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LAPLACE'S EQUATION

Bij T. J . I 'A. BROMWICH.

[Read June 13th, 1912.—Received September 5th, 1912.]

IT is a familiar fact that the potential of a uniform circular disc of
radius a can be expressed by series of zonal harmonics of the form

I,A,lP.Mlrn+1 or -LB^Pnifi),

according as r is greater or less than a. And a similar statement holds
for the potential of a uniform hemisphere (with a slight modification at
internal points); the exact formula for both cases are given below
(pp. 108 and 120).

There is no difficulty in shewing that, if r > a, a series of the type
2,AnPn(jj.)lr

n+l will serve to represent the potential, whatever the law of
density in the disc or hemisphere may be, provided that it is symmetrical.*

But when the density is not uniform, the series for points at which
r < a become more complicated: in particular, if the density is an odd
power of the distance from the centre certain new types of harmonic (here
denoted by Xn) will appear, containing terms of the type rnP.n{n) log (a/?-).
The precise form of Xn is investigated in § II below.

The formulae for the potentials in § § I, VI and the formulae for Xn

were obtained four years ago, but were first published in the Abstracts of
the Proceedings of the June Meeting of the Society; after these Abstracts
had appeared, it was remarked to me by Mr. Ci. N. Watson that the
function Xn is connected with the function

which is a more obvious solution of Laplace's equation. A verification of
this fact will be found in § V below ; and some of the potential functions

* More generally, a series of this type can be found for any solid of revolution, if r is
greater than the greatest radius of the solid.
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have been now expressed in terms of' Yn rather than in terms of Xn, as
this enables these formulae to be written more compactly.

I. Potential of a Disc whose Density Varies as sm, where s is the
Distance from the Centre.

We take the centre of the disc as origin and its plane as the plane
of xy. Then the potential is given by the integral

Ci

= \

Jo
V = d<t> \ sds

J o V (> + s — 2rs cos y)

where cos y = sin 6 cos 0, and r, 6 are the three dimensional polar co-
ordinates of the point at which F is to be found.

We can expand the square root in a series proceeding according lo
powers of s/r (or r/s, as the case may be), so that

i 1 °° s n

= — + 2 -j+i-P»(cos y), if s < r,» , a—2rscosy) r i r
1 n rn

or — + 2 3+T -P» (cos y). if s>r.
S i S

Also it is known that

| Pn (cos y) d<f> = 27rPn (0) Pw(cos 6),
Jo

and that Pn(0) = 0, if n is odd,

or >„ (0) = (-1)"1 1 >^V( n~1 )» if n is even = 2m.
2 . 4 ... ?i

For brevity in the subsequent work we write

r _ 1.8... (2)1-1)
O i t ~ 2.4. . .2n f

and then P2il(0) = (—l)nC«.

On using these facts we get two formulae for V, according as r is
greater or less than a, which we shall denote by Vo and Vx respectively;
thus, if r > a, we have

(1) Vo = 2TTA; I* sm+lds •[ — + S(-1)" Gn - | ^ P2)l(cos 0)
Jo \ * i i

lm+2 r iv ; m + 2 » + 2 \ r .

But, if r < a, we have to divide the integral into two parts, from 0 to r,
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and from r to a, and then we find

(2) V1 = 2TTA; [ sm+lds {— + 2 ( - l ) « Gn^ ]

+ £(l)11 C £P*(eos 0)

Thus, assuming that m is not an odd integer (we have tacitly assumed
already that m+2>0, so that the values excluded now are — 1 ,
+ S , + 5 , ...), we find the result

(8) V-

l w i + 1 i 2n—??i—1 \a/

Since Vl satisfies Laplace's equation, we are led to conjecture that the first
term in Vx must be of the form 2TrkArm+lPm+i (cos 6); but (since m~\-l
is not an even integer) this function has not the property of remaining
unchanged when we change the sign of cos 0. Thus we amend our con-
jecture by trying to express the term in the form

2<7rA;.4rm+1Pw+1(cos 6), when cos 6 > 0,

or 27rA;^rm+1Pm+i(—cos 0), when cos 0 < 0 ;

and this function has the further property of remaining finite in both
regions, even when m is not an integer.

It is now easy to confirm the conjecture, for if we write

where n = cos 6,

weget 2B0

and so Bo = - -

where p = -

O POP r
Also 2w+I = J i

P»-»(lMl)P»(M)rfM = 0 (if7iisodd)

= 2 f P,(M, (M) Ptl (M)rfM (if n is even).

