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XXXVII .  Reversion of" P o w e r  Series. 
By C. E. VAN 0RSTa~D *. 

A LARGE number of the series employed in pure and 
app.lied mathematics are special cases of the integral 

power series, 
y=aox+apc~  + . . . . . . . .  (1) 

In the nmnerous applications of this series, i~ is oftentimes 
necessary to express x as a function of y by means of the 
integral power series 

x=A0y + A ~ J +  A~V3+ . . . . . . . .  (2) 

The usual method of procedure is to substitute the value 
of y in the second equation, equate coefficients, and then 
solve for Ao, A1, A2,.. �9 in terms of a0, al, a~,.. . .  The first 
three or four coefficients may be determined in this way 
without much difficulty, but the coefficients of the higher 
powers of y are so complicated that this method is almost 
useless for the determination of" their Values. 

To obviate this difficulty, Professor McMahon t bases the 
development of the second equation on Lagrange's series. 
He puts 

__  - -  g l  a 2  z :  y b l - - - -  b2= - - - - - . . ,  
a 0  ~ ~0-0' a 0 

x = z +  b S  + b~x 3 + . . .  = z  + ~ ( x ) ,  

n'/1-- - n(n + 1) (n + 2 ) . . .  (n + r--  1), 
and obtains 

b 2+s , ~,Pb~ _ (a )  
~ , . . ~  

:as the coefficient of z "-I in the reverted equation. The 
exponents and subscripts of the b's in this expression satisfy 
s conditions 

p + g +  . . . .  r + l ,  

T i + q j +  . . . .  n - - 2 .  

Another method of obtaining the general term of a reverse 
series has been suggested by Professors Harkness and Morley. 
They differentiate (2) with respect to x and divide by y?. 

Read before the Philosophical Society of Washington, D.C., Oct. 9, 
1909. Communicated by the Author. 

t "On the General Term in the Reversion of Series," Bull. Am. Math. 
Soc. p. 170, April 1894. 
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Reversion of Power Series. 367 

These operations give 

1 i A~___ 2Al hA,,_1 
~=~ L~" +~+ ""--j 

+ (~ + DA. + (n + ~)A,,+,g + . . . ~ . .  (3) 

I t  may be shown by substitution of y from (1) that 
nA~_ly - l y  ' is the only term in the right-hand member which 
contains x -1. That this is true is shown also by means of 
the equation 

y-~ -- --  (n--  1) dx \y,~-x l 

1 dE ( )-(n-I)] 
--  - - ( n - - 1 ) d x  (a~ 1+ alXTao aoa-~x~+ "'" 

d [ al as a,,-1 ] 
= d x  ~--~-1 " ~ 2  " ~ - ;  ' I [ [ ' I X  "~" r162 . . .  , 

a series which after differentiation contains no terms in a .-] 
for integral values of n other than unity. Hence, by equating 
the coefficients of .v-1 in (3), we obtain * 

where the expression in the brackets means the coefficient 
or" x -1 in the development of y-~* as a function of "c. This 
coefficient may be found without mueh diffieulty. Performing 
the indicated expansion 

y- '~= (aox + ave ~ + a~x ~ + . . . ) -~  

=(aox ) -~ ( l  + ~ x +  a~ x'  + . . . ) - "  
a o ao 

= ( ao . ) -*O-b .~ -b~ :+  ...)-~ 

-" [1  + n(b,x + b~ 2 + . .  Q~ + . . .  

�9 4 n(n+l)... ( n + r - - 1 )  
r ! (b~x + b~x ~ + . . . ) "  +...].(5) 

* Harkness and Morley~ ~Introduction to Analytic l~unctions~ ' 
p. 144. 

