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The use of Artificial Neural Networks (ANN) in approximating unknown func-
tions has attracted significant research interest over the last decades [1,2], moti-
vated by the universal approximator properties of ANN [2]. However, in practical
scenarios where the function to be approximated is unknown, ANN’s accuracy
relies on the quality and quantity of the available measurements. Noise-corrupted
measurements, multi-valued targets along with data uncertainty stemming from
variabilities of the physical system, significantly impact ANN’s point predictions.
The reliability of point predictions is further deteriorated in online approxima-
tion scenarios, whereby the training data might be sparse — especially at initial
training stages — or might not representatively cover the entire region of interest.
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Abstract. Prediction intervals offer a means of assessing the uncer-
tainty of artificial neural networks’ point predictions. In this work, we
propose a hybrid approach for constructing prediction intervals, com-
bining the Bootstrap method with a direct approximation of lower and
upper error bounds. The main objective is to construct high-quality pre-
diction intervals — combining high coverage probability for future obser-
vations with small and thus informative interval widths — even when
sparse data is available. The approach is extended to adaptive approx-
imation, whereby an online learning scheme is proposed to iteratively
update prediction intervals based on recent measurements, requiring
a reduced computational cost compared to offline approximation. Our
results suggest the potential of the hybrid approach to construct high-
coverage prediction intervals, in batch and online approximation, even
when data quantity and density are limited. Furthermore, they highlight
the need for cautious use and evaluation of the training data to be used
for estimating prediction intervals.
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Such issues will likely force the ANN to extrapolate, limiting its generalisation
ability along with the practical utility of point predictions. As an alternative
to point predictions, Prediction Intervals (PIs) have been proposed [3-5] which
provide lower and upper bounds for a future observation, with a prescribed
probability. From a practical point of view, PIs could be preferable to point pre-
dictions as they provide an indication of the reliability of the ANN as well as
enable practitioners to consider best- and worst-case scenarios. For example, PIs
could be particularly useful in control engineering and fault detection applica-
tions [6], where uncertainty bounds could help distinguish the healthy operation
of the system from faulty behaviour.

A range of methods have been proposed in the literature for constructing PIs
and assessing the reliability of ANN. Amongst them, the delta technique [3], the
mean variance estimation method and Bootstrap approaches [4] have been used
extensively to evaluate PIs on real and synthetic problems. These traditional
approaches first generate the point predictions and subsequently compute the
PIs following assumptions on error or data distributions, which might be invalid
in real world applications. Additionally, as the resulting PIs are not constructed
to optimise PI quality, they might suffer from low coverage of the training/test
set or might result in wide, over-conservative error bounds.

An alternative approach (Lower Upper Bound Estimation (LUBE)) has been
proposed by Khosravi et al., focusing on directly estimating high-quality PIs,
while avoiding restrictive assumptions on error distributions [5]. Instead of quan-
tifying the error of point predictions, LUBE uses ANN to directly approxi-
mate lower and upper error bounds, by optimising model coefficients to achieve
maximum coverage of available measurements, with the minimum PI width
[5,7]. Although LUBE has demonstrated significant potential against traditional
approaches in terms of accuracy, interval width and computational cost [8,9], it
is less reliable when limited or non-uniformly distributed training data are avail-
able [10]. In fact, Bootstrap and delta methods produce wider PIs in regions
with sparse data, signifying the larger level of uncertainty in ANN approxima-
tion; capturing model uncertainty is an important feature of Pls [9,11], lacking
in the LUBE approach which mainly accounts for noise variance.

In this work, we propose a combination of the Bootstrap and LUBE meth-
ods, which exploits good characteristics from both techniques. The proposed
Bootstrap-LUBE Method (BLM) enhances the reliability of the LUBE approach
when data is sparse or limited, by augmenting the training set with pseudo-
measurements stemming from Bootstrap replications. The pseudo-measurements
will present larger variability in regions with sparse data, forcing BLM to pro-
duce a wider local PI and thus capture the larger uncertainty in approximation.
Following LUBE, BLM constructs PIs by optimising their coverage and width,
while at the same time avoiding any assumptions on data/error distributions.

