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ON THE REPRESENTATION OF A FUNCTION BY A SERIES

OF LEGENDRE'S FUNCTIONS

By E. W. HOBSON.

[Received October 4th, 1908.—Read November 12th, 1908.]

IN my paper* "On a General Convergence Theorem and the Theory
of the Representation of a Function by Series of Normal Functions "
I considered the convergence of the series of Legendre's functions which
represents a function f(x) defined for the interval (—1, 1) of the real
variable x. It was there shewn that, if fix) have a Lebesgue integral
in the interval (—1, 1), then the series converges to the value

at any interior point x of the interval (—1, 1), for which a neighbourhood
exists in which f(x) is of limited total fluctuation (a variation bornee)
provided the sufficient condition be satisfied, that there exist neighbour-
hoods of the end-points — 1, 1, in which f{x) is of limited total fluctu-
ation. The chief object of the present communication is to shew that
this last condition may be replaced by the less stringent one, that it is

fix)sufficient that ,,*__ ^ have a Lebesgue integral in the interval (—1, 1).

This is equivalent to the condition that both _ . t and . / . ^ should

have Lebesgue integrals in (—1, 1). The condition is satisfied, in
particular if \f(x)\ have finite upper limits in neighbourhoods of the
points — 1, 1 ; and more generally when those points are points of
infinite discontinuity of f(x), of types limited by the necessity for the

fix)
convergence of the integrals of rf-—-%*. The difficulty in connection

(1 x)
with the end-points of the interval arises from the fact that the asymp-
totic expressions for the Legendre's functions are applicable only for
values of x in an interval (—1+e, 1—e), and not for all values of x in
the interval (—1, 1). This difficulty is here surmounted by the establish-

* Proc., Ser. 2, Vol. 6, p. 349.
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ment of the theorem that n ^ l - ^ P ^ a ; ) is numerically less than a
fixed positive number, independent of n and x, for all (integral) values
of n, and for all values of x in the interval (—1, 1).

In the latter part of this paper, the question of the convergence of the
series at the end-points of the interval (—1, 1) is treated in some detail.
It is shewn that, for such convergence, much more stringent conditions
as regards the nature of the function f(x) are requisite than for the
convergence of the series at an interior point of the interval. This
investigation may prove of interest as exhibiting the effect of the singular-
ities of a differential equation, in this case Legendre's equation, upon the
series of normal functions.

1. It is known that, in any interval fa, ir—rj), where r\ is an arbitrarily
small positive number, P,t(cos 6) is represented by

where a(n, 6) is, for all values of n and 6, numerically less than some fixed
positive number. It is, however, necessary for the purpose of estimating the
limiting value of an integral taken through the neighbourhood of either
of the points 6 = 0, 0 = ir, when the integral involves Pn(cos0), to have
information as to the mode in which P1(,(cos 6) varies with n and 6 for all
integral values of n and for all values of 6 in the interval (0, ir). It will
will here be proved that (n sin 6)* Pn (cos 6) is numerically less than some
fixed positive number for all values of 6 in the interval (0, TT), and for all
positive integral values of n.

It is known that £7rPw(co8 6) is given for every value of 6 such that
0 < 6 < IT by the convergent series

2 . 4 . . . 2

8.5. . .2n+l
[sin (n+l)0+ -L^tLsin (n+8)0

1.3
1.2

which may be written in the form

n(n) sinfa+Dfl+iwr^-r^ sin(n+8)0+...n(n+f)
, 1.3...2/—1 n(n+r) ...

+ 2 .4 . . . 2r

Since H(x) = 6
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where | A | is limited for all positive values of x, we have

n+r+i L ̂  2(«+dJ l1^ V,i+,./ V1^ v q ^ f i /

where | A |, | yi' | are limited for all values of n and r.
We have

.4' A"

I A" \ ~l 4"
where | A" \ is limited, and 11 + —7 ) lies between 1 7^— and 1,

V Vn-\-r' Vn-\-r
for all sufficiently large values of n-\-r ; therefore

4'"1 + . , , . A

where \A'"\ is limited for all values of n and r. Again, we have

B
Vn+r/\ Vn+rJ Vw+r \ n+rj Vn+r

where | B \ is limited for all values of n and r.
The expression

V + 2(»+r)
is equivalent to

lix) (

V

'
Vn+r L ^ 2 (n+r)

where a! = » + r . Also e

where 0 < 0 < 1, and this is equivalent to e* ( 1+ — ) , where a is limited

for all positive values of x greater than 1. It now follows that

n ( n + r ) _ 1 4 • 1 1 ̂  , a \ ^ . B \

when I 7 I is less than some fixed positive number, fov all values of n and
r ( > 0).