D
ow

nl
oa

de
d 

by
 [

U
ni

ve
rs

ity
 o

f 
T

or
on

to
 L

ib
ra

ri
es

] 
at

 1
3:

17
 0

6 
M

ar
ch

 2
01

5 



368 Mr. C. E. Van Orstrand on 

The polynomial theorem gives 

(blx+b~x~+ " ~ ~ r! t,P~q ~x+~+..., (6) �9 .j - - . - , p  ! q---~.=,"~ . . . .  

the exponents being subject to the conditions 

p + q+  . . . .  v, } 
p §  = n - - l . =  . . . . .  (7) 

The first condition arises from the homogeneity ot~ the:b 
terms in the expanded equation, and the second is imposed 
by the condition that the terms in x must be of degree 
(n - - l )  in order that the complete expansion of ~/-" contain a 
term in x -~. These conditions therefore require that the b 
terms are of order r and weight (n-- l )  instead of order 
( r e1 )  and weight (n--2)  as in expression (a). This dif- 
ference in the order and weight is due to the fact that (a) is 
the coefficient of z "-t  instead of z". Finally, by substituting 
(6) in (5) and (5) in (4), we obtain 

A~_~= E(n+l)(n+2)..._p! q! (n+r--1)b%q~ , . . ,  , (8) 

as the coefficient of y~a~'*----z ~. 
Formulas (7) and (~) hold for all positive integral values 

of r and n. The seemingly exceptional case, r----l, is readily 
seen from (4) and (5) to give a numerical coefficient:unity 
for all values of n. Since the b terms are of a ~iverl order 
and weight, they may be taken in part from tables, such as 
Bruno's table~ " Symmetrische Funktionen der Wurzeln 
einer Gleichung," contained in his treatise, ' Biniire Formen,' 
which contains all terms of successive orders and weights 
from 1 to 11 inclusive. Terms of weight 12 may be deter- 
mined with the assistance of the same table, for evidently 
the expression, b~ x terms of weight 11 + b~ x terms of weight 
12+. . . ,  contains all terms of weight 12, including dupli- 
cations. The process may be continued so as to determine 
all terms of any given order and weight * 

Having determined p, q . . .  in the manner indicated above 
for any particular value of n, the corresponding coefficient 
is readily determined by substitution in either of the preceding 

* For a precise method of determining order and weight, see a paper 
by R. A. Harris, " On the Expansion of Sn x," Annals of Mathematics, 
1888, p. 87. 
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_Reversion of Power Series. 369 

formulas. By proceeding in this way, the flrs~ 13 terms of 
the reverse series of (1) are found to be 

x-= z + blz 2 + [bo + 2bl"Z]z ~ + [ b~ + 5bib2 + 5613] z 4 

+ [b4 + 65153 + 3b~ ~ + 21blab., 4:14bl ~] z ~ 

+ [bs+ 7(bib4 + b~ba) 
4- 28(b~b3 + btb22) + 8~b1362 + 42615]z 6 

+ [b e + 4(2b~b~ + 26264 + bz 2) 
+ 12(361~ba + 6blb~b~ + b23) 

+ 60(2ba% 3 + 361%~ '2) + 330614b~ + 132bl 6] z r 

+ ~bz + 9(b~t)~ + b2b~ + b~b4) 

+ 45(b1~/,~ + bib3 ~ + b22ba + 2blb~b~) 

+ 165(b13b4 + blb~ 3 + 3b12b2b~) 

+ 495(b1463 + 2b~3622) + 1287b~%~ + 429b]]:  ~ 

+ Eb. + + + 

+ 55(b~b~ + b~b~ + b~b~ ~ + 2b~b~b~ + 2blb~54) 

+ 55(4b~b, + Gb~b~ ~ + 12b~%~b~+ 12b~b~b~ + b~ 4) 

+ 715 (bi~bi + 2b~:b~ ~ + 4b~abob,) 

+ 1001(2b~b~ + 5b14b: ~0) + 5005ba%~ + 1430b~SJz ~ 

+ [ba + 11(b~bs + b~b~ + b~b e + b~b~) 

+ 22(3b~b~ + 3b2~b~ + 3b~b~: + 6b~b~b~ + 6b~b~b~ + 6b~l,~b~ + b~ ~) 

+ 286 (b~b~ + b~3ba + 3b~b~b~ + 3ba~bJ~ + 3b~b:~b~-+ 3b~b~b~ ~) 

+ lOO  + + + + 

+ lO01(3b~'~b~ + lOb~b~ ~ + 15b~b:ba) 

-t- 8008(b1% 3 + ,1D1'Sb,2 u) -]- 19448617b: + 4862b19~ z 10 

+ [b~o + 6(2b~b~ + 2b:bs + 2bsb~ + 2b~b~ + b2) 
+ 78 (b~b~ + b~b~ + b~b~ ~ + b~:b~ + 2blb:b7 + 2blb~b~ 

