database logging ... 11

5.2 Alert System ... 11

6. Interfaces ... 12

6.1 Flask based REST API ... 12

6.2 Web front-end ... 12

6.3 Command Line Interface ... 13

7. Future work ... 13

CERN openlab Summer Student Report 2016

1. Introduction

Computer and network security is critical to an organization like CERN. With a huge
network of connected devices, it is necessary that accesses to the resources shared
between these devices is authorized properly.

A significant number of CERN users log in to use these resources from outside the CERN
internal network. However, there exists a possibility that some of these logins do not
come from owners of those accounts, but instead from criminals who have stolen some
credentials from their legitimate owners.

Currently, CERN uses a remote login monitoring system called Gotham that allows the
Computer Security Team to analyse these logins and alert the affected users.

Gotham was originally written in Perl, which has lost its popularity over the years to
languages like Python. This project involved re-writing Gotham in Python and adding
new features. It was necessary to do so because the previous version was outdated,
difficult to maintain and parts of it didn't work as intended.

Once all the functionality of the existing system were replicated by the new
implementation, which was successfully identifying logins as previously seen or
otherwise, parts of the project were improved:

 Gotham's process is now distributed over a cluster of servers, by using Apache
Spark, instead of running on a single system;

 The original database fetching of the input login data has been replaced by a real
time streaming of input data by using Apache Kafka;

 Support for iPv6 was added.

Extensions possible to the project were also completed:

 A web based frontend written in ASP.NET, which should be directly integrated
into the SSO-enabled account management portal;

 A flask (http://flask.pocoo.org/) based REST-API written in python and deployed
in the bleeding-edge openshift (https://www.openshift.com/) infrastructure at
CERN.

https://www.openshift.com/
http://flask.pocoo.org/

CERN openlab Summer Student Report 2016

2. Workflow

Gotham's core functionality has been divided into several modules, following a pipeline
manner of execution. This modular approach simplifies the debugging of the application,
as each module can be understood, tested and validated individually. In addition, modules
can easily be added or replaced by different implementations. The single pipeline
processing through all the modules keeps the whole system simple and ensures that any
new developer or maintainer can easily understand the model and the order of execution
of all the modules.

First, the system needs to acquire input data that need to be processed. Two input
modules exists: One, like in the old system, periodically fetches data from the CERN
Computer Security Team’s login database. The other uses Apache Kafka to receive
streamed real time input data that can be easily processed in Apache Kafka.

CERN openlab Summer Student Report 2016

This data is first passed to the IP whitelisting module, which checks whether the login
was made from inside CERN. If it does come from CERN, it is ignored by the rest of the
system. Otherwise, as it comes from a remote computer, the data is passed to the next
module in the pipeline, called “Enrichment”.

The Enrichment module provides valuable information about the location of the remote
client based on its IP address. It has two sub-modules, the geolocation part which
identifies the country and ISP name, and the DNS part, which identifies the domain name
of the IP address used to make the login.

Next is the “Judgement” module, which fetches information about previous logins made
by the user from an Oracle database. Using this data, it classifies new logins as “known”
or “unknown”.

Based on the judgement made by the previous module, there are two ways to go forward.
If the login was classified as a “known” login, there is nothing left for Gotham to do. But
if the login was deemed to be “unknown”, Gotham raises an alert which will lead to an
email being sent to the concerned user notifying him/her about a possible unauthorized
use of their user account.

Then, the database is updated with this login, for future use by the system.

Upon receiving the alert, the user can verify whether they know about this login, and if
not, choose to send an email to the Computer Security Team about this incident.

There are two ways of interacting with this work-flow:

 The CERN Computer Security Team can interact with the database by using a
command line interface that is integrated with Gotham. They can list and delete
previous login locations for any users.

 The users themselves can interact with Gotham's database using a web based
front-end that connects to a REST-API which interfaces with the database.

When the integration is completed, they will be able via the Account Management
service (http://account.cern.ch), to list the locations that appears with their
previous logins and re-enable notification for any of them.

http://account.cern.ch/

CERN openlab Summer Student Report 2016

3. Input module

Two independent input methods have been implemented: one allows Gotham to run in
single-node while the other allows a cluster mode. With the distributed system mode,
Gotham can pull input data from Kafka stream, while in single system mode, the data is
fetched from database.

In an input data tuple, Gotham expects the username of the logged in account, the IP
address of the remote computer from where the login was made, and the timestamp of the
login. The IP address is further processed and the username is used to specify the whole
process for a particular user.

3.1 Realtime

Gotham has been integrated with Apache Kafka, which allows for real-time login
information to be pulled by the system and then processed. This process can be run on a
standalone machine or on a cluster, using the distributive capabilities of Spark.

KafkaStream delivers the login values to Gotham as these logins happen on the network.

CERN openlab Summer Student Report 2016

3.2 Database

The second input module allows Gotham to load input values from a database instead of
real-time values. This fall-ack mechanism, similar to the old system processing, allows
previous logins to be re-evaluated by Gotham after a system failure or a change in
configuration.

Currently, Oracle DB (https://www.oracle.com/database) is supported as the database
system since it is widely in use at CERN.

https://www.oracle.com/database

CERN openlab Summer Student Report 2016

4. Processing Module

After obtaining the login tuple of (timestamp, username, IP address), Gotham begins
processing it. This happens by passing the input data from module to module, in a
pipeline architecture.