1908.] SERIES OF LEGENDRE'S FUNCTIONS. 27

We have now obtained for Pn(cos 0) the expression

2 r ( 1 y \

+ i 1 ' 8 V•2 r~1 •' ] . + 7 7 ,,'• 8in(w+2r+l)0l,
r = l 2 . 4 . . . 2?* l (?l-r?')3 (71—t-'/*)TJ J

where y depends on ?i and /•, but is numerically less than some fixed
number independent of n, r, and 0. This holds for every value of 0
except for 0 = 0 and 0 = TT.

To sum the series

- \ s in(n+l)0+ 2 - 0
8 •••2>

0~1 7-4-Ti sin (»+-2r+1)0,

we observe that, if | ^ | < 1,

e ( l f c e ) = e 4 | ^ ^ ^

with a similar equality in case the sign of t is changed. Writing h = e~u'\
we deduce that

(n+2r+l)d,=i 2.4.6 ... 2r
where w > 0.

We now employ the known theorem* that, if 2ar be any convergent
series, and if ux{x), u2(x), ..., ur{x), ... be defined for the interval (a, /3)
of x, and be limited and positive in that interval, and such that
ur{x) ^ ur+\(x) for every value of r and x, then 2anun(x) converges
uniformly in the interval (a, /3). Since e"™2 ̂  e-<r+l)u* fOr all values
of u in any interval (0, X), we see that the above series converges uni-
formly for all values of u in such interval. It follows that the above
series may be integrated term by term, between the limits 0 and X of u,
and that the series so obtained converges to the integral of the sum of
the above series. In order to shew that we may integrate term by
term with respect to u from 0 to oo, it is sufficient t to shew that the
additional condition is satisfied that X and /j can be so chosen, correspond-
ing to an arbitrarily chosen positive number e, that

)A' r
e

x L
2 ' \ " ' * e-(w+a)u8sin(n+2s-f 1)0 \du«=i 2.4.6... 2s J

* See Functions of a Heal Variable, p. 479.
f Ibid. p. 546.f Ibid., p. 546.
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is numerically less than e, for every value of X' > X, and for every value
of r ^ rv This expression is clearly less numerically than

)K\_e « - i 6 + J d U

or than 1 z&du, and this is less than n 1 e~'ut::du, if X > 1.
J\ I 6 ••• 6 Jx

Hence, since I e liUidu is convergent, it is clear that X can be so chosen

that, for every value of /', the above expression is numerically less than e.
Remembering that

rcn

e~(n+>)atdu =
Jo

we now iind that

V71" ' 1 • / i n i l I v< 1 - 3 . . . 2 ? — 1 1 • /

-^- y sin (n+l)S+ 2 —-— — T—r-^x sin (
2 •??' >-=i 2 .4 . . . 2r ( f ) 4

= ^ 4 ( e-''2[^" + l ) i e ( l -

Writing 1 — e~'~'" cos 20 = It uos 0, e"' :" sin 20 = B sin <f>, the expression
1 r° e~"*on the right-hand side becomes —r I -=rr- sin \(n-\-1)6+^(6\ dv.
n? Jo R* "T

It is now seen that

j ^ 8 i n ( « + l ) d + £ 1 o3 ' ' ' 2 /
o ~ 1 7-^-Tl sin (;>+2r+1) e l«- r=i 2 . 4 . . . 2/- (n-H'r J

is numerically less than x \ —i
J
 -K v? Jo Bh

hence, choosing a number 6 between 0 and 1, we see that 2 ^ - - •

if e~^/n is between 1 and 8. If e~v%ln lies between S and 0, we see that

sin20 sin20 sin'20 sin' 0 I
i,!2 ^ ( l - e - ^ ) 2 ^ ( l - ^ ) 2 > E2 ^ ( l ^ ) 2 '
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* 2/3

