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ON THE DIOPHANTINE EQUATION a3*+0by+c = dz”
By Epvunp Lanpav and ALEXANDER OSTROWSKI.

(Communicated by G. H. Harpy.)
{Received December 19th, 1919.—Read February 12th, 1920.)

1. We owe to Mr. ‘A. Thue* the important theorem :

If F(u, v) ts a homogeneous form with rational integral coefficients,
and s not a power of a linear or quadratic form, then the equation

Fa,v) =f
has, for every f0, at most a finite number of rational integral solu-

tions.

It was shown by Landau,t in response to a question! in I'Intermédiaire
des Mathématiciens, and by use of the particular case of Thue’s theorem
in which F is a cubic form, that the equation *—2 = «® has only a
finite number of solutions. The method may be extended, by the aid of
considerations drawn from the theory of ideals, so as to lead to the follow-
ing theorem :

The equation
(1) ay’+by+c = da”,

where n =8, a0, V*—4ac+0, d+0, and all the letters denote
rational integers, has at most a finite number of solutions.

¥ ¢ Om en general i store hele tal ulisbar ligning,” Skrifter udgivne af Videnskabs-
Selskabet © Christiania, 1908 I, Mathematisk-Naturvidenskabelig Klasse (1909), No. 7, 15 8. ;
« ber Anniherungswerte algebraischer Zahlen,” Jowrnal fir die reine und angewandte
Mathematik, Bd. 135 (1909), S. 284-305. In the second memoir the theorem is proved only
for an irreducible F' (u, v) ; but the extension to the general case (treated in the first memoir)
is immediate.

T L'Intermédiaire des Mathématiciens, t. 8 (1901), pp. 145-147, and t. 20 (1918), p. 154.
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This theorem, the proof of which is the object of the present note, is
new only when 2> 8, for when 7 =38 it results immediately from a
combination of Thue’s theorem with the results obtained by Mr. Mordell,
from the theory of numbers and the theory of invariants, in his memoir
“ Indeterminate equations of the third and fourth degrees.”*

In the special case when a =1, b =0, d =1, » > 8, our theorem
shows that:

If all squares and all n-th powers = 0 are arranged together in order
of magnitude, numbers which are both squares and n-th powers occurring
only once, in a series

z1(= 0)’ 22(= l)r 23(= 4); ceey Zmy Cmaly oo

then zyi1—2y tends to imfinity with m.

This special case is trivialt when 7 is even ; it may be expressed, when
n i8 odd, in the form:

If S(8) denotes the distance of t from the nearest rational tnteger, and
x runs through all rational integers > 0 which are not squares, then

¥ G(zh) - .
(For, if the sign is chosen appropriately,
(ot & 9M)° = 27 & 2% S(at) +(S(zH))?
is a square, whose distance from x" is

| £ 2289 (@4 (@) | < 20% S(a¥) +1,

and tends to infinity.]

2. Proof of the theorem.—The equation (1) may be written
(2ay+ b} — (V*—4ac) = 4adz™.
Hence, if (1) has an 'inﬁnity of solutions, so has an equatioun
) y—k=Il* (=0, |5£0).

We need therefore only consider the equation (2). There are two cases.

* Quarterly Journal of Pure and Applied Mathematics, Vol. 45 (1914), pp. 170-186. See
also the note ‘‘ A statement by Fermat,” Proc. London Math, Soc. (Records dc.), Ser. 2,
Vol. 18 (1919), pp. v-vi.

T Since then every z,, is a square.
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I. Let k be a square m®. Then
(y+m)(y—m) = Iz

We ignore the trivial solutions x =0, y = +m. Any prime factor of
y-+m, which is not a factor of 2m or of /, occurs in y-+m with a multi-
plicity divisible by », since it does not divide y—m, and divides lz"
exactly as often as z*. Hence

y+m=+£pp ... p’i’f 7",

where p,, py, ..., p; are the different prime factors of 2m!, the exponents
a,, ..., a; are positive or zero, and z is a rational integer. If every a; is
reduced to modulus #, we ohtain

8 y+m = qu*,

where ¢ can assume only a finite system of values, exclusive of zero. In
exactly the same way

(4) y—m = 1",

where 7 can assume only a finite system of values, exclusive of zero.
For each pair ¢, », occurring in (8) and (4), the equation

2m = qu*—1rv"

has, by Thue’s theorem, at most a finite number of solutions; for the »
roots of q7"—r = O are all different. Thus at most a finite number of
values of y are possible.

