Predicting the wind speeds of solar-like stars

Moira Jardine, Victor See, Aline Vidotto

Solar wind speed can be calculated from the expansion factor (f_i) of flux tubes

Wang-Sheeley-Arge (WSA) model (Wang & Sheeley 1990,1992; Arge & Pizzo 2000)

$$f_i = \frac{\left(B_i r^2\right)_{r=r_{Sun}}}{\left(B_i r^2\right)_{r=2.5r_{Sun}}}$$

$$u = 267.5 + \frac{410.0}{f_i^{2/5}}$$

Forecasting space weather using WSA/ENLIL model

Gressl + 2014 – comparison of various models with in-situ spacecraft data – general background structure similar, propagation times differed

WSA: Comparison with MHD models

 Cohen 2015 – compared MHD with Wang-Sheeley-Arge – improving resolution from ~2°-1° has little effect on wind speeds

Blue (PFSS); Red (MHD) for CR 1958 (MDI)

Pinto+2011,2016 – MHD models through solar cycle to investigate role of flux tube expansion

Different modelling methods

Magnetofrictional (non-potential)

Longitude

Latitude

Longitude Longitude 674.8 626.7 Wind speed (km/s) 482.3 434.2 (km/s) 289.8 50 50 Latitude -50-50241.7 200 250 300 350 50 100 150 200 250 0 50 100 150

Potential Field Source Surface

Longitude

350

300

Can we use this method for stellar winds?

Spatial scale > 3°

stellarSpatial scale > 30°

At the surface, sunspots contribute "small-scale" structure.

Around cycle maximum

peak seen in the sunspot pairs, which appear at a spatial scale of 14° ie l ~ 13.

Around cycle minimum

 only the dipole and low-order modes contribute significantly.

In the wind region, only low-order (large-scale) modes contribute.

- At 2.5 stellar radii, the field is all open and supports the wind.
- Only modes with l < 5
 <p>(corresponding to spatial scale of around 30°) have any significant power.
- Little variation over cycle

Average wind speed changes little above resolutions of better than 20°

Predicted L_x higher at higher resolution

Rotational modulation of L_x also increases (see also Garrafo+ 2013)

Stellar magnetograms from ZDI recover well the average wind speed

Need a job? Like magnetic fields?

Post-doc position available at St Andrews

Starting earliest Sept 2016

Come and see me or email:

mmj@st-andrews.ac.uk

Variations through the cycle

Predicting the wind speeds of solar-like stars