It thus appears that 2 is less than some fixed positive number K',
Jtt

for every value of d and v. Therefore

Jxsin(?? + 1)0+ 2 1
O

8 V 2 ; ~ 1 . * ,4 si

is numerically less than a fixed positive number independent of n and 6 ;

for f (^)h e'^dv < K* \ e~vidv < ^ KK
Jo \ Jti I Jo 2

We have next to consider the expression

o r.. » i Q or i -, 1
-— -^ sin(?i+l)0+ 2 —r— r— J" tsin(n+2r+l)fl ,
V'TT L^7 l = l 2.4. . . 2?1 (n+r)- J

where the numbers y are less than some fixed number A independent
of n, r, and 6. This expression is numerically less than

2 ^ T J _ , " 1.3...2;—! 1 "1
VTT Ln» "^ -=i 2.4"... 2r (n+r)U

or than M I"J_ + T _ 1
V ^ Lna Jo (w-f #)*

(— + ——-j^) or '— (— + ~).which is -—

If the expression be multiplied by (n sin 6)1-, we see that it is then

numerically less than —j- H r H )' 01" * n a n ~7~-> " " ^ 1-

It has now been proved that (n sin 0)-P,,(cos 6) is numerically less
than some fixed positive number, independent of )i and 6. This has been
proved, on the assumption that 0 < 6 < -n-; bub as the expression
vanishes when 6 = 0, or 6 = TT, the result clearly holds for 0 ^ 6 ̂  IT.

If 0 < 0 < 7r, and if n and 0 vary in such a way that nQ becomes
indefinitely great, it follows from the above result that P,,,(cos0) tends to
the limit zero. This result has been otherwise established by Brans.*
It is well known that, if, as n increases indefinitely, nO tends to a finite
limit p, then

lim PJcos 6) = J0(p).

• Crelle's Journal, Vol. xc , p. 322. See also Heine's Kugelfunctionen, Vol. u.,
pp. 361-363.
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2. The sum of the first n + 1 terms of the series for the representation
of a function /(a;) by means of Legendre's functions is*

1 j i+i pll^(x)pn(x)-pn{X)pn+l(x) f{x,)dx,m

We have here to consider the values of

.r) P,,(x')-Pn(x) P^ix') . , , ,
7 - y -nx ] '

with the similar integral taken between the limits 1—e and 1. The point
x is taken to be interior to the interval (—1, 1). We may assume e to
be so small that u-f 1— e :> n, where i* is a fixed positive number.

We have

fix')now let it be assumed that -p ^ has a Lebesgue integral in the whole

interval (—1, 1): then the above expression is numerically less than

k ''-1+€

•r ; dx\

where k is a positive number, such that

(n + l)m-xyPn(x')<k,

for all values of n and x', in accordance with the theorem established in
§ 1. It follows that e may be so chosen that the numerical value of

_ l .C — X "

is less than an arbitrarily chosen positive number, ior all values of n, and
for all values of x in an interval interior to (—1, 1).

Since {n+l)- Pll+i{x) is numerically less than a fixed positive number,
for all points x in such an interval, we see that e can be so chosen that

r n+1 Pn.
2i x—x

is, in numerical value, less than an arbitrarily chosen positive number £.

* See Proc, Scr. 2, Vol. C, pp. 388-395.
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As the same argument applies to

J_i 2 x—x1

we see that e can be so chosen that

I r~~1"+"̂  -»» —I— 1 P ( A P ( v ' \ P l-A P (r'\

I J_i 2 .K—.r' •

for all values of w, and for all values of x in a prescribed interval interior
to (—1, 1). A similar proof applies to the case when the limits of
integration are 1 —e and 1.

Let fi(x) be a function such that f\{x) =f(x) in the interval (— 1-f-e,
1—e), and such that f\{;x) = 0 when — 1 ^ x <. — l-\-e, and when
1— e < x < 1. Since the function f^x) is of limited total fluctuation in
the neighbourhoods of the points — 1 , + 1 , the result obtained in my
earlier paper (loc. cit., p. 395) is applicable to this function. Therefore

?n+M Pn(x')-Pn(x) Pn+l(x') ,,
i + < x—x'

differs from £ \f(x+0)-\-f(x—0) \ by less than £, provided n is not less
than some fixed integer nx, and provided x is a point in the interval
(—l-f-e+At> 1—e—fi) for which point a neighbourhood exists in which
the function is of limited total fluctuation.