Now {n(ji + l ) - (m + l)(m + 2)} [p,H + 1P,,dM = (l-M2) / p > ^ » . ^ i _ p ^ dP,, \
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by using Legendre's equation for the harmonics. Also, when n is even, .dPn/dfi is zero at
H = 0 : and so we find

B

(

Thus B;n =
(

and so we get the result

Pnil(\a])=pi- Jl u ^ " * l (;n + l)(m ~

Thus the potential of the disc, when r < a, takes the form

(4) F1

whei, . = -(f-l) = - > 8 ( w g 3 (see p. 104).

( - D" C,,(4»+l)
(w+l)(m+2) ^ t (2n+»i+2)(2rc—m—1)'

the second formula for p being obtained by equating the series (3) and (4)
in the special case 6 = 0.

The form (3) enables us to see at a glance the continuity of V and
dV/dr at the sphere r = a ; but (4) is useful also, as indicating at once
the fact that V satisfies Laplace's equation.

As an illustration we may refer to the familiar case of a uniform disc, for which m = 0 ;
here p = — 1, and so (4) gives

7, —2,*,- | H + 2,*a { l-5(-l)" ̂ tl ( f )2"P,.

while (1) gives 70 = 2*ka { | ± + 5 ( - l ) - ^ ( ± ̂  Pu } •

The continuity at r = a of these formulae was established by a special investigation (here ex-
tended) in the Philosophical Magazine (August, 1901); it will be seen that our present
formulae are in agreement with those found in the ordinary text books, except for the fact that
some books seem to suppose that the first term in Vx is always — 2irkrfx.

As a further verification of (4), it may be noted that the discontinuity
in the normal attraction at the surface of the disc leads to the equation

vz / - dz I +
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or, in our case,

r \ tifx ) +

which agrees with (4).
We now proceed to discuss the necessary modification of (4), when m

is an odd integer j and, on the whole, the simplest method appears to be
the application of a limiting process. To carry this out, we shall need to
establish first the formula given in (4) for the value of the constant p.

In general the relation

is easily established for all values of n ; and so, putting /* = 0 and n = m +1, we find

Also, when ,u is positive, we have

Pm[fx)= — |ju +« / ( I— ju2) cos<p\'"dpt

*• J o

where the principal value of the complex power is to be used. Thus, if
H -> 0 and 0 ^ <f> < 5ir,

we have as the limiting value

{fj. + Jv/(1—fi-) cos <p}'" —> e*"'" cos'" <p,

but when £ir ^ <p ^ ir, the formula is

| / u+1 \/(l—/u2) cos <p}'" —> e~k""cos'"<pl, if <px = ir — (p.

Consequently we find

1 f'» i f« i ci»
p,,, (0) = — e*4"" cos1" $d<p + — e-i""T cos'" (v—<p) dip = — (el"Uc + e-s"'") cos"

w Jo "• h' "• J"
2 f** 1 r <im+ *̂

or P,,(0) = —cos(|miT) cos"1 <pd<p = — C O S ( | ? H W ) -»2 *>.
ir Jo -v̂ ir rfjTW + l)

Thus we find -p = (m +1) PIU (0) = ^ cos (|j»ir) LtiZ^L+J),

which is the result already stated in (4) above.
To deal with the limiting case, it is convenient to write TO +1 = 2v +1, and then to make

t tend to zero ; and a glance at (4) shews that we shall need to evaluate p as far as terms
in P. Thus we write to this order

COS (JJWTT) = s in (VTT + %tn) = (— l ) " s i n (%tn) = ( — l)v(%tir),

and so the quotient of the two Gamma-functions need not be evaluated beyond terms of the
first degree in t. Thus we can use the approximate formulae

and r ( |m + l) = r > + £ + |*) = r ( , + | )

where t(x) = r' (as)/r (x).
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and Lt+JJ = ^c

( 1 ) = 2&, say;*

with the special values r (|)/r (1) = vV, ^ (1) — ij/ (§) = 2 log 2

Thus we obtain the approximate formula

which applies also for the case v = 0, if we write

C0 = l, Bo = log 2.

To calculate the limiting form of equation (4), we can write w-J-1 =2v
in all the terms except the first, and the term in the bracket for which
n = v; thus we gett

(5) Vl= T J f e a * { i 2 ' ( l ) » J ^ ( — )

t \ d I " \ t "/ \ a, / 2v + t f »

where for brevity we are now considering only the case when n is positive;
to deal with negative values of fx, we need only change the final conclu
sions by writing \ fx\ for At.