+ 2b~ba5 ~ + 2b~bsb~) 

+ 182(2b~bz + 2b.z~b~ + 2b~b~ ~ + 3b~b4 ~ + 3b~b~ ~ 
+ 6b~2b2b~ + 6h~%ab~ + 6blb~%~ + 12blb~bzb~) 

+ 273(Sbx'bn + 20btab~bn + 20btab~b~ + 20b~b~'~b3 
+ 30b~b~b~ + 30b~:b~b~ ~ + b~ ~) 

+ 2184(2b~b~ + 5bl~ba ~ + 5bl:b: ~ + lOb~b~b~ + 20b~3b~:ba) 
+ 12376(b~%~ + 6bt~b~ba + 5b{~b~ ~) 
+ 15912(2b]ba + 7b~%~ ~) + 75582baSb~ + 1679661a~ ~ 

.Phil. Maq. S. 6. Vol. 19. No. 111. March 1910. 2 B 
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370 Mr. C. E. Van Orstrand on 

+ ['bn + 13(blblo + b2b9 + b~bs 4- b4b 7 + bsbr 

+ 91(bl~bg-I- boflb7 + blb~ ~ + b3~b~ + b3b42 + 2blb2bs + 2blb3b7 

+ 2616466 + 2b2bzb6 + 2b:b4ba) 

+ 455(blZbs + b2Zb5 + b~.b~ ~ + 3blZbzbr + 3bl~babn + 3blb~.~'b6 

+ 3bflb~b~ + 3blb~b~ + 3blb~b4 + 3bflb3b~ + 6b~5..,/'3/'~) 

.+ 1820(b14b7 + b~4ba + 2b13b4 ~ + 2bt2ba 3 + ~bl'~b~b6 + 4blab3b~ 
2 + 4blbs + 6bt~b~b~ + 661622b~ ~ + 1261 bo.b3b~) 

i ~ 8 o + 6188(bt~b6 + b.bo ~ + 5b14b~b~ + 5bt%zb~ + lOb1 b~'b~ 

+ lObt~b~b~ ~ + lOb~~ 

+ 18564(b~6b~ + 3b~b3 ~" + 5b~b2 ~ + 6bl~b..b~ + 15btab~%~) 

+ 50388(bxTb~ + 7bxOb~bz + 7b~bz ~) 

+ 125970(blSb~ + 4b~Tb~ ~) + 293930bflb~. + 58786b~ n ] z 'z 

+ 35(3bl=bao + 3b==bs + 3b~t,~" + 3b~bn + 6b~beb~ + 6bababs 

+ 6b~b~b~ + 6b~b~br + 6b~b~b~ + 6b~b~b~ + 6bab~b~ + b~ ~) 

+ 140 (4:b~bs + 4b~bs + 6bflb~ ~ + 6b~%~ ~ + 12bflb.,b s + 12bl=babz 

+ 12blb~b~ + 12bi=b~bn + 12biba'Zb~ + 12bib~b~ ~ 

+ 12b~b~b~ + 12b~b~b~ + 24bib~bab~ + 24bib~b~b~ + b~ ~) 

+ 2380(ba4bs + be'~b~ + 2b~'~b~ ~ + 4b~ab2br + 4blZbab~ + 4bl~b~b~ 

+ 4b~b2Zb~ + 4b,bzb~ ~ + 6bi%flb~ + 6bflb~bfl 

+ 6ba~bz~b~ + 12ba%zb~b~ + 12bibz%~b~) 

+ 14:28 (6b~b7 + 15bt'tb~ ~ + 20b~b~ + 30bx~b~b~ + 30b~l,~b~ 

+ 30blbo.4b~ + 60blab~b~ + 60bflb~Sb4 + 90bflbflt,3 ~ 

+ 120b[~b~b~b4 + b~) 

+ 27132(b16b~ + 3bx%~ 5 + 6bl~b~ba + 6b~%ab~ + 15b~b~%~ 

+ 15b~bsba ~ + 20bflb~b~) 

+ 19380(~blTb~ + 14~b~b~ ~ + 28b~r + 35b4b~ + 84bx~b~%~) 

+ 67830 (3blSb4 + 24b~b~ba + 28bflb~ ~) 

+ 248710(2bflba + 9bflb~ ~) + 1144066b~X~ + 208012bx~]: 'a 
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R e v e r s i o n  o f  P o w e r  S e r i e s .  371 

In order to obtain a complete check, the numerical co- 
efficients in the above series have been computed twice with 
Professor MeMahon's formula and once with formula (8). 
Use has also been made oI~ the partial check obtained by 
putting 

for in this ease 

h i = b e , =  . . .  =b,t= ... = ~1 ,  

~--y__y~ +y3 ... , 

as is otherwise made evident by writing the original and the 
xeverted equations in the respective forms, 

y=(a~)(1--,v'} -1 and x----y(1Ty) -1. 

