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Editorial summary: 
Parmbsc1, a force-field for DNA simulations, is presented. It has been 
broadly tested on nearly 100 DNA systems and overcomes simulation 
artifacts that affect previous force-fields.  



We present parmbsc1, a force-field for DNA atomistic simulation, which has been 

parameterized from high-level quantum mechanical data and tested for nearly 100 

systems (representing a total simulation time of ~140 µs) covering most of DNA 

structural space. Parmbsc1 provides high quality results in diverse systems. 

Parameters and trajectories are available at http://mmb.irbbarcelona.org/ParmBSC1/. 

 

The Force-field, the energy functional used to describe the dependence between system 

conformation and energy, is the core of any classical simulation including molecular 

dynamics (MD). Its development is tightly connected to the extension of simulation time 

scales. As MD trajectories are extended to longer timescales, errors previously 

undetected in short simulations emerge, creating the need to improve the force-fields1. 

For example, AMBER (Assisted Model Building with Energy Refinement) parm94-99 was 

the most used force-field in DNA simulations until multi-nanosecond simulations 

revealed severe artifacts2,3, thus fueling the development of parmbsc04, which, in turn, 

started to show deviations from experimental data in the µsec regime (for example an 

underestimation of the twist, deviations in sugar puckering, biases in ε and ζ torsions, 

excessive terminal fraying2,5, and severe problems in representing certain non-canonical 

DNAs1,6). Various force-field modifications have been proposed to address these 

problems, such as the Olomouc (OL)-ones5,6 designed to reproduce specific forms of 

DNA. While these and other tailor-made modifications are useful, there is an urgent 

need for a new general-purpose AMBER force-field for DNA simulations to complement 

recent advances in the CHARMM (Chemistry at HARvard Macromolecular Mechanics) 

family of force-fields (Online Methods). We designed theparmbsc1 force-field presented 

here to solve these needs, with the aim of creating a general-purpose force-field for 

DNA simulations. We demonstrate its performance by testing its ability to simulate a 

wide variety of DNA systems (Supplementary Table 1). 

 

Parmbsc1 shows good ability to fit quantum mechanical (QM) data (QM data fitting 

section in Supplementary Discussion), improving on previous force-field results (Online 

http://mmb.irbbarcelona.org/ParmBSC1/


Methods, Supplementary Table 2). We first tested QM-derived parameters on the 

Drew-Dickerson dodecamer (DDD), a well-studied DNA structure2,7, typically used as 

benchmark in force-field developments.Parmbsc1 trajectories sampled a stable B-type 

duplex that remained close to the experimental structures (Fig. 1 and Supplementary 

Table 2), preserving hydrogen bonds and helical characteristics, even at the terminal 

base pairs, where fraying artifacts are common using other force-fields2,8 (see Online 

Methods and Supplementary Discussion). The average sequence-dependent helical 

parameters (Fig. 1 and Supplementary Figs. 1 and 2), and BI/BII conformational 

preferences (Supplementary Table 2 and Supplementary Fig. 3) matched experimental 

values (for the comparisons with estimates obtained with other force-fields see Online 

Methods). Furthermore, parmbsc1 reproduced residual dipolar couplings (Q-factor = 

0.3) and NOEs (Nuclear Overhauser Effect; only two violations), yielding success metrics 

similar to those obtained in the NMR (Nuclear Magnetic Resonance)-refined structures 

(Supplementary Table 3). 

 

We next evaluated the ability of parmbsc1 to represent sequence-dependent structural 

features from simulations on 28 B-DNA duplexes (Supplementary Table 4). The 

agreement between simulation and experiment was excellent (Root Mean Square 

deviation (RMSd) per base pair of 0.1 or 0.2 Å). Almost no artifacts arising from terminal 

fraying were present, and the average helical parameters (twist and roll from 

simulations: 33.9 º and 2.5 º respectively), matched values from the analysis of the PDB 

(33.6 º and 2.9 º)9. Moreover, parmbsc1 was able to reproduce the unique properties of 

A-tract sequences10 (Supplementary Figs. 4–6), and capture sequence-dependent 

structural variability (Supplementary Fig. 7). We also studied longer duplexes (up to 56 

bp) to ensure that a possible accumulation of small errors given by the force-field did 

not compromise the description of the DNA, finding excellent results (Supplementary 

Table 5).  The expected spontaneous curvature was clearly visible in both static and 

dynamical descriptors, demonstrating that parmbsc1 trajectories were able to capture 

complex polymeric effects (Supplementary Table 5). 



