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Abstract—This paper defines an information-theoretical frame-

work for non-orthogonal broadcast systems with multilevel cod-

ing and gives design guidelines for the rate selection of multiple

broadcast streams. This description includes hierarchical mod-

ulation and superposition coding with codes defined in a finite

field as a special case. We show how multilevel coding can be

applied to multiple antennas where, in contrast to most space-

time coding and hierarchical modulation schemes, no capacity

loss occurs.

I. INTRODUCTION

This papers addresses broadcasting of multiple data streams
to users with possibly, but not necessarily, different SNRs
or receiver capabilities. A typical application includes broad-
casting of data with different priorities or coverage areas.
For this setting, it is usually required that the high-priority
stream can be decoded at low SNR while for the low-priority
stream better channel conditions are required. Non-orthogonal
broadcast has recently received considerable attention as a
possible enhancement for LTE and 5G mobile communication
systems, as e.g. in [1], [2] which propose it for the downlink
of LTE. This approach, referred to as non-orthogonal multiple
access (NOMA), shows significant gains when the scheduler
is optimized to pair, in the same resource blocks, users with
significant difference in received signal strength.

For single-antenna transmission, the optimum solution for
broadcasting possibly different data streams to multiple users
is given by superposition coding with random Gaussian code-
books [3], while for all practical purposes channel coding
defined in a finite field, followed by a suitable modulation,
is applied. This scheme is depicted in Fig. 1 along with the
corresponding receiver structure which employs successive
interference cancellation (SIC). This model can be seen as
a direct realization of the optimum solution from information
theory, and it corresponds directly to hierarchical modulation
(HM), which assembles a QAM constellation by two or more
subconstellations corresponding to different data streams [4],
[5].

The aspect of multi-stream codes for MIMO systems has
been addressed in [6], [7]. In these papers, an optimization
of space-time block codes for multi-stream transmission is
proposed, which consists of a linear transformation of the
encoder matrices. It is also shown that a simpler approach
consisting of direct sum of the space time codewords is
suboptimal. In this paper, we first provide an information-
theoretic framework for MIMO multi-level coding (MLC),

based on a binary component channel decomposition. This
concept, developed in [8], is also applicable to MIMO systems.
We then introduce the concept of multi-stream, space-time
codes with non-binary constituent codes. The advantage of
using non-binary codes is that multiple binary substreams
can be grouped by grouping bits into higher order symbols,
reducing the number of different code rates required, and
reducing the possibility of error propagation.

This paper can be seen as an extension of [5]–[7] and as
a building block for [1] since it brings together HM, multi-
stream space-time codes and NOMA in the framework of MLC
and provides guidelines for the selection of the substream
rates. We also show two practically feasible implementations
of MLC which make use of non-binary (de)coding. The paper
is organized as follows. In Section II we provide the system
model for MIMO multi-level coding. In Section III we provide
a model for the capacity of MLC and compare it to BICM.
Section IV introduces our design for MLC with non-binary
codes, which are evaluated in Section V. Finally, we present
the paper conclusions in Section VI.
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Figure 1. Superposition coding by adding modulated signals. The mapping
functions µd map an integer number of coded bits bd to a QAM symbol
xd while the soft demappers �d compute the posterior probabilities �d ,
P [bd = 1 | y] for each coded bit.

II. SYSTEM MODEL

A straightforward but decisive generalization of the trans-
mitter structure of Fig. 1 is given in Fig. 2: instead of adding
QAM symbols we combine the coded symbols of all data
streams and map them to a common QAM symbol.

A simple and common example for this generalization is
e.g. 8-PSK which cannot be composed as the sum of three
subconstellations.

The model of Fig. 2 corresponds to MLC, which has been
treated in detail by Wachsmann et al. in [8]. Within the
framework of MLC, we can determine the capacities of the



binary subchannels and derive design rules for the selection
of the code rate of each stream. The key advantage of this
approach is that the subchannel capacities always sum up to
the capacity of the constellation-constrained capacity of the
channel whereas with HM, as also observed in [4], the sum
capacity suffers a loss.
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Figure 2. Multilevel coding with multistage decoding

III. CAPACITIES OF BINARY SUBCHANNELS

A. Coded Modulation Capacity

We model the channel with input x and output y by its
conditional probability density function (pdf) p (y | x), which
includes single-antenna as well as MIMO channels. For all
realizable transmission systems, the transmit signal is taken
out of a discrete constellation x 2 A , {a1,a2, . . . ,aM},
and hence the capacity of this channel is given by the coded
modulation (CM) or constellation-constrained capacity

C
cm

, I (x;y) =
1

M

MX

m=1

ˆ
p (y | am) log2

p (y | am)

p (y)
dy

(1)
for which we additionally assume that all symbols x 2 A are
transmitted with the same probability.