"This result suffices to establish a theorem in regard to the 
coefficients of terms of all orders and of a given weight, viz.: 
the sum of the numerical coefficients of the terms of even 
order is greater or less by unity than the sum of the nume- 
rical coefficients of the terms of odd order according as the 
weight is even or odd. 

There are a number of special series reducible to the form 
(1) and therefore capable of reversion in the usual manner. 
Such are for example equations containing an absolute 
term e. I t  is then sufficient to replace y in (1) by y l = - y - c .  
I f t h e  power series contains even powers only, it may be 
written 

y = aoX~ + % X ~ + a l X  G + .... 

and this series is reduced to the form (1) by the substitution 
~v-=X ~. If  the coefficients of the first successive powers of 
~c vanish, 

y =- c + a ~ _  t.~ ~ + a,~x "~+1 + . . . ,  

and the required transformation is 

//1 = ( / / - c )  + . . .  ) 

y l  ~/'~ = x + fll ,v ~ + f l~x 3 + . . . .  

There are m reversions in this case corresponding to the 
m roots of//1. 

Other series containing zero coefficients are reversed by 
~ubstitution in the complete expansion. Thus, if the series 

2 B 2  
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372 Mr. C. E. Van Orstrand on 

contains odd powers only, 

b l = b j = b 5  . . . .  = 0 ,  

and the reversed series is 

x = z + b~z ~ + [ ~  + 31~] z ~ + [b6 + 8br + 12b~] z~ 

+ [b8 + lOb2bs + 564 ~ + 55b~%~ + 55b24]z 9' 

+ [bl0 + 12b~bs + 12b~b6 + 78b~2b6 

+ 78b2b~ + 364b2~b~ + 273b~ : u 

+ [b12 + 14b~.blo + 14b~bs + 7bd ~ 

+ 105be%s + 210b26466 + 35b~ ~ 

+ 560b2~bG + 84062~bt 2 + 2380b2'b4 

+ 1428b 6] :t~ 
- ~  , ,  . . . .  . 

Again, if the series proceeds by alternate odd power~ 
beginning with the first, 

bl=bo.=t ,3=b~=b~=bT=b9 . . . .  = 0 ,  

and the preceding series reduces to 

x = z + b4z 5 + (bs + 5b~ ~ )z 9 + (b~ + 14b~bs + 35b~ ~) ~3 + . . . .  

An important case arises when the number o[ coefficients 
which do not vanish is finite. The reversed series is then 
an expression in terms of an infinite series for one real 
root of a polynomial of the nth degree*. The first terms 
in the solution of the quadratic, cubic, and biquadratic are 
given below. 

(a) Solution of quadratic. 

y = ao.V + alx  ~ 

Z ~ [b'~[)l  x2 

, v = z  + blz ~ + 2bl~z ~ + 5blJz 4 + 14b14z ~ + 42b1% 6 + 132b16z 7 

+ 429617z s + 1430blSz 9 + 4862b19z 10 + 16796b,X~ n 

+ 58786b~nz TM + 208012blitz ~z + 

�9 Joseph B. l~lot~, " On the Solution of Equations," The Anal~,st, 
vol. ix, 1882, p. 104. 5Ien'iman and Woodward, ' Higher Mathemat;es, 
1). 27. 
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Reversion o f  Power  Series. 373 

(b)  Solution of cubic. 

(1) .y=aoX +a2x 3 

.x = :  + b2? + 3b~.:z "5 + 12b2az 7 + 55bo.4z 9 + 273bi~z n + I;i2$b~% 1~ + . . . .  