Hence for the law of density ks'2v~l, we obtain the formula for the
potential of the disc at points for which /• < a,

(6) Vx = Trka*> ] I- - i ' ( - l ) "
{ v

()
v 1 n—v

where we write

Yn~dn\\a

An alternative form, equivalent to (6), will be found in (11) below.

* See, for instance, my book on Infinite Series, p. 475, Ex. 42.
t The symbol 2' is used in the sense often adopted by Weierstrass and others ; the accent

implies that certain values of n are excluded (here n = v) which would involve infinities in
the summation.
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In the special case v = 0, the formula (6) becomes

(6a) Vx =

which is the potential (when r < a, /x > 0) of a disc whose density is k/s.
We shall consider below more fully the form of the function Yn, which

does not appear to have presented itself previously. But before discussing
this, it will be useful to remark that the limiting process which we have
used can be avoided by writing m = %>—1 in the integral. (2) for the
potential. It will then be seen that the potential takes the form

{.L
A v

n—v

The bracket in the last line takes the form (—lYCvP2v\og(alr)+f(d);
and so we are led to conjecture the existence of a solution of Laplace's
equation which takes the form

n being an integer. We proceed next (in § II) to investigate the form of
this solution, and we shall afterwards connect the solution with the func-
tion Yn defined in (7).

A-S a matter of fact the form of the potential was originally determined
by the second process; but the limiting process has the advantage of
indicating more clearly the relation of this case to the general formula (4).

II. Investigation of certain Harmonics.

The simplest case of these harmonics corresponds to (8), when we
suppose v = 0 or m = 1; the integral (2) then leads to a harmonic of the

This series of zonals, as we shall prove in a moment, is equal to

2 log 2—1—log (1+ | M I >
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so that the harmonic is simply

which is at once seen to be a solution of Laplace's equation—it is, of
course, a well-known solution, although not often wanted in mathematical
physics.

To verify the identity quoted above, it is easiest to expand the function

log (1 + | M |)

in a series of zonal harmonics. It is readily seen that no odd harmonics can occur, and if we
write

r*1 f1

we find at once Ao = A log (1 + | n |) dp = log (1
J-i Ji»

= [(1 +/*)log (1 + M)- /" ] , ' = 2 1 o g 2 - l .

Also An

= (in +1) [' log (1 + fx) P,n (a)
Jo

Thus using the differential equation for P-in, we find

The integrated part is zero at both limits; and on integrating by parts again, wo find

A" =

Here the last term is zero, and so

A = ^1+ x _ P., in) = _
2n(2n + l) v '

which confirms the result stated.

Beturning to the formula (8), we now get the formula for the potential
of a surface-density k/s, at points for which r < a,

(8a)

a result which is really the same as (6a).
To obtain the general case of the harmonics suggested by (8) we try

to find a harmonic function of the form
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the abbreviation Zn being used for r"i\(/x); it will be supposed here that
z and M are positive.

Now AZn = 0, where A denotes Laplace's operator; and as we have

just seen Alogl(r+*)/2a[ = 0,

sothat \ ox r-\-z

_ 2 /nZn . dZn\
r-\-z \ r dz ) '

Now it is easy to verify that

and so we have the formula

Also A \r»f(A\ = >-n

so that the condition AX» = 0 leads to

l { ^ | } = o.
It is easy to see that the first term in this formula is a polynomial of
degree (w—-1), and that it is equal to twice*

We assume accordingly for/,

* In fact, if the given expression is multiplied by (1 + /u), we get for the product

nP,, + (2«-l)P,,_,+ (TO-1)P,,_2

- ( n - l ) P n . , - ( 2 » - 3 ) P n . 2 - (»-2)P,,-2
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and then our condition yields

|n(n+l)-«(H-l)JilfP.= 0.

Hence A. = ( - I )"" 8 , ^ ^ , for « = 0, 1, .... / i - l ;

and so, taking An — 0 for simplicity, we find

« - l D 2n-3 D , 2n-5 „

M?- new solution of Laplace's equation takes the form

(9) ZTO=r-Pn(^) log (^t£)

J2»- l 2w-8 , ( - I ) -

and, of course, any arbitrary multiple of rnPnC«) may be added to this
without affecting the conclusion.