The various modules in the processing phase are:

4.1 CERN Internal Whitelist

There are certain IP ranges that are used by clients that are directly on the CERN
network. Since the input stream does not differentiate between internal logins and remote
logins, Gotham must make this distinction itself because the logins made from within the
CERN network are trusted by default, as an attacker would always need to connect from
outside first and due to the fact that internal authentications of some services would
always generate such events.

These IP ranges are matched using regular expression patterns in the whitelist module,
and only those which do not match these patterns are allowed to be further processed. In
other words, logins from computers inside CERN are ignored by the rest of the system.
This regex matches both IPv4 and IPv6 addresses. Since the entire project need not be re-
deployed every time there is a change in the pattern for these IP addresses, this pattern is
stored and retrieved from an external configuration file, which can be changed without
having to dig into any code.

4.2 Enrichment

After the logins made from within CERN have been filtered out, Gotham needs to know
more about each logins in order to verify if they were made from locations known for that
user previously. The enrichment module provides more information about the login based
on the IP address of the remote computer from where the login was made.

The first step in enrichment involves geolocation resolution. The company “Maxmind”
(https://www.maxmind.com/) provides a library API and a database which allows
Gotham to map IP addresses to geographical locations like city and country. Another
database provides the organization name or the ISP name of the owner of the IP address,
if any. These details are critical to Gotham's functioning since — in order to check
whether a new login was made by the owner — it needs to compare the new location
with the previous one in the database.

After geolocation, Gotham performs domain name resolution in order to cross-validate. It
is also useful in cases where a valid organization name was not obtained from the GeoIP

https://www.maxmind.com/

CERN openlab Summer Student Report 2016

database. The domain, extracted from every domain name, can thus also be used for
verifying that an account is being logged in via a different computer than usual.

4.3 Judgement

Once Gotham has all the information it needs about a login, the final step in processing
involves checking if the login must be deemed known previously for that user or should
an alert be raised. A cache is used for recently fetched logins to help speed things along.

If the current login's geolocation or domain name does not match any entry in the
database for that particular user, then this login is said to be "unknown" and an alert is
sent to the user about this. Either way, the current login information is processed by the
logging module for updating the database.

CERN openlab Summer Student Report 2016

5. Output Module

5.1 Database logging

The database must be updated with the processed login information so that future logins
by that user are matched against the most recent login that was made for that account.

The module processes the inputs in entire partitions, rather than individually. This allows
the system to reduce the number of database queries to a manageable extent.

The database schema was changed in this system. Earlier, geolocation and domain name
information was stored in one single table, combined. This was unfavourable because it
made it difficult to isolate logins which were unknown according to each of them
individually. Thus, two tables were used, one each for the domain name and geolocation.

The entries from the previous table were migrated using a python script that separates the
domain name and geolocation and inserts them into the two different tables.

5.2 Alert System

If the judgement module determines a certain login to be unknown, Gotham issues an
alert via Apache Kafka which will result in an email being sent to the concerned CERN
user about a possible unauthorized login and gives them information regarding the
geographical location from where the login was made. The use of Apache Kafka, which
will also be used by the future infrastructure of the CERN Computer Security Team will
simplify the integration of these notifications in said infrastructure.

The user can then contact the Computer Security Team for escalation of the incident, in
case he/she believes that his/her account was compromised. Or, with the new web based
front-end in place on the account management page, he/she can directly go there and see
and manage the previous logins.

CERN openlab Summer Student Report 2016

6. Interfaces

6.1 Flask-based REST API

Flask is a small, open-source framework for Python that was used as the backend for a
REST API which interacts with the database for listing and deleting previous login
information for users.

It supports multiple API keys, and access is granted only to those applications which use
a valid API key.

The API has two endpoints :

 /list/<type>/<value>/<api_key>

This lists previous logins based on the exact query performed.

The type attribute can take one of three values: user, country or hostname. This
determines what field and table to perform the query for the value attribute on.

 /delete/<username>/<hostname>/<country>/<org>/<api_key>

This deletes a login entry for a user, based on the values which help it to uniquely
determine which login must be deleted.

CERN openlab Summer Student Report 2016

6.2 Web Front-End

A web based front-end has been designed, which makes use of the REST API to let the
user manage their logins themselves without having to contact the Computer Security
team. This has been written in ASP.NET and will be integrated with the account
management page at CERN.

6.3 Command Line Interface

For use by the Computer Security Team, a command line interface has been built which
supports listing and deleting previous login entries for any user. This is an administrative
tool only for use by the team since it doesn't require authentication from the user to delete
their login information.

CERN openlab Summer Student Report 2016

7. Future Work

The next goal for this project should be integration of the web front-end with the
Accounts Management Service at CERN.

There is additional work that can be done to improve the system:

 Integration of the Public Suffix List (https://publicsuffix.org/) , which provides an
accurate list of domain name suffixes. This would replace the current method in
use, which does not always yield the most precise result.

 The web front-end could provide even more information to the user, like old
locations which had logins from but are older than three months and so are not
considered by the Judgement module.

https://publicsuffix.org/

	2. Workflow
	3. Input module
	3.1 Realtime
	3.2 Database

	4. Processing Module
	4.1 CERN Internal Whitelist
	4.2 Enrichment
	4.3 Judgement

	5. Output Module
	5.1 Database logging
	5.2 Alert System

	6. Interfaces
	6.1 Flask-based REST API
	6.2 Web Front-End
	6.3 Command Line Interface

	7. Future Work