Another important contribution of this work is to extend the proposed hybrid
approach to adaptively approximate the PIs during the online operation of the
system. In cases where data becomes continuously available in a sequential way,
use of the either LUBE or BLM on the entire current dataset would become
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infeasible as it would incur a continuously increasing computational cost. At the
same time, offline estimation of PIs based on past data would likely be unsuitable
as it would be unable to accommodate dynamic changes in data patterns. We
propose an online learning scheme for estimating PIs, in which the lower and
upper bounds are iteratively updated to also account for recent measurements.
At each iteration only recent data are used in PI-optimisation, thus significantly
reducing the computational cost and further enhancing the efficiency of BLM.

2 Methods

Throughout this section, we assume that we want to construct a PI for the
approximation of an unknown function f(z), x € D, where the region of interest
D is a compact subset of R. Available measurements are denoted by (z;,Y;), i =
1,--+, N, which are assumed to be corrupted by noise € (Y; = f(z;)+¢;). APlofa
predetermined confidence level (1—a) for a future observation Y41 consists of a
lower L(zxn+1) and upper bound U(zy 1), denoting that the future observation
will lie within the interval with a probability 1 — a:

P(Yni1 € [L(zn+1), Uleni)]) =1 —a. (1)

For the Bootstrap method, let us assume that we want to approximate the
unknown function f(z) with f(z;w, ¢, o), using a Radial Basis Function (RBF)
network:

H 2
flasw,c,o) = wnn(zscn,on),  én(aicn, on) = exp(%) (2)
h=1 h
Here H denotes the number of ANN neurons (H = 20 for the tests consid-
ered) and wy, are weighting coefficients scaling the RBF ¢;,. The centres ¢, are
evenly distributed over the region of interest and the widths o}, are evaluated
using a nearest-neighbour heuristic, leading to a linear-in-parameter approxima-
tor f (z;w). The weight vector w can then be estimated by minimising the error

function ZZN=1[Y1' — f(xi; w)]? using least squares estimation.

2.1 Prediction Interval Estimation Methods

Bootstrap Residual Method. Bootstrap methods rely on multiple pseudo-
replications of the training set to approximate unbiased estimates of prediction
errors. Here we concentrate on the Bootstrap residual method, whereby model
residuals are randomly resampled with replacement. The Bootstrap residual
method algorithm described in [4] can be summarised as follows:

— Get an initial estimate w from available measurements, compute residuals
r=Y;,— f (x;; 1) and then compute variance-corrected residuals s; [4].

— Generate B samples of size N drawn with replacement from residuals
s1,+++, 8N, denoted by s}, - - - ,sl]’v for the b*" sample. For the b*" replication:
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Fig. 1. Function approximations fb at 50 Bootstrap replications (grey shaded lines).
The variability among approximations from different replications is significantly larger
in regions where measurements used for training (red circles) are limited. (Color figure
online)

e Cenerate b replication’s “measurements” Y = f(x;;®) + s.
e Estimate wy by minimising the error Zi\il [P — f(zs;w))? and calculate
the Bootstrap approximation fb(:z:; wp).
e Calculate the current estimate for the approximation error €} ;.
— Construct PI using percentiles of the error epny1.