To obtain the solution commonly denoted by rnQn(jn), we change the
sign of ix in (9), and deduce, after division by (—I)'1, a second solution

/ A \ n-n i \ 1 ( r Z \ i n n ( 2 » 1 „ , 2 ? l — 3

(9a) r'P.M log (-gj-) +2,- ^ P + f)

Thus on subtracting (9a) from (9) and dividing by 2, we get the solution

(96) i , . ^ W l o g

which is one of the known formulae for rnQn(fj.).
It will be seen that (9b) contains r only through the power r11; but, in

contrast to this apparent advantage, there is the drawback that (96) has
an infinity when fx is equal to either —1 or + 1 . On the contrary, (9) re-
mains finite at fx — + 1 , while (9a) is finite at fx = — 1 ; thus we should
expect to find (9) of use on the positive side of the plane of xy, while (9a)
will serve for points on the negative side of this plane.

In view of these calculations it is evident that when /x > 0, we can



110 DR. T. J. I'A. BKOMWICH [June 18,

write the solution Yn of (7) in the form

Yn = {

where the coefficient An is not easily found directly, but is obtained
indirectly in (10) below.

III. Specification of Harmonics by their Values on the Axis of Symmetry.

It is useful to notice that the harmonics which we have been consider-
ing are completely specified by their values on the positive axis of
symmetry (for which ix = 1). Thus the harmonic rm+1PTO+i0*) is repre-
sented by rm+l on the axis, whatever may be the value of m (whether an
integer or not).

Similarly the harmonic defined in (7) by the equation

a

is represented on the axis by (r/a)n log (r/a); while the function Xn, defined
in (9) above, is represented by

Thus, in particular, we can obtain the relation between Xn and Yn:
•on the axis we have the relation

anYn-Xn = 2r» ( l - i + £ - . . . - J-) ,

so, in general, we have the identity

(10) ' a»Yn =

We shall obtain later (in § V) a direct proof of the relation (10); but
it should be noted here that (10) leads to a formula equivalent to (6),
for the potential of the disc with density ks2v~l, namely,

r \2n

n—v \a



1912.] CERTAIN POTENTIAL FUNCTIONS. I l l

where Sv = l - i + £ - . . . - 1 ,

For instance, with v = 1, we have

5>i = £ S2 = j ^ -

and so the potential corresponding to a density ks is

(lla) F 1 = x * a " l l - 2 ' ( - (
&—l \ a

a result proposed in the Mathematical Tripos, Part II, 1909, and given in
the abstract of this paper.

To illustrate the method of utilising the value of the potential on the axis to determine
the potential generally,* we may apply the process to a disc whose surface density is ksi''\ At
a point on the axis, we have

Thus, taking r > a, we get

m + 2 r xK '" 2n + m + 2\ r

which leads at once to formula (1) above. But, if r < a, we have

Mr* »> | - ^ _ _ _ _ _ + j (_i )u C, t2» + m + 2)(2n-TO-l) J

- m - l \ a

sx result which leads at once to (3) above.
It is not very easy, however, to apply a similar method, in general, to obtain (6) ; the

formula obtained is substantially (8), but the coefficient of r-»Piv is troublesome to express in
a simple form. For the special cases v = 0, v = 1, we can proceed as follows.

* Of course the method is familiar (and goes back to Legendre) in the case when har-
monics of integral order suffice to express the potential Vx.
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When v = 0, we have

Jo • (« ' +

and thus we find,* if r < a,

which leads to (6a) at once.
Similarly, when v = 1, we find

1-3.5
2X6

-'= **- (f) 1 •- •*
and expanding similarly we obtain the special case of (6) which corresponds to v = 1; the
terms of special interest here are those in r2, which are seen to be

and these lead to the general values

,rfc{a»rs-(log2-i) r*P9}.

IV. The Solutions Inverse to Xn.

Professor Hobson pointed out to me, in 1909, that the solutions Xn

can be derived from known solutions as follows.
It is a familiar fact that if f(x, y, z) is a solution of Laplace's equation,

then another solution can be derived by inversion, which leads to the form

r J Vr2' ,»' r2/*

Now log%{r-\-z) is a known solutiont and consequently we have another

— log - s V ) .r \ 2r̂  /

From this we can derive others by differentiation in the form

r+*\

Pn-M n _ 2z\ , 1 PH-8QJ) / £ _ 2 4**
2\ _

* See, for example, my book, Infinite Series, p. 163, Ex. 14.

t Actually log (r + z) = I - z , so that this is an obvious solution.
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by applying Leibnitz's theorem on repeated differentiation. Now this ex
pression is of the form

r+U
where fn is a polynomial of degree n in fx. Inverting again, we derive a
solution of the form

(13) >MPn 0*) log Hr+8) + r%(fi).

