Published May 7, 2025 | Version v1
Preprint Open

Toward a Unified Theory of Quantum Mechanics and General Relativity: Metageometric Framework via External Causal Space and Scale Relativity

  • 1. Independent Researcher

Description

Reconciling quantum mechanics and general relativity remains a major open problem in theoretical physics. In this paper, we propose a unified framework built on a non-metric “Z₀” causal source space and scale-coupled geometry.

This metageometric approach naturally generates quantum phenomena, gravitational dynamics, and cosmological effects without introducing new particles or a cosmological constant. It delivers:

  • Low-ℓ CMB anomalies in line with Planck data

  • Flat galaxy rotation curves without particle dark matter

  • MeV-scale spectral shifts in atomic transitions

  • Late-time cosmic acceleration via a dipole-repulsor coupling, obviating dark energy

Key ingredients:

  • Transcendental Z₀ causal space – injections driving both quantum fluctuations and spacetime curvature

  • Scale-relativity coupling law – linking fractal (quantum) and smooth (classical) regimes

  • Multi-temporal khron & twin-sector dipole – mechanism for cosmic acceleration and collapse resolution

Keywords: Quantum Gravity • Scale Relativity • Causal Space • Dark Matter Phenomenology • Cosmic Acceleration • Metageometry.

Files

Toward a Unified Theory of Quantum and Relativity - XJR.pdf

Files (416.9 kB)

Additional details

Dates

Created
2025-05-19
Preprint

References

  • [1] Christenson, J.H., Cronin, J.W., Fitch, V.L., & Turlay, R. (1964). Evidence for the 2π Decay of the K0 2 Meson. Physical Review Letters, 13(4), 138-140.
  • [2] Particle Data Group (2022). Review of Particle Physics. Progress of Theoretical and Experimental Physics, 2022, 083C01.
  • [3] Bigi, I.I. & Sanda, A.I. (2009). CP Violation. Cambridge University Press, Cambridge.
  • [4] Batley, J.R., et al. [NA48 Collaboration] (2002). A precision measurement of direct CP violation in the decay of neutral kaons into two pions. Physics Letters B, 544, 97-112.
  • [5] Alavi-Harati, A., et al. [KTeV Collaboration] (2003). Measurements of direct CP violation, CPT symmetry, and other parameters in the neutral kaon system. Physical Review D, 67, 012005.
  • [6] Ahn, J.K., et al. [KOTO Collaboration] (2020). Study of the KL → π0ν¯ν Decay at the J-PARC KOTO Experiment. Physical Review Letters, 122, 021802.
  • [7] Cortina Gil, E., et al. [NA62 Collaboration] (2017). First search for K+ → π+ν¯ν at the NA62 experiment. Physics Letters B, 791, 156-166.
  • [8] Sakharov, A.D. (1967). Violation of CP invariance, C asymmetry, and baryon asymmetry of the universe. JETP Letters, 5, 24-27.
  • [9] Buchmuller, W., Peccei, R., & Yanagida, T. (2005). Leptogenesis as the origin of matter. Annual Review of Nuclear and Particle Science, 55, 311-355.
  • [10] Weinberg, S. (1995). The Quantum Theory of Fields, Volume 2: Modern Applications. Cambridge University Press, Cambridge.
  • [11] Penrose, R. (1996). On gravity's role in quantum state reduction. General Relativity and Gravitation, 28(5):581–600.
  • [12] Witten, E. (1995). String theory dynamics in various dimensions. Nuclear Physics B, 443(1-2):85–126
  • [13] Rovelli, C. (2004). Quantum gravity. Cambridge University Press, Cambridge, pages 37–42.
  • [14] Nottale, L. (2011). Scale relativity and fractal space-time: a new approach to unifying relativity and quantum mechanics. Imperial College Press, London, pages 185–213.
  • [15] Petit, J.P. and D'Agostini, G. (2014). Cosmological bimetric model with interacting positive and negative masses and two different speeds of light in agreement with the observed acceleration of the Universe. Modern Physics Letters A, 29(34):1450182, pages 1–15.
  • [16] Maldacena, J. (1999). The large-N limit of superconformal field theories and supergravity. International Journal of Theoretical Physics, 38(4):1113–1133.
  • [17] de Broglie, L. (1924). Recherches sur la théorie des quanta. Annales de Physique, 10(3):22–128.
  • [18] de Broglie, L. (1970). The reinterpretation of wave mechanics. Foundations of Physics, 1(1):5–15.
  • [19] Jeffrey, N., Gatti, M., Chang, C., et al. (2021). Dark Energy Survey Year 3 results: Curved-sky weak lensing mass map reconstruction. Monthly Notices of the Royal Astronomical Society, 505(3):4626–4645. DOI: 10.1093/mnras/stab1495.
  • [20] Hildebrandt, H., K¨ohlinger, F., van den Busch, J. L., et al. (2020). KiDS+VIKING- 450: Cosmic shear tomography with optical and infrared data. Astronomy & Astro- physics, 633:A69. DOI: 10.1051/0004-6361/201834878.
  • [21] Gatti, M., Chang, C., Friedrich, O., et al. (2020). Dark Energy Survey Year 3 results: cosmology with moments of weak lensing mass maps – validation on simulations. Monthly Notices of the Royal Astronomical Society, 498(3):4060–4087. DOI: 10.1093/mnras/staa2680.
  • [22] Wright, A. H., Hildebrandt, H., Kuijken, K., et al. (2019). KiDS+VIKING-450: A new combined optical and near-infrared dataset for cosmology and astrophysics. Astronomy & Astrophysics, 632:A34. DOI: 10.1051/0004-6361/201834879.
  • [23] Joudaki, S., Hildebrandt, H., Traykova, D., et al. (2020). KiDS+VIKING-450 and DES-Y1 combined: Cosmology with cosmic shear. Astronomy & Astrophysics, 638:L1. DOI: 10.1051/0004-6361/201936154.