(2) y = aoX + alx 2 + a~x 3 

z=x--blx~ ' - -b2x  ~ 

.x = :  + l,~=~ + [b. + 2~-~  + [St,~b. + 5b?]~.~ 

+ [3b2 "2 + 21bleb~ + 14b14lz 5 

+ [28blb~ ~" + 84513b~ + 42b(~]z r 

+ [ 12b~ ~ + iSOb~b~ ~ + 330b~%~ + 132b~a]z 7 

+ [165blb~ 3 + 990blab2:+ 128761%~ + 4 2 9 b ] J z  s 

"~ oo.o.,  a 

(c)  Solution of  biquadratic.  

(1) y = a o x + a a x L  

Z ~ 2d - -  ~32r 

x = : + baz 4 + 4b~z 7 + 22bi~C ~ + 140b~4z ~3 + . . . .  

(2) y = aoX + aoy + a~,v 4. 

z ~ -  :c ~ t~2X 8 ~ , 3 x  4. 

W = Z "~ b 2 z  a "1- bzz ~ + 3b~eS ' + 7b2baz 6 

+ [4~-" + 12~,?~ z~ + 4 5~'~ ~ + [ 5,~b~b~ + 55~?~z ~ 
+ [22bi~ + 2~dh~'~b~jz~O+ [546b~bs~+ ~73b~]z ~ 

A- [455b2b~a + 1820b~ab:~] z~2+ [ 14:0b3 ~ + 4760b2~ba: + 1428b~ s] zX.~ 4. . . . .  

(3) y = aox + avv ~ + a ~  ,~ + asx ~. 

.,c = z + b~z'-' + [ b~ + 2b~]z ~ + [ba + 5b~b2 + 5b~a]z ~. 

.4- [ 6b~b~ + 3bz ~ + 2 lb~:b~ + 14b~Jz "~ 

+ [ ~ +  2s(~?~ + ~ )  + s~?~.~ + ~e~:~  
+ [ 8b~b, + 4ba ~ + 72b~b~b.~ + I2b~ ~ 4-120b~'~ba 

+ 180ba~b~ ~ + 330b~tb~ + 132b~]z  7 

+ [45b~b~" + 45b~:b~ + 165b~b2 ~ + 495b~%2b~ 

+ 495@ba + 990b~b~ "' + 1287bi~b: + 429ba ~] z s 
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374 Mr. C. E. Van Orstrand on 
The preceding expressions are not always sufficiently conver- 

gent* to be useful in practice. They may be made convergent,. 
however, by substituting an approximate value of x in the 
original equation. I t  thus becomes possible to obtain all o f  
the real roots of any polynomial. After one or more of the  
roots ai, a~ aa~.., have been obtained, use may be made of 
the relations t 

a0 = -- ("1 + ~,.o + ~3 + -.- ~,,) 
a 1 =  (~r + ar z + . . .  a~,,_latn) 

�9 �9 . �9 . �9 �9 �9 ~ . �9 * . 

in the evaluation o[ the remaining roots�9 A method fo r  
determining all of the real and imaginary roots from a single- 
series has been given by McClintock $. 

Following are some examples : 
X 2 X 4 X G 

(I )  y =  c o s h X - - l =  ~.T + ~.. + g i  + ... 

= ~ +Ti .  + ~,. + . . . .  
1 1 

z = 2 y ;  b ~ = -  1-2; b 2 = - - 3 6 0 ;  ... 

i z o + l . ~ _  1 . 4 + ~ z ~ _  
X ~ = x = z - -  ~ 90- 56(---) . . . .  

l o 
~5y + 1-5T5 U - . . . .  

( 2 ) v . ~ 2 / ~  f ;  .~.~ .r .~ e-~: dx = , c - T  !3  + ~. .3 - ~ . 7  + "'" v -n ,#o 

# 1 1 
z =  y ;  b ~ = 3 ;  b~=- - l -0 ;  bs=~22; ... 

1 3 127 r 4369 9+ 34807 zn + 
x = z + ~ z  + .~Oz"+~30 z +2268()z 178200 "'" 

= 0"8862 2693y +0"2320 1367y~+0"1275 5618y 5 
+0"0865 5213f+0"0649  5962y3+0 '05173128yn+ . . . .  

�9 F o r  a ~roof  t h a t  t h e  reverse series converges  in  t h e  s a m e  domain  as  
t h e o r i ~ n a 4  series, see H a r k n e s s  and  Morley ' s  ' Treat ise  on t h e  Theory  
oz ~unetions; p. 116. 