LUBE Method. LUBE’s cornerstone is the direct approximation of Pls
using ANNs. Instead of the unknown function f(z), LUBE approximates the
lower L(x) and upper U(z) bounds using RBFs: L(z;w?) = Zthl whkon(z),
Uz;wY) = Y1 wY ¢y (x). The main goal is to produce high-quality Pls, where
quality is assessed using two indices: (a) PI Coverage Probability (PICP) and
(b) Normalised Mean Prediction Interval Width (NMPIW). In particular, PICP

is given by:
N

1
PICP(w?,wY =% Z i, (3)

with C; = 1if Y; € [L(z;;w?), U(z;wY)] and C; = 0 otherwise. Similarly,
for R denoting the range of observations, NMPIW is given by:

NMPIW (w?, wY NZ (zi;wY) — L(zs; wb)]/R. (4)

From a practical point of view it is useful to have narrow PIs (small NMPIW)
which offer high coverage of the measurements (large PICP), leading to the
following optimisation problem [5,7]:

Minimise NMPIW (w®,wY) (5)
1 — PICP(w" wY) (6)
Subject to  NMPIW (wr wY) > 0, (7)
1 — PICP(w",wY) < q, (8)
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where a is the desired confidence level (a = 0.05 for the tests considered). Due to
the complexity of the mutli-objective optimisation problem, weights w’ and wY
are estimated using a Non-Dominated Genetic Algorithm IT (NSGA-II) [7,12].
Among solutions with PICP> 1 — a, the solution producing the narrowest PI is
selected.

Bootstrap-LUBE Method (BLM). BLM is aiming at combining good char-
acteristics from the Bootstrap and LUBE methods. The main objective of BLM
is to directly estimate PIs by optimising their quality (similar to LUBE), while
at the same time accounting for model uncertainty (similar to Bootstrap).

In fact, Bootstrap produces wider bounds in regions with sparse data, cap-
turing the larger model uncertainty while the LUBE approach which mainly
accounts for noise variance lacks this feature (Figs. 1, 2 and 3). Looking closer
into Bootstrap (Fig.1), there is significant variability between the Bootstrap
approximations fb from different replications in regions with sparse data, most
likely due to extrapolation. In such regions the error at each replication will be
large leading to large regional error variance and wide regional error bounds.

The main idea of BLM is to enrich the N available measurements with
pseudo-measurements originating from the Bootstrap approximations ( fb), to
force BLM to account for data density. We first define an auxiliary set of points
(x;f, j=1,-++, Ngy.) evenly distributed in the region of interest. We then com-
pute the Bootstrap approximation of each replication for all of the x* points
(fb(x;‘), b=1,---,B, j =1,--+,Ngy,) which will lead to B - Ny, pseudo-
measurements (light blue dots in Figs. 2 and 3). The multi-objective optimisation
problem of LUBE is now augmented to finding w’ and w9 which:

Minimise NMPIW (w”,wY) + NMPIW,scudo(w”, w?) (9)
1 — PICP(w™, wY) (10)
Subject to  NMPIW (wh wY) > 0, (11)
1 — PICP(w",wY) < a, (12)
1 — PICP,seudo(w” ,wY) < 0.01, (13)

where PICP and NMPIW are computed over the N actual measurements, and
PICPpseudo and NMPIW 4¢4,40 are computed on the pseudo-measurements. With
the BLM formulation the PIs will be forced to be wider in regions with sparse
data (where pseudo-measurements will present substantial variations), indicating
larger model uncertainty. At the same time, regions with dense data will not be
affected, as the variation in pseudo-measurements will be small (the Bootstrap
approximation in those regions is similar throughout replications (Fig. 1)).

2.2 Online Estimation of Prediction Intervals

During the online operation of a system where data becomes available in a
sequential manner, use of either LUBE or BLM on the entire current dataset
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would become infeasible. To this end, we propose an online approximation
scheme which takes into account past and current data, in a computationally
efficient way. Based on a weighted sliding window learning scheme, the lower and
upper bounds are iteratively updated at specific time instances.

