The Nitescence Theorem: A Formal Resolution of the Incompleteness Paradox
Description
Mathematics seems trapped by Gödel’s Incompleteness, yet progress endures. The Nitescence Theorem explains this paradox: by formalizing a relevance tuple—(consistency strength, expressive power, resolution power)—and introducing a tetravalent logic plus a canonical closure operator, any undecidable proposition in one framework becomes decidable in a more relevant one.
Key contributions:
- Rigorous Formalization & Core Results: statement and proof in Z◦ type theory; well-foundedness of relevance ordering
- Relevance‐Driven Extensions: tetravalent logic framework and canonical closure operator that systematically resolves undecidability (Def. 3.1)
- Illustrative Case Studies: CH, CFSG, FLT, demonstrating the natural ascent along the relevance hierarchy
- Philosophical Synthesis & Outlook: bridging pluralism and structural monism; prospects for automated theorem proving and quantum-logic extensions
Keywords: Mathematical Logic • Tetravalent Logic • Canonical Closure Operator • Formal Systems • Undecidability • Consistency Strength • Relevance Ordering • Philosophy of Mathematics • Mathematical Structures • Type Theory • Metamathematics • Proof Theory • Formal Epistemology • Ordinal Analysis • Mathematical Progress • Structural Ascension • Structural Monism • Z◦ Type Theory • Theory Extensions.
Files
The Nitescence Theorem - A Formal Resolution of The Incompletness Paradox.pdf
Files
(479.0 kB)
Name | Size | Download all |
---|---|---|
md5:453b6663900be7704cabb3baaafb113e
|
479.0 kB | Preview Download |
Additional details
Dates
- Created
-
2025-05-19Preprint
References
- [Kleene52] S. C. Kleene, Introduction to Metamathematics, North-Holland, 1952.
- [Belnap77] N. D. Belnap, "A useful four-valued logic", Modern Uses of Multiple-Valued Logic, Springer, 1977, pp. 5–37.
- [Dunn73] J. M. Dunn, "The algebra of entailment", Zeitschrift für Mathematische Logik und Grundlagen der Mathematik, 19(1):1–11, 1973.
- [Gentzen36] G. Gentzen, "Die Widerspruchsfreiheit der reinen Zahlentheorie", Mathematische Annalen, 112:493–565, 1936.
- [Lindenbaum27] A. Lindenbaum, "On maximal consistent sets of formulas", Fundamenta Mathematicae, 9:168–174, 1927.
- [Tarski53] S. G. Simpson, Subsystems of Second Order Arithmetic, Cambridge University Press, 2009.
- [Godel31] K. Gödel, "Über formal unentscheidbare Sätze der Principia Mathematica und verwandter Systeme I," Monatshefte für Mathematik und Physik, 38:173–198, 1931