Burnside and Panton's ' Theory of Equations,' Chapter IIL 
:~ Bulletin Am. Math. Soc. i. 1894, p. 3; Am. Jour. of Math. xviL 

1895, pp. 89-110. Merriman and Woociward's ' Higher Mathematics~" 
p. 27. 
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Reversion o f  Power  Series. .375 

(3) x 3 -  2,c ~- + 20x = 2 

1 l~X~+ lx8 
i 0  = • -  

1 1 1 
Z = l ~ ;  b l = ~ ;  b 2 = - - ~ -  0 

x =0"1 + 0"001 --0"00003--0"000002 =0 '100968 .  

(4) 2=17 
x =,'ci + 2 

xl* + 8xi 3 + 24xl  ~ + 32xi  = 1 

1 3 I 1 
z=~;  b,=-~; b~=-~; b3=-3~. 

x~ = 0"0312500--0'0007324 + 0 '0000266--0"00000i i  

= 0"030513 x = 2"030543. 

Substi tuting the original letters y, ao, a~, a~, . . . .  and 
arran,ging the terms with respect to the successive powers e l  
the a s, the general equation i s ' -  

= ~ o -  ~5 ~o 7 + L" ~o-~- ~oJ ~o ~ + L a? + ~ ~o ~o ~oJ~T 
r 

ao ~ ao ao ao ao ao 2 ~o 005 

at ~ ~ . a l  s a~ _ 2 8  a l ~  

. , , a l l "  .a2  "~ ad) aa~] ~ 
"+"ao[ - -~ao  ~ + ao -1"7a2--~-- '~ a oao ao ~ 

+ 
L ao ao ~ ao § lZU ~ ao 

_~__ , a l  2 [ a2 ~ 

s o /  ~ o \  ao ao 

+ 4 a 2 [ _ 3 a ~ + 2 ~ "  _.~ . a~ ~ as y~ 
aok ao Sot So" aoJ ao 7 

* See also "Inverse Interpolation by Means of a Reversed Series~" this 
Journal, May 1908. 
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376 ) i t .  J .  L. Hogg on Friction in 

[ ~o 7 a('a2 a14~3 + - - 4 2 9 + 1 2 8 7 - - - - - - 4 9 5  
ao 5 a o a04 a0 

2 a 
+165a0 :~ \ - -5~- J+a0 /  a 0 \  a0 0 

+ 1 5 a l ( l l a ~ 3 3 ~ )  + 9 a l ( _ 1 0 a j a 4  a~) 

a o  (t O n o ]  a 0 El 0 Clo.] ao 8 
+ . . . . .  , * 

The last eqtla~ion is c~zi~e sufficient for relations involving 
experimental data. In many other cases, however, such for 
example as the construction of mathematical tables, it is con- 
venien~ to have the equation in the more extended form, and 
thereby save the labour of making many tedious transforma- 
tions, or of devising new methods-for the development of the 
inverse (or anti) functions. The second of the preceding 
problems is a case of this kind. Another important application 
consists in being able to estimate, without reversion, the error 
due to neglectin~ terms of a certain order in the reverse 
series. For exam~ple, the error due to neglecting the term 
in z 1~ in problem (1) is of the order of magnitude of 
58786 • 12 -11 • (2y) 1~, or roughly 3 • 10-4y 1~, while the same 
error for problem (3) is approximately 6 x 10 -6 • g12. Since 
in the first case y may exceed unity, the series will not 
always suffice for computation, bnt in the second case y = 0 " l  
and inspection shows that the remaining terms in the co- 
efficient of z 1~ will not greatly exceed 58786 • b u, consequently 
the error arising from the omission of z 1~ in this series 
probably does not exceed 10 -a6. 

U.S. Geological Survey, Washington, D.C. 
October 1909. 

X X X V I I I .  Friction in Gases at Low Pressures. 
By d. L. ttoa~ % 

U ' N D E R  the title "Fr ic t ion  and Force due to Transpira- 
Lion as dependent on Pressure in Gases," there was 

publ ishedt  some time ago an account of some experiments 
made to de~ermine the relation between the friction of a gas 
and the pressure in it, and also the relation between the 

* Communicated by Professor Trowbridge. 
t Proc, Am, Aead. pp. 42-46 (1906). 
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