It now follows that

j- i '-i x — .r

differs from \ \f(x + 0) +/(</:—0)- by less than 3<;, for ;/ ^ nv where x
satisfies the condition just stated.

The following theorem has now been established :—

Let f(x) be a function [Jimited or unlimited in (—1. 1)] such that

TT^—IT| has a Lebesgue integral in the interval (—1, +1)- It is sufficient

for the convergence of the series

J o ^ 9 ^ P" {X) \ •^•C') P " {X>) dX>

to the value % |/(a;+0) +•/(#—0) \, at any point x in- the interior of the
interval (—1, 1), that a neighbourhood of the point x should exist in
which f(x) is of limited total fluctuation.

In any interval in which f(x). is continuous, and which is contained
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in the interior of another interval in which the function has limited total
fluctuation, the convergence of the series to the value of f(x) is uniform.

f{x)
The condition that - , _ 2 ^ should have a Lebesgue integral is equi-

valent to the conditions that f{x) should have a Lebesgue integral in

(— 1, 1), and that the two Lebesgue integrals

\ 7T—rrdx should also exist.Ji-,, (1 —a;)*
In case \f{x)\ has finite upper limits in neighbourhoods of the points

n
1, — 1 , the existence of 1 f{x)dx is sufficient to ensure that
n ftv\ J-1

1 TT—aTi dx a l 8 0 exists.J_i (l—x )*
More generally, it is sufficient that f(x) should have a Lebesgue

integral in ( — 1, 1), and that |/(as)| < . fc in a neighbourhood of the
(1 -\~x)"

A'
point — 1 , and |/U')I < _ u- in a neighbourhood of the point 1,

vi x)
where k and k' are each less than f, and A, A' are positive numbers.
The known logarithmic conditions for the convergence of an integral in
the neighbourhood of a singularity are also sufficient.

A particular case of this theorem has been given by Darboux,* who
A A'

shewed that, if f(x) has the values , .k, jz rp, where k < | ,
k' < f, in neighbourhoods of the points —1,1 , the series is so far con-
vergent.

It may be observed that the above general theorem may be proved
directly by employing the general convergence theorem {loc. cit., p. 350),
and proceeding as in my earlier paper.

For this purpose we take

F(X', X, n) - n+1(l xy -Ptt+lfc) Pn(x')-Pn(x)Pn+l(x') ^
2 x—x'

and verify that | F(x', x, n) \ is less than a fixed positive number for all
values of x' in the interval (—1, 1), for all values of x in an interval
(—1-\-€, 1—e), and such that \X—Z'\^IJL, and for all values of n. It
can then be verified, as before {loc. cit., pp. 389, 390) that

IE F{x', x, n) dx' a(n)

* See Liouville's Journal, Ser. 3, Vol. iv., p. 393.
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only a slight modification of method being necessary on account of the
existence of the factor (1—z'2)*. In the rest of the work, the function

f(x) must then be replaced by T ^ — ^ , and the convergence of
(I x)

Pn^ (X) Pn(x')-Pn(x) P.+1(g') f{

2 J_! x—x'
is then established, subject to the conditions stated in the theorem.

3. It will now be shewn that, if in the neighbourhood of the point

— 1, f{x') is of the form , * ,,,c-\-fi(x'), where k ^ f, and fxix') is
( l - f - x ) "

limited in the neighbourhood, then the series does not converge at the
point x interior to the interval (—1,1). It is clear that, in a sufficiently

fix')small neighbourhood of the point — 1, j is of the form
•JL OU

B

where /2(x') is limited in the neighbourhood.
It will be sufficient to prove that

!
. . . j , (AJJO

_I (l+x'r
does not converge to a definite limit, when n is indefinitely increased,
provided k ̂  f ; the condition that k < 1 is necessary for the existence of
the integral. For it then follows that I ... ,"" ,.fc dx does not converge

to a definite limit, when n is indefinitely increased, and therefore the same
holds Of n + 1 n pii+l{x) Pn(x>) ^

2 J-! {1+X')k

We have Pn(x') = A0+Ax "

where A0+Ax+...+AH= 1.