B. Decomposition into Binary Subchannels

The transmit symbols x 2 A correspond to D = log2 M
bits by the bijective mapping µ : FD

2 ! A, i.e. the
transmitted symbols are given by x = µ (b1, . . . , bD) where
b = [b1, b2, . . . , bD] denotes a D-dimensional bit vector. We
denote by b1, . . . , bD the bits at the input of the mapping
device which are drawn from the coded bits at the output
of the decoder. With this bijective mapping between b and x
and the chain rule of mutual information, we can decompose
the CM capacity as follows

C
cm

= I (b;y) =

DX

d=1

C
mlc

(d) (2)

where
C

mlc

(d) , I (bd;y | b1, . . . , bd�1) (3)

The MLC subchannel capacities C
mlc

(d) correspond to the
channels from bd to �d in Fig. 2, assuming that subchannels
1, . . . , d�1 have been correctly decoded [8]. This decomposi-
tion hence establishes a decoding order which determines the
possible choices of code rates per subchannel.

On the other hand, if we do not use information from
other subchannels and decode every binary subchannel inde-
pendently, we are limited by the BICM (bit-interleaved coded
modulation) [9] subchannel capacities

C
bicm

(d) , I (bd;y)  C
mlc

(d). (4)

C. Basic Example: 2⇥ 2 MIMO with 8-PSK per Antenna
In the following, unless otherwise noted, we consider as

main example the 2⇥2 MIMO channel with fast i.i.d. Rayleigh
fading and 8-PSK modulation per antenna. This setting is also
chosen for comparability with recent related work [6], [7], and
the received signal is hence given by

y = Hx+w, w ⇠ CN (0, N0I2) (5)

with Hi,j ⇠ CN (0, 1). With this model, we have D = 6

binary subchannels, whose capacities according to (2) and (4)
for 8-PSK per antenna are plotted in Figure 3, where we can
observe that, except for d = 1, the subchannel capacities with
MLC are indeed significantly higher than with BICM.
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Figure 3. Capacities of the binary subchannels with BICM and with MLC
for a 2⇥ 2 fast Rayleigh fading MIMO channel with 8-PSK per antenna.

From Fig. 3, we can observe that the binary subchannels
have different capacities, although the 8-PSK constellation is
highly symmetric. The main advantage with MLC compared
to HM is that the subchannels capacities of the former always
sum up to the CM capacity. On the other hand, with the usual
approaches for HM, the CM capacity is typically reduced.

IV. SUBCHANNEL GROUPING

A. Transmitter and Receiver Structures
Assume that for the given setting we wish to transmit

two data streams and the low-priority (high SNR) stream
should carry twice as many information bits. The simplest
approach is to group subchannels 1 and 2 into the high-
priority stream while subchannels 3, . . . , 6 form the low-
priority stream. Before discussing in some detail the different



transmitter and receiver structures which are possible with this
subchannel grouping, we note that there are more possible
choices, e.g.

1) For the same constellation A, different mappings (bit
labelings) µ (·) can be chosen (e.g. Gray labeling, natu-
ral labeling, set partitioning labeling, etc.). While this
choice does not affect the CM capacity, it leads to
different MLC and BICM subchannel capacities.

2) For the same constellation A and mapping µ, another
decoding order for MLC leads to different MLC sub-
channel capacities C

mlc

(d).
3) For each binary subchannel or for each subchannel

group, another code rate may be chosen. For MLC,
restrictions which are discussed below, apply.

4) Any other subchannel grouping is possible for both
MLC and BICM.

B. BICM and BICM-SIC
The simplest approach is BICM, which treats the bits and

their related a posteriori probabilities (APP) or L-values at
the receiver independently. With this approach, the sub-stream
capacities with the selected subchannel grouping are given by

stream A: C
bicm,A = C

bicm

(1) + C
bicm

(2)

stream B: C
bicm,B =

6X

d=3

C
bicm

(d)

and are plotted in Fig. 4. From these substream capacities,
we obtain the required minimum SNR for a desired code rate
Rc by setting C

high�prio

= 2Rc and C
low�prio

= 4Rc. For
our example and Rc = 1/2, we obtain from Fig. 4 the SNRs
4.2 dB and 9.7 dB, respectively. With the same modulation, we
can choose different code rates to obtain other SNR thresholds.
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Figure 4. Capacities of the two data streams: stream A is composed of the
binary subchannels 1 and 2, while subchannels 3, . . . , 6 form stream B.