II. Suppose that % is not a square. Then in (2) z3£0, and so the
ideal equation '
ly+vE]lly—vk] = (][]

holds in the quadratic corpus P(y/k).* Every prime ideal which divides
(y++/k], but neither [24/k] nor [Z], occurs in [y+4/k] with an expo-
nent divisible by n; for it does not divide [24/k], and therefore not
[y—+/k). Thus

[y+v/k] = pypg ... pe,

where P, ..., §; are the different prime ideals which divide [24/k.1], the
expounents a, ..., @; are positive or zero, and g is an ideal. If each a; is

¢ (o] denotes the principal ideal (Hauptideal) of the integers of the corpus divisible by a.
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reduced to modulus 2, we obtain
(5) ly++k] = qur,
where 4 belongs to a finite system of ideals, and u is an ideal.

It is enough to show that, for a fixed 4, (5) can be satisfied by an ideal
u for at most a finite number of values of y. If this were not so, there

would be a class of ideals # such that (5) could be satisfied by an ideal u
of 1A for an infinity of values of y. If is a fixed representative of the
class inverse to &, so that* uw ~ [1], then it follows from (5) that
qu* ~ [1],
7 ~ g (u)® ~ o™

There are therefore two integers s and v, of which s may be supposed
rational, and both are independent of u, in the corpus P(4/k), such that

[s]q = [y]o™
It now follows from (5) that

[s1ly+v/E] = [s]qu* = [y]w*u* = [y]J@w" = [y][£]",
where £ is an integer of the corpus. Therefore

sy+wE) = eyé®,
where € is a unity.

If & < 0 the number of unities is finite, and if &> 0 all unities are
expressible in terms of a fundamental unity » in the form + #%, where
t is a rational integer. Thus every unity is the product of (@) a unity
chosen from a finite system, and (b) the n-th power of a unity. Aeccord-
ingly
(6) s(y+vk) = B¢,

where B belongs to a finite system of integers of the corpus, excluding
gero, and ¢ is an integer of the corpus. It is therefore enough to show
that, for a fixed positive or negative s, and a fixed non-zero 3, at most a
finite number of values of  can occur in (6).

We choose a base 1, « of the integers of the corpus. Then

¢ = u+tvo,

where u, v are rational integers. Denoting generally by ' the number

* The symbol ~ denotes equivalence.
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conjugate to u, we have,* from (6),

- 2svk _ Blutow)—f utvw)

w—o' o—w'

The right-hand side is a binary form F(u, v) with rational integral co-

efficients, since for every integer u = u,+v,» the number “—iu—, =1, is

rational and integral. If § is a root of &* = B8'/8, and p runs through
the n-th roots of unity, then

F(u, v) = a—’% II, {u+vo—pd (t+ve)}.

No two of the linear factors are the same, or differ only by a constant
factor ; for, if p, == p,,

1—p,8, 0—p,60' | = ll, —p,0 = d(p;—p{0' —w) F 0.

ls _p26

ll,w

1, o

1—py8, w—pyda’

Thus Thue’s theorem may be applied to (7); at most a finite number of
values of « and v, of {, and of y, can occur ; and our theorem is proved.

3. From our theorem it is very easy to deduce that of Polya:+ the
greatest prime factor of ay*+by+c (@0, b*—1ac # 0) tends to infinity
with |y|. For if, for an infinity of values of y, ay*+dy-+c were com-
posed only of a finite system of primes p,, ..., p;, then for every fixed »
greater than 2, and for at least one number d, formed by powers of these
primes, the equation (1) would have an infinity of solutions.

Gittingen, December 14th, 1919.

* Compare the similar argument used by Pélya, ‘* Zur arithmetischen Untersuchung der
Polynome,”’ Math. Zeitschrift, Bd. 1 (1918), S. 143-148 (S, 147,
t L.c., S. 144,