In particular, the lower and upper bounds’ weights (condensed into vector
w) are first trained on the N; initial measurements, leading to estimate w;.
Assuming a continual and uniform in time inflow of measurements, the bounds
are updated at the first sliding window when N;+ N,, measurements are available
(Nw S Nz)

7 Nw
w,Ni+Nw+wwNi+Nw. (14)
Here w,, denote the weights of the lower and upper bounds estimated with
multi-objective optimisation based only on the most recent IV,, measurements of
the current window. The contribution of the recent measurements in the current
weights’ evaluation is determined by the ratio of measurements in the current
window (N,,) to the total number of available measurements (N;+N,,). Similarly,
for the k** window, the weights will be iteratively updated to account for past
and current measurements with equal contributions:

N; + (k—1)Ny, Ny

(N4 k) = (= D) S DR o, e

(15)
For each window only NV,, measurements are used in the optimisation, signif-
icantly reducing the computational cost of the optimisation problem. Note that
when BLM is used, the weights are estimated using the measurements of the
current window as well as the auxiliary Bootstrap-based measurements.

3 Results and Discussion

3.1 Comparison of Prediction Interval Estimation Methods

The methods for constructing PIs described in Sect. 2.1 are tested and compared
on synthetic tests. Of interest in this work is the quality of the PIs when non-
uniformly distributed or sparse data are available. Accordingly, as we are investi-
gating extreme scenarios, the training data are generated from random uniformly
distributed data under specific restrictions. In particular, we are replicating two
scenarios: (a) the training data do not representatively cover the entire domain,
but only regions of it (Fig.2), (b) very few training data are available over the
entire domain (Fig.3). For both scenarios the test data are uniformly covering
the entire domain, to enable reliable assessment of PI accuracy.

Two functions to be approximated are considered (f;(z) = 0.5sin(1.57x +
w/2)+2, fa(x) = 5sin(rx+7/2) +exp(z)). Training and test data are generated
based on these functions and white Gaussian noise of 10% of the mean function
value is added. For both functions we consider the two training scenarios, leading
to the following tests: Testl: PI for regional data generated from f7, Test2:
PI for regional data generated from fo, Test3: PI for sparse data generated
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from fi, Test4: PI for sparse data generated from fy. For Testl and Test2, we
consider 100 training points, while 15 training points are considered for Test3
and Test4d. Every test is repeated 10 times with different randomly generated
training data, to enable a more reliable comparison of the methods. Table 1
presents PI quality indices for all methods, averaged over the 10 replications
of each test. Representative PIs are demonstrated in Fig. 2 for scenario (a) and
Fig. 3 for scenario (b).

PICP, . =0.89,NMPIW, ' =0.42 PICP pe =0.72, NMPIW . = 0.3 PICP,, ,, =0.97, NMPIW,  =0.6

b t

= Upper bound
= Lower bound
Training dataset
* Test dataset
function
0.5 1 1.5
x

PICP, . =0.93, NMPIW, ' =0.14 PICPLuBE =0.59, NMPIWLUE“E =0.11

= Upper bound
= Lower bound oo
Training dataset
* Testdataset
function

A
.

Fig. 2. PIs constructed using the Bootstrap (left column), LUBE (middle column) and
BLM (right column) approaches. Data limited to certain regions of the domain following
scenario (a), originate from f; (Testl, top row) and fa (Test2, bottom row). Light blue
dots indicate Bootstrap pseudo-measurements used by BLM. PICP and NMPIW are
evaluated on the test dataset, uniformly covering the entire domain. (Color figure
online)

Across the tests considered BLM clearly outperforms LUBE method in terms
of coverage, with an average increase of 15-30% in PICP. By considering Boot-
strap pseudo-measurements, BLM is able to produce larger bounds in regions
with fewer data, providing an indication of the uncertainty in the estimation.
Additionally, due to BLM’s optimisation of PI quality, BLM produces a better
coverage compared to Bootstrap in the majority of tests. Increased PICP comes
at the cost of wider PIs, nevertheless, the fundamental requirement for a PI to
reliably include future observations is clearly prioritised over narrow — yet invalid
— Pls.