This simple procedure, which mimicks the HM approach,
is clearly suboptimum as it does not take advantage of the

knowledge of the high-priority stream for decoding the low-
priority stream. A straightforward improvement is to apply
the decoded bits of the high-priority stream to cancel their
impact on the other stream, as illustrated in Fig. 5. In addition
to improving the performance of stream B, this step reduces
the complexity of the demapper. Note that for this kind
of interference cancellation, it is not necessary that the bit
sequence cA of the high-priority stream can be mapped to a
symbol sequence.
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Figure 5. BICM-SIC: The binary subchannels in each substream are
demapped independently.

C. MLC with Non-Binary Decoding
The direct application of MLC to the 6 binary subchannels

has the disadvantage that for every subchannel a different code
rate according to the capacities C

mlc

(d) has to be selected. In
addition, if the SNR thresholds are close and the codewords are
not long enough, error propagation will limit the performance.
This problem can be overcome by a non-binary decomposition
as follows,

C
cm

= I (b1, . . . , b6;y)

= I (b1b2;y) + I (b3, . . . , b6;y | b1b2)
(6)

which defines the substream capacities

CA , I (b1b2;y) = C
mlc

(1) + C
mlc

(2) (7)

CB , I (b3, . . . , b6;y | b1b2) =
6X

d=3

C
mlc

(d) (8)

This decomposition corresponds to grouping the bits b1, b2
into a quaternary and the bits b3, . . . , b6 into a 16-ary symbol
and has the advantage that it allows to choose one code rate
per substream (i.e. per subchannel group) without loss of
capacity. A possible transmitter and receiver structure for this
approach is shown in Fig. 6. The transmitter applies parallel
encoding with two and four binary encoders per substream
while the receiver applies two joint decoders which decode all
codewords of the substream simultaneously. These decoders
work on the joint APPs of each substream, which are defined
by

pA =

2

664

P [b1 = 0, b2 = 0 | y]
P [b1 = 0, b2 = 1 | y]
P [b1 = 1, b2 = 0 | y]
P [b1 = 1, b2 = 1 | y]

3

775 ,

pB =

2

6664

P [b3 = 0, b4 = 0, b5 = 0, b6 = 0 | y]
P [b3 = 0, b4 = 0, b5 = 0, b6 = 1 | y]

...
P [b3 = 1, b4 = 1, b5 = 1, b6 = 1 | y]

3

7775



and provide as output the corresponding binary codewords. For
LDPC codes, this joint decoding is very similar to decoding
in the extension fields F4 and F16 [10]. The parallel encoding
with the same LDPC code per substream allows to apply
joint decoding of multiple codewords without altering the
Tanner graph and thus preserving the code properties. This
allows to take advantage from the benefits of non-binary LDPC
decoding while still using binary codes1 . On the other hand,
it is also possible to apply the usual binary decoders for the
transmitter structure of Fig. 6. This will not exploit the full
potential of the scheme but it will result in a performance very
similar to BICM-SIC at a reduced complexity.

Instead of the parallel encoding of binary codes, non-binary
codes in F4 and F16 and the corresponding decoders can also
be applied to this structure. The performance and complexity
with non-binary LDPC codes is in the same range as for
parallel encoding.
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Figure 6. MLC with binary encoding and non-binary decoding

V. SIMULATION RESULTS

A. Performance with DVB-T2 Binary LDPC Codes
This section evaluates the performance of MLC and BICM-

SIC in terms of BER as a function of the SNR for a variety
of code rates. For channel coding, we have chosen a family of
binary LDPC from the DVB-T2 standard [11] with parameters
listed in Table I. These codes, which have a common word
length of N = 16200 bits, have been chosen for their
rather wide range of rates and, being widely implemented,
to facilitate reproducibility of our results. We assumed a
2 ⇥ 2 MIMO channel with 8-PSK modulation per antenna
as described in Section III-C.

Table I
CODE RATES AND MESSAGE LENGTHS OF DVB-T2 CODE FAMILIY, FOR

“SHORT FEC FRAME” WITH CODEWORD LENGTH N = 16200.