To actually obtain a formula for/»(p) it is, however, easier to apply the
differential equation directly to the function (13) ; and so we return sub-
stantially to the calculations given in § II above. The actual relation of
this harmonic to Xn and Yn can be determined by examining its form at
points on the axis, for which (12) becomes

( - l ) n d'1 ( 1 .

Consequently (13) becomes on the axis

/-(logr+1+i+... + i-),

and (13) is therefore (in general) equal to

where we have taken a = 1 in the definition of Yn-

V. A direct Determination of a Formula for Yn.

To abbreviate the formulae, put a = 1 in the definition (7), and then

(14) r,l = | ( r « P , ) = r

To proceed further we shall use the complex integral

In order to make the integrand single-valued we make cuts in the £-planer

along the negative half of the real axis, and along the line which joins the
branch-points A, B given by

1—fyt+1? = 0,

or by t = fj.-\-i^/{l— fx2) and ix—t\/(l— ^2).
8KB. 2. VOL. 12. NO. 1166.
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We assume that yu is positive, and this is in agreement with the applica-
tions which have been made of the function Y,,.

T/l

0 /

Further, we suppose that the integrand is real and positive at the
point C in which the path of integration cuts the real axis, on the side of
AB which is further from the origin; with this choice of integrand it
will be seen that the integral (15) gives the value of P,i(/x)-

A simple proof may be given as follows. Let the integral be called In, and then write

t = v/r. We get _i_ f «"*?

where the integral extends round a similar path in the v-plane. But

r 2 -

so that (r't — 'Lvz + «2)-i satisfies Laplace's equation. Thus the same is true of r"In, and so In

satisfies Legendre's equation in p. To identify J« with P,,, we consider the value of In when
u = 1. We have then ., . ,„ ,.

I» = ~ \ ~ v2ir« J t — 1

where the path surrounds £ = 1, and t'1 is to be real and positive at the point C (since t—1 is
there positive); and thus In is now seen to be equal to 1, when /* = 1. Hence

because P,, (jx) is the only solution of Legendre's equation which reduces to unity at n = 1.

It now follows that

dPn _ 1 f tnlogtdt
Bn 2TH J V ( l 2 * +

taken round the same path as (15); and so if | c | > 1, we can write

" 3 P n 1 _ 1 f
i dn cn+1 2 J

log tdt
n6>

The last integrand is, when | t j is large, of the order (log f)/t2, so that the
value of the integral taken round any portion of a large circle tends to
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zero as the radius tends to infinity; and thus the original path of integra-
tion can be transformed into the dotted paths indicated in the diagram.

From the circle round t = c, we get*

(logc)/V(l —2MC + C2) = (logc)/g-, say;

where the square root q will be real and positive, if c is real and greater
than 1, as we shall suppose for simplicity of statement.

On the part of the dotted path which lies above the negative axis, we
have (in the limiting form of the path)

t = —x, \ogt = \ogx + 7n,

and so this part of the integral yields

, JL_ f° (loga+TrQcfa i_ f
2TH JOT (C+Z)A/(1 + 2/*Z+Z2) ~ 2TH JO

For the path below the negative axis

t = — x, log * = logs — ™, ^(l-2fxt+t2) = —

and so this part of the integral gives

Thus on combination, we get, from (16), the equation

S J oo c T on q

The last integral is easily evaluated by elementary methods and is equal

— tanh"1

7 (i+J-
so that

<17) ! ̂  i 1 = 7 110«c~2 tanh"' (i+i)} = 7 ' 8 a y -

* The fact that the circle is described in the clockiuise sense just neutralizes the change
of sign introduced by our having (c — t) in place of (t—c) in the denominator of (16).

t See, for instance, Messenger of Mathematics, Vol. 35, p. 131.
i 2
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Then, if we differentiate out the bracket, we find

dU_ J 2_ J____
dc c q ( l+c ) 2 - ( l -2 M c+c 2 )

_ 1 _c—\ 1
c c q

Hence tf = l70+2 A (P.-P.-i),

where Uo is the limit of U when c tends to infinity. But

- g ) _ 1nfT c.2c(l-bi)

so that

and 17

If w6 multiply the last series by

1 1 °° 1
q c i cm+

we obtain, from (17), the formula*

dP
f = P l O

n
It is clear that the last part of (18) is a polynomial of degree n in n, and
so can be arranged in the form

but it is not easy to obtain the form of these coefficients A8 directly ;.
although one relation is evident by writing ^ = 1, namely,

a result which is also confirmed by the fact that Pft(l) = 1 for all values-
of n, so that, when fx is 1, ~