Finally, it is worth noting that BLM is performed on a larger number of
training measurements compared to LUBE, without significantly impacting the
computational cost. The increased cost in computing PICP and NMPIW over
the pseudo-measurements is not substantial (note that B and Ny, do not need
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Fig. 3. PIs constructed using the Bootstrap (left column), LUBE (middle column) and
BLM (right column) approaches. Sparse data originate from f1 (Test3, top row) and fo
(Test4, bottom row) following scenario (b). Light blue dots indicate Bootstrap pseudo-
measurements used by BLM. PICP and NMPIW are evaluated on the test dataset,
uniformly covering the entire domain. (Color figure online)

to be very large to enable BLM to account for data density), while the dimensions
of the parameters (wl and wY) to be estimated remain the same.

Table 1. Average characteristics of the PIs constructed for four synthetic tests, using
the Bootstrap, LUBE and BLM approaches. PICP and NMPIW are evaluated on the
test dataset, uniformly covering the entire domain.

Tests | Bootstrap LUBE BLM

PICP(%) | NMPIW (%) | PICP(%) | NMPIW (%) | PICP(%) | NMPIW (%)
Test1 | 83.23 43.54 74.33 37.68 89.75 57.63
Test2 | 65.06 20.74 62.47 18.61 91.76 41.00
Test3 | 65.27 33.56 66.67 29.72 94.68 62.68
Test4 | 65.72 10.77 64.97 9.23 90.30 24.93

3.2 Online Estimation of Prediction Intervals with LUBE and BLM

The proposed online learning scheme (Eq. 15) is compared against batch (offline)
estimation using both the LUBE and BLM approaches. Initially, LUBE is used
with IV; = 100 initial training points and N,, = 10, subsequently with N; = 1000
and N, = 100 and finally BLM is used with N; = 100 and N,, = 10. In all tests
k = 10 sliding windows are considered, and each of the three cases is repeated
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Fig. 4. PIs constructed using batch (top row) and online (bottom row) estimation.
Online PI estimation is tested using LUBE on N; = 100 and N,, = 10 training points
(left column), using LUBE on N; = 1000 and N,, = 100 training points (middle
column) and using BLM on N; = 100 and N,, = 10 training points (right column).

Table 2. Average characteristics of the PIs constructed using the LUBE and BLM
methods, based on batch or online approximation.

LUBE (N,, = 10) LUBE (N,, = 100) BLM (N, = 10)
Estimation | PICP(%) NMPIW(%) | PICP(%) NMPIW(%) |PICP(%) NMPIW(%)
Batch 94.95 54.80 94.84 42.64 92.50 46.60
Online 76.14 64.41 95.95 43.94 89.57 43.93

10 times. For batch approximation all N; + kN, training points are used for
PI optimisation. Representative results are presented in Fig.4 and average PI
indices in Table 2.

When LUBE is used with only N,, = 10 training points, online results are
suboptimal compared to batch approximation. This is due to the fact that
LUBE’s accuracy suffers when only sparse data is available (as demonstrated
in Fig. 3 and Table 1). This issue can be alleviated by increasing the number of
training points (N,, = 100), in which case online estimation with LUBE is able
to provide very similar PlIs to batch estimation, and in a much more efficient way.
Alternatively, BLM is able to provide very similar PIs through online and batch
estimation without increasing the number of training points as it is designed to
provide reliable bounds even when trained on sparse data.

It is worth noting that the proposed learning scheme can easily be adjusted
to accommodate the needs of the specific application. For example, the relative
contribution of the current sliding window could be increased in cases where
recent measurements are considered more critical than past measurements.
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4 Conclusions

Combining Bootstrap with LUBE method enables BLM to present improved
characteristics in terms of coverage, compared to both Bootstrap and LUBE
approaches. In particular, BLM can provide high-coverage Pls even when lim-
ited data are available, clearly outperforming the LUBE approach. The results
highlight the fact that even commonly used methods such as Bootstrap might
provide unreliable PIs when the bounds are based on limited or sparse data, an
issue that should be carefully considered by ANN practitioners. Finally, extend-
ing BLM to online approximation constitutes a significant improvement, as it
enables the efficient and reliable construction of Pls even when approximating
dynamically changing processes.
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