Rc 1/5 4/9 3/5 2/3 11/15 7/9 37/45

K 3240 7200 9720 10800 11880 12600 13320

Fig. 7 shows the BER curves with the code rates Rc 2�
1
5 ,

2
3 ,

37
45

 
for both streams with MLC and joint, non-binary

decoding. For comparison, we also included the performance
of the UT-A (unitary-transform-Alamouti) scheme of Stauffer
and Hochwald [6], [7], for which we applied the highest-rate
code of Table I, which is similar in rate to the turbo code

1Although the terminology might be confusing, we note here that LDPC
codes defined in an extension field of F2, which are typically denoted as
non-binary LDPC codes, are actually a subset of binary LDPC codes.

with Rc = 5/6 in their work. While on the transmitter side
we reproduced the UT-A space-time code with QPSK-in-64-
QAM modulation, on the receiver side, instead of the proposed
QR decomposition, we implemented an optimum APP soft
demapper, which has an unrealistically high computational
complexity but provides an upper-bound for the performance
of the UT-A scheme. For this reason, rather than a using this
result for a rigorous comparison, we can see it as a reference.
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Figure 7. BER curves with MLC and joint decoding for a 2 ⇥ 2 MIMO
channel and 8-PSK modulation. As comparison, the performance of the UT-
A scheme from [6], [7] with optimum soft demapping is included.

Fig. 8 illustrates these results as rate-SNR pairs for a target
BER of 10�4 for all codes of Table I and also for BICM-SIC.
The diagram also includes the rate-SNR pairs for UT-A with
the optimum demapper and the DVB-T2 Rc = 37/45 code, as
well as the rate-SNR pairs directly taken from [6, Fig. 2]. Note
that different code rates may be selected for the two streams.
The only condition is that the SNR threshold for stream A has
to be lower than for stream B, since the decoder of the low-
priority stream B relies on the decoded high-priority stream
A. This condition is satisfied for the chosen modulation and
subchannel grouping if the code rate of stream A is lower or
equal than the one of stream B.

The substream capacities CA and CB according to (7), (8)
constitute an upper bound for the MLC scheme with joint
decoding and in consequence also for BICM-SIC, although it
is tight only for the former scheme. For all code rates, MLC
is clearly superior to BICM-SIC. For this particular choice of
parameters, we observe that the UT-A scheme shows better
performance for stream A but is inferior for stream B.

B. MLC with Non-Binary LDPC Codes

Instead of the parallel encoding of binary codes in Fig. 6,
we can employ non-binary LDPC codes in a suitable extension
field of the binary field F2 = {0, 1}. We have applied two
non-binary LDPC codes from the DAVINCI project [12] with
parameters listed in Table II and 64-QAM per antenna. The
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Figure 8. Rate-SNR pairs with MLC and BICM-SIC for all codes of Table I
for a target BER of 10�4. As comparison, the rate-SNR pairs of the UT-A
scheme with optimum demapping and the DVB-T2 code of rate Rc = 37/45
and the result of [6], Fig. 2 are included.

word length in bits is for both codes Nbin = NA log2 qA =

NB log2 qB = 1440 bits, while both codes share the same code
rate of Rc = 1/2. With 64-QAM per antenna, we have 12

coded bits per channel use, of which 4 are allocated to stream
A to form 2

4
= 16-ary code symbols and the other 8 bits are

gathered into F256-symbols for stream B. With this partition,
we obtain a rather small difference in terms of required SNR
for the two streams, as we can observe from Fig. 9. Like for
parallel encoding, all possibilities for defining the substreams
as described in Section IV-A apply also to non-binary codes.

Table II
CODE PARAMETERS FOR TWO NON-BINARY LDPC CODES

Field size q Word length in symbols Code rate
stream A qA = 16 NA = 360 Rc = 1/2
stream B qB = 256 NB = 180 Rc = 1/2
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Figure 9. BER with non-binary LDPC codes and 64-QAM per antenna

VI. CONCLUSION

In this paper, we have presented several solutions for the
simultaneous broadcast of different data streams that can
operate with different service requirements. We have applied
the approach of multilevel coding for multiple antennas, which
is based on a solid information-theoretic framework and is
optimum in the sense of sum capacity. For MLC, we have
shown how substreams can be defined by grouping binary
subchannels and we presented two solutions which allow to
select one code rate per substream, i.e. for all involved binary
subchannels, without a loss of capacity. Furthermore, we like
to point out that MLC solutions allow for a higher flexibility
in the antenna mapping and modulation than other approaches
based on hierarchical modulation and space-time codes.
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