°Pn = 0.
dn

• In the special case n = 0, the value of the differential coefficient reduces to log | ( 1 + M) ;
this special case was obtained by a different method in 1906 (Proc. London Math. Soc.r
Ser. 2, Vol. 4, p. 222, footnote).
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On substituting from (18) in (14), we see that

Yn = rn{Pn\ogW+z)+AnPn+An-1Pn-1+...+A0PQ\,

and since Yn satisfies Laplace's equation, it follows from § II, that

•"•a = ( 1) ; r~T\ = ( 1) " I r~* ) •

0 n(n-\-V) \n n-\-V

Thus, from (19), we have the result

An = -( i I l . 1+in-2+. . .+^ = 2 ( l -£+l_£+. . ._ JL),
a result which we found before in § III by comparison of the values of Yn

and Xn on the axis of symmetry.

VI. Potential of a Hemisphere, with a Law of Density ksm~x, where s is
the Distance from the Centre.

We take the base of the hemisphere as the plane of xy, the centre as
the origin, and the hemisphere as lying on the positive side of the plane.
Then the potential of the hemisphere is

1a fjir f2ir J J
ksm+1ds\ BinO'dd'] . . - , fr -,

o Jo Jo \/(? +s2—2rscosy)

where cos y = cos 6' cos 0+sin 6' sin 6 cos <j>.

NOW 1 " Pn (COS y) = 27rPn(CO8 6') Pn (COS 0),
Jo

and [^ sin 6' dO' Pn(cos 6') = [ Pn(/*') dp',
Jo Jo

so that the value of this integral will be zero if n is even. Also we have

r P O ( M W = i , r
Jo Jo
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These integrals are readily obtained by integrating the series

from // = 0 to n' = 1; and this gives

I Jo t

from which the results stated are obvious.

If now r > a, we can expand the square root in (20) in the form

1 °° <;u

- i +2-£FTP»(eosy)f

and so, when ?• > a, we find the potential of the hemisphere,

(21) Fo = sh*cr« { ^ ± + | ( - i r 2 - ^ (f)2"+5P2,+ | (

It is perhaps worth while noting that if we write

then F (

which is the potential of a complete sphere having the same law of
density.

We now return to the case r < a; for which (as in the case of the
discs) we must divide the integral with respect to s into two parts, from 0
to r and from r to a, and then use the two different series

y +i^IP»(cosy) and -L+£ llpB(cosy),

in these two parts.
After carrying out the integrations and rearranging the series in

the same way as (3), we get*

(22) Vx or F2 = 2**r«+1 j - *
1

(
2n—m\a

2 ? l + 1

* It will be necessary to distinguish between the potentials on the positive and negative
sides of the base; and we denote by F, the potential when ju > 0, by F2 the potential when
H < 0, so that Vl refers to points inside the hemisphere and F"5 to external points.
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Now since F2 satisfies Laplace's equation it is suggested that the co-
efficient of rm+1 will be proportional to Pm+i (—/x) when fx is negative.

To investigate this conjecture we shall find the coefficients L», so that

iz,,,P2Mtl M = P,H+l(M)-P,,,+1 (O) o* > o),
and ° =PH,+i(0)-P,,, + , ( - M ) ( M <0) .

The function so defined is clearly an odd function of /*, which is zero at /x = 0, and hence is
expressible as a series of odd harmonics only. Thus we have

~ 3 = 2 j * { P H 1 . 1 ( M }

Now Legendre's equation gives

{(2n + l)(2n + 2) - (m + l)(w + 2)} P Pm<
Jo

\ dp. Jo

But (1_M2)^UJ.
d

8 0 t h a t f ^ ^ ) = ( 2 " + 1 ) ^ (0) = ( - 1 ) " 1 ^ -^ ) = ( 2 " + 1 ) ^ ( 0 ) = ( 1 ) ^dp. /o 2.4. . .2?i

Hence £*.., W A... W* - ( - ^ V ^ ^ ' H ^ V ^ ) ^ ^ " 1 <0)'
and s imilarly f1 P,( 1 1, (0) P2«+1 (M) rfM = ( - 1 ) " KH Pm . i (0).