Hence, we find that

^ + o -
l — k 2 —

-'•-" v - (l-&)(2-*)...(n+l-A)f

SBR. 2. VOL. 7. NO. 1007. D
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since the integral vanishes for the values 0, — 1, —2, ... — (n— 1), of k.
The expression on the right-hand side may be written in the form

and the asymptotic value of this is ( - l)u e~2k+2.21-fcJ?/,""^n2(fc-1)+*. If
1 1 \rC'~~ 1)

k > f, this increases indefinitely as n does so; and if k = §, it has no
determinate value. If k < if, it converges to zero, when n is indefinitely
increased.

It therefore appears that, if the function f (x) is of the form

in the neighbourhood of the point — 1 , where k~^.\, then the series does
not converge at any point x interior to the interval (—1, 1).

That the convergence of the series may be, throughout the interval,
destroyed by the effect of the values of the function in the neighbourhoods
of the points — 1, 1, is illustrated by this result.*

4. There remains the consideration of the convergence of the series
at the end-points of the interval (—1, 1). This is a matter of some
importance, because, in accordance with the usual method of investigating
the convergence of the expansion of a function in spherical surface har-
monics, the convergence of the expansion of a certain subsidiary function
in a series of Legendre's functions at one of the ends of the interval of
representation is decisive in relation to the convergence of the series of
surface harmonics.

It appears that, if f(x) be a function which possesses a Lebesgue
integral in the interval (—1, 1), the existence of neighbourhoods of the
points — 1 , 1 in which/(x) is of limited total fluctuation is not sufficient
to ensure that the series

Pnix) f xf(
xt)P*(x')dx>

converges at those points. It is however sufficient, although not
necessary, that f(x) should be of limited total fluctuation in the whole
interval (—1, 1).

* This result was given by Darboux. See Liouville's Journal, Ser. 3, Vol. VIII., p. 393.
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Let us consider the series at the point x = 1; the sum of the first
2n+l terms is . fl n . , n

H - l I1 Pu(s')-Pw+i(a') * / r , w

2 J_x l -o ! ' / ( X ) ^ '
We shall first estimate the limit, when n is indefinitely increased, of

where — 1 < a < /9 < 1.

On substitution of the expressions for Pn(x'), Pv+\(x') given in § 1, and
which are valid for the interval (a, 8̂) of x', it is easily seen that the limit
is the same as that of

-cos I (n+|) 0 ' - -2- j](sin 0')"*

where a;' = cos 0'; and this is of the form

sin

where 0 < p < q < -K.
If /(#') have a Lebesgue integral in the interval (a, /3), then F(0') has

a Lebesgue integral in the interval (p, q). It then follows, from a

corollary to the fundamental convergence theorem given in my earlier

paper (p. 355), that

sin \ (n+l)0 ' • F{6')du' = 0,

but it does not necessarily follow that

lim n4 \Q sin { (n+1) 0 ' - -^ '- F(0')d6' = 0.
i=» J3, I 4 1

If, however, f(x') is of limited total fluctuation in the interval (a, 3), in
which case F(6') is of limited total fluctuation in (p, q), the latter
equality holds. To see this we may take F(6') to be the difference of two
functions 2^(0'), F2(0'), each of which is monotone in (p, q). We have then

P sin I (ra+l)0'- -J J FiffldO'

\ I sin \(n-\-l)6f [ dd'+Fxiq—0) I sin \(n-\-l)6'~
JP 1 4 ) JK y

D 2
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where A is a number such that p ̂  X ^ q. The integral on the left-
hand side is consequently not greater, in absolute value, than

\Fl(q-0)\\.
n+1

It therefore follows that

lim >?' f'sin ' (n+l)0'-— • F^dO' = 0.

We may clearly substitute F2(6'), and therefore also F(d') in this result.
It follows that, if f(x') have limited total fluctuation in (a, /3), then

r
1—x'

Let us next suppose that, in the neighbourhood (£—y, £-f >/) of a point £

in the interior of the interval (a, /3), f(x) is of the form . _^k-{-<f>(^),

where 0 < k < 1, and <f> (x) is of limited total fluctuation in the interval
(£— >;, £+>?). We may assume that in the intervals (a, (-—rj), (^-h'7, /3)
the function /(x) is of limited total fluctuation; thus f{x) has a single
infinite discontinuity at the point £.