J

and so we find Ln = (-1)" . - J ^ 3 ) g " (m H) (m + 2) P m , , (0).
(2nTO)(2II + 7K+ 3)

Hence we have the formulee

- ( - l )» (4n+3)g a p . P,lt+1(M)-POT+1(0) .
o (2n-m)(2n+m+8)^*1 + l U i ) ~ (w + l)(m+2) P.+i(0)f M ̂  '

Pm +i(0)-Pw +i(-M) -,
or ; r-rr-; TOTD m\' " M

(w+l)(m+2)P«+i(0)
Thus, on substituting in (22), we get the potentials, when r < a,

Vl = a ^ : i _ 9 + | - J M i
(w+l)(w+2) { Pm+i{0) )
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where

<25) Fir, M) = a-*^1 { ^ - 2 ( - i ) " 5 ^ s (7) * -« W} •

These formulae carry with them certain obvious means of verification;

thus we get A F 1 = - 4 x A r - 1 , AF2 = 0,

in agreement with Poisson's and Laplace's equations. Again, at the base
of the hemisphere (jx = 0), we have

which should be the case in view of the general properties of the potential
of a solid.

As an illustration, we may consider the case of a uniform liemisplwe, with m = 1; here

1 V I ( M ) = ! (3M 2 -1) , P , , , n (0 )= - i

and so 7, = -iwfcr2 (1 + 3/x2) + F (r, n),

vrfiere F(r, M) = j £ ( ) ^ (
I o 2n—1 \ a

Expressed in terms of x, y, z, these functions take the forms (as far as terms of the second
d e g r e e ) Fj = ITk {a2 * as - 1 (a;* + T/2 + 4«=)},

V2 = Trfc {a2 + as - § (x2 + ? / - 2*--)},

results originally given, I believe, by Mr. R. R. Webb.

When m is an even integer (2i/), the formulae (23), (24) require modifi-
cation ; and the most direct method is to apply again the same limiting
process.as in § 1 above by writing m = Zv+t, and making t tend to zero.
Now we proved on p. 104 that

and so we find
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and, approximating as on pp. 104, 105, the last formula becomes

b e c a u s eoecause = 1.8...(2,-1) =

2yV I>+2) 2.4...(2v+2) "

Also Wv+$—yJr(v+%) = -2Rv-l/(v+l),

where, as before, Bv = Iog2 — (1—£+£—... — ~ - j -

Thus, to the necessary degree of accuracy, we can write in (28) and (24),

(1. 7? — i

\t " 2v+2J'
And now, on taking the limit as t tends to zero, we obtain the potential
of a hemisphere whose density is ks2v~1, in the form

(26) Vt = --

I> + 1

(27) Fa = G(r,/*)

*o 2 ' + i ( - i r 1 ^ •• -Y2V+1-(RV+

where

(28)
—v \ a

In (27) the value of Y2i»+i(| M |) is to be used; in fact, the function Y(l

has been defined only for positive values of the argument.

As an illustration, let us take the case v = 0, which corresponds to the law of density k/s.
T h e n w e 8 e t A, = log 2,

and aYi = slog ( ̂ - t i ) — r + z, if z > 0,
\ 2a /

or —zlog(r-^-)—r—z, if s < 0,
\ 2a /

so that our formulae reduce to

a-r) + nk izlog (—
( \ r + z

nk Izlog (-^±\-r-y\ + Glt
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where Gl = *ka 2' ( - 1 ) " -1 — ( - )"" *' P» , . i

As a verification it is not difficult to calculate directly the potential on the axis, which is

TT o irt7 J P" sine'de'
7, = 2ir ksds --7-9—o ^v—«...

'o Jo v/( r — 2rscos0' + s')

or K2 = 2ir fcsas r .
Jo Jo \/(r-+ 2rs GOS 6' + s-)

Hence we find 7, = — f" {/(r2 + s s)- | r- -s 1} ds
»' Jo

r

and 72 = — (" | (r + s) /(?-2 + s2)} ds
»" Jo

= Ê  f (a + r^ - r^-ay^ + an-^sinh-1 ( -a- \ ] .r \ \ r / )
We can then expand in powers of r/a, using the series quoted on p. 112 for sinh"1 (a/r), which
leads to the results (on the axis)

Vi = 2nk {a-r) + nkr {log (2o/r) + £} + JT(r),

7e = 2nka - irkr {log (2o/r) + §} -fl" (r),

where H(r) = ^ { J - f-r- V- -1:-8 1 ( i V + - X -^^ -1- (^V-. . . j .w 1-2.4 V a ) 2 .4.6 2 U i 2 .4 .6 .8 3 \ a I J

These harmonize with the results obtained from our general formulae.