In this case, we see that in (£—»/, £+»/) the function .F(0') is of the
ID

form ^ — ^ . + ^ ( 0 ' ) , where cos y = f, and where F^O') is of limited

total fluctuation in (f—>?,
We then see that, to estimate the effect of the infinite discontinuity

we have to evaluate

lim *> p ' -jJL-5 sin j (n+1) 0'-^- \ d6'
J ^ , {d'—y)k I 4 J

or lim Br$ f"2 ^r sin I (n+1) i«+ (w-J-1) y— ̂  [
J—,, vr \ 4 )

Writing (w+l)w = «, we see that the limit is dependent upon

("("•+i)>j2 gin v f(w+1)')2 cos ' y
lim w~- I —7— dv and lim nk~* \ —r- dv.

J-C k J

If k <%, both these latter limits exist, and are zero. If k = £, the
required limit has no definite value. In case £ < k < 1, the expression
increases indefinitely as n does so.
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It has now been shewn that, in case there is an infinite discontinuity
of the function f(x) at a point £, of order ^ £, it is impossible that

f' Pn{x')-Pn+l(x') _

it being assumed that the function is of limited total fluctuation, except
in the neighbourhood of the point £ In this case, although fix) may
have a Lebesgue integral in the whole interval (—1, 1), and, although the
function may have limited total fluctuation in neighbourhoods of the
points —1,1 , it is impossible that the series should converge at those
points.

It may also happen that the above limit does not exist, and therefore
that the series does not converge at the point 1, when f(x) is limited in
(a, /3) without being of limited total fluctuation. Therefore the series
corresponding to a function which is limited in (—1, 1) and has a
Lebesgue integral in that interval does not necessarily converge at the
point 1.

For the purpose of considering those parts of the integral which
represents the sum of the first n-\-\ terms of the series at x = 1 which
are in the neighbourhood of the points 1, — 1, it is convenient to replace

by the equivalent expression
2 1-x'

fdP (x') dP i ix')
\ dx' dx'

We have then to consider the integrals

i dx' dx'

g+ ma*.
-e i dx dx I

Let it be assumed that f{x') is monotone in each of the intervals
(—1, —1-f-e), (1—e, 1). The first integral is then equivalent to

where /JL is such that 6 ̂  fx ^ e. This expression is numerically less than

M - £ | / < - l + <O;Pn(-l+e) + P*+i(

if e be so chosen that | / ( — l + 0 ) - / ( - l + e ) | <
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The number e having been fixed, corresponding to an arbitrarily fixed
positive number £, and also so that

we can determine a number ux such that

\dPn(x') ,dPn+1(x'), f - 1 +< f
\L 1 dx'

when n ^ nv

In a similar manner, we have

UPv{x') • dPtl+1(x')) f{x,)dx,
i-t ' dx' dx' I

It then follows that a number % c a n De s o determined that

[dP,,(x'),dPll+1(x')\•Li f(x')dx'—f(l —
I. dx' dx'

If now f{x) satisfies sufficient conditions that

, for n

I 2 l x'

an integer n3 can be determined such that

fl-e

x')dx' = 0,

, for

Let n' be the greatest of the three integers nlf n.2, ns; we have then

< 5f,
-i 2

PJJ; ' ) P,,+i(<][j{xl) dx,_f{1_Q)

l-x'

if n ̂  n'. Since ^ is arbitrarily small, it has thus been shewn that,
subject to the conditions assumed to be satisfied,

Iimim P '^±i Pw(ig>) P | ; + l ( a : f ) / ( ^ ) ^ = / ( l - 0 ) .'*=« J_i 2 1—x'

The case of the convergence of the series at the point —1 may be treated
in an exactly similar manner.
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The following theorem has now been established :—

Let f{x) be a function which is of limited total fluctuation in
neighbourhoods of the points x — 1, x = — 1. For the convergence of
the series of Legendre's functions corresponding to fix), at the points
1, —1 to the values f {I—0),/(—1+0), it is insufficient that fix) have a
Lebesgue integral in the whole interval (—1, 1). It is, Iwwever, sufficient
that f(x) be of limited total fluctuation in (—1, 1). It is also sufficient
that f^x) be of limited total fluctuation when the neighbourhoods of a
Unite number of points in the interior of i—1, 1) are excluded, provided
also that in each such neighbourhood of such a point f, fix) is of the

Aform -£y. -\-<j> (x), where 0 < k < ^, and where <f>ix) is of limited total
\X fc ) *

fluctuation. In case, for such a point £", k ^ £, the series does not con-
verge tof{l—0),/(— 1-f-O) at the points 1, — 1 .