Appendix (January, 1913).

Since the foregoing pages were written out I have had the opportunity
of seeing Mr. G. N. Watson's formulae, which were published in the
Abstracts of the November meeting of the Society.

It is there remarked that (in the case of discs) the formulae for the
potentials V1} VQ along the axis of symmetry can be converted into
one another by the use of complex integrals containing Gamma func-
tions.

By a slight modification it appears to be easy to utilise this method,
not only on the axis, but for any point in space ; and the process can also
be applied to the case of the hemisphere examined in § VI, so as to
connect the potentials F2 and Vo.

I have briefly indicated the necessary calculations below ; but it does
not appear obvious that the transformation involved in the passage from
(29) to (30) would necessarily convert the potential Fo into the potential
Vlt although it is evident that the integral (30) gives a solution of
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Laplace's equation, and it is also evident that with a more highly con-
vergent integrand the two integrals (29) and (30) would be equal.

It is easy to modify the integrals given below so as to represent
potentials corresponding to densities of the types mentioned by Mr.
Watson; thus, if a- = ksm{log (a/s)I1'1 in the disc, the integrals (29) and
(80) will be multiplied by T(l), and the denominators will be changed
to (wi-f-2^+2)1 and {in-\-\—Zvf respectively. A corresponding modifica-
tion can be made in (82) and (33), when the density of the hemisphere is
P = ksm-X {log (als)\l-\

We begin by considering the potential of the disc defined in Section I.
Taking the series (1) we can write

and this is the residue at t = n of the function

Thus the series (1) can be expressed in the form*

(29) F° ~ ~T$r I 2 ^ J W+2H-2 " ( 2 m ) I '

where the integral is taken round the path marked (0) in the diagram.

(1)

The integral (29) is convergent so long as r > a; but when r < a the
convergence fails. To convert the integral into a convergent form the
path can be changed into (1); the value of the integral then gives

* We use here the notation for zonal harmonics

Zu = (r/a)" P., (| cos fl I),

so that Z.{l,. i) = (rt/r)" + 1 P n (I cos 9 I);

because in general P,, (cos 6) is defined by the hypergeometric series F [—n, n +1,1, ^ (1 - cos 8)],

so that Pn (cos 0) = P_(,, + i) (cos e).
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the series (4) for Fj. To verify the truth of this statement write
t = — {l+v) ; then the path (1) of the £-plane is changed into the
path (0) of the v-plane (allowing for the change of sign implied by the
equation dt = —dv). Thus we find the integral

1 [
2 ^ J

and when m is not an odd integer the integral (30) at once yields the series

("I) T I / I \ 1 ~ /.„ i -i rt-_\Ti/_- i t <. •"2n

The series (31) can be identified with (4) by noting that

V (™ 4-A V (-
\2 ^V \

4A V ( \
2 ^V \ 2 / cos^m7r)r(^m+f) * p '

where p is the constant defined on p. 104 above.
When m is an odd integer the integral (30) leads to the series (6) ; but

the work involved hardly differs from that already given on pp. 104, 105.
In regard to the hemisphere of § VI, the present method will not serve

to obtain Vx from Fo, because Vx does not satisfy Laplace's equation,
whereas any integral such as (29) or (30) does satisfy it. On the other
hand, it is not difl&cult to obtain F2 from Fo by using a complex integral.

For this purpose it will be simplest to change the sign of /m in (21) and
in (24), so that the region now considered is that for which n is positive ;
but the hemisphere is on the negative side of the plane z = 0. We can
then write (21) in the form

F 0 = { ^

where *

The last series leads at once to the integral

Fo - - ^ r p i ^

taken round the path (0) in the £-plane.
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Applying the same transformations as before, we find, when r < ar

the integral

taken round the path (0) in the v-plane; and this integral leads to the
formula

,34,

By using the formula for (??i+l)(??i+2)P,,l+1(0) given on p. 120, the series
(84) can be identified with the series (24) for F2, when the sign of /u is
changed in the latter.

Similarly we can derive the series corresponding to (27) from (38); but
the work is essentially the same as that already given on pp. 120, 121.

To obtain the series for V1 (in either case) it seems to be only possible
to use the fact that the potential of the complete sphere at internal points
is equal to

\
\ ksm * h I KSm^Airsds = p^r [am+1

Jo r J, w+1 \ 771
771+2/

and so by subtracting from this expression the potential (84), we can infer
a formula for Fx which reduces to (23) or (26), according to the form of m.