 

We also explored the ability of parmbsc1 to represent unusual DNAs, such as a Holliday 

junction, a complex duplex-quadruplex structure which was fully preserved in µsec-long 

trajectories (Supplementary Figs. 8 and 9); or the Z-DNA,  a levo duplex containing 

nucleotides in syn, for which parmbsc1 not only provided stable trajectories (Fig. 2a), 

but also reproduced the experimentally known salt dependence, confirming that the 

conformation is stable only at high (4 M) salt concentration11. For Hoogsteen-DNA (H-

DNA), simulations with parmbsc1 showed a stable duplex for more than 150 ns (Fig. 2b), 

and severe distortions in longer simulation periods (Supplementary Fig. 10), as 

expected from its metastable nature12. We obtained equivalent results for another 

metastable structure, the parallel poly-d(AT) DNA (Supplementary Fig. 11)13. Parmbsc1 

simulations not only reproduced the known structure of parallel d(T-A·T) and d(G-G·C) 

triplexes (Figs. 2c,d), but also showed correctly that the equivalent antiparallel 

structures are unstable in normal conditions (Fig. 2e)14. Finally, parmbsc1 was able to 

reproduce experimental structures of both parallel and antiparallel DNA quadruplexes 

with RMSd < 2 Å (Figs. 2f,g).  

 

We explored also the ability of parmbsc1 to reproduce the complex conformation of 

hairpins and loops, exceptionally challenging structures for force-fields15. We performed 

µs simulations of the d(GCGAAGC) hairpin (PDB: 1PQT), the 4T-tetraloop in Oxytricha 

nova quadruplex d(G4T4G4)2 (OxyQ; PDB: 1JRN), and the junction loops in the human 

telomeric quadruplex (HTQ; PDB: 1KF1). Parmbsc1 provided excellent representations 

(RMSd around 1 Å) of the d(GCGAAGC) hairpin (Fig. 2h), and of the OxyQ quadruplex 

(Fig. 2i). For the very challenging HTQ structure, parmbsc1 maintained the stem 

structure 20 times longer than in previous simulations15, and recognized the large 

flexibility of the loops in the absence of the lattice-contacts (Supplementary Fig. 12), 

showing that, as predicted16, not only the crystal, but also other loop conformations 

were sampled (Fig. 2j). 

 



As an additional critical test of the new force-field we predicted NMR observables from 

parmbsc1 trajectories (Online Methods). We obtained equivalent NOE violation 

statistics to those determined from NMR-derived ensembles (Supplementary Tables 6 

and 7, and Supplementary Fig. 13). This agreement was maintained in de novo 

predictions, i.e. in those cases where NMR observables were collected in one of our 

laboratories after parmbsc1 development (Supplementary Table 8). Finally, it is worth 

noting that parmbsc1 trajectories reproduced the structure of DNA in crystal 

environments, yielding a RMSd between the simulated and crystal structures of only 0.7 

Å, and average twist differences below one degree, improving on previous calculations 

(Online Methods and Supplementary Figs. 14 and 15). 

 

In our final structural test we explored the ability of parmbsc1 to reproduce the 

conformation of DNA in complex with other molecules. We studied four diverse protein 

DNA complexes (PDB: 1TRO, 2DGC, 3JXC and 1KX5), and two prototypical drug DNA 

complexes. In all cases, we found excellent agreement (RMSd for DNA around 2–3 Å in 

protein-DNA complexes, and 1–2 Å in drug-DNA complexes) with experiments (Fig. 3 

and Supplementary Figs. 16 and 17).  

 

A force-field should not only reproduce the structure of DNA, but also its mechanical 

properties1. To evaluate the performance of parmbsc1 we firstly evaluated the µs-scale 

dynamics of the central 10 base pairs of the DDD. The agreement between parmbsc0 

and parmbsc1 normal modes and entropy estimates (Online Methods and 

Supplementary Table 9) demonstrated that parmbsc1 does not “freeze” the DNA 

structure, a risk for a force-field reproducing well average properties. This was further 

confirmed by the ability of parmbsc1 to reproduce the DNA dielectric constant (8.0 ± 0.3 

for DDD versus the experimental estimate of 8.5 ± 1.4; see Supplementary Fig. 18), and 

also the cooperative binding (around 0.7 kcal mol–1) of Hoechst 33258 to DNA. We then 

computed the helical stiffness matrices for the ten unique base pair steps17,18. Parmbsc1 

values were intermediate between parmbsc0 and CHARMM27 stiffness parameters18, 



and substantially smaller than those suggested by Olson and coworkers17 

(Supplementary Table 10 and Supplementary Fig. 19); the dependence of the stiffness 

parameters on sequence were similar for parmbsc1 and parmbsc017. 

 

The persistence length, the torsional, and the stretching modules were obtained from 

simulations of long (up to 56 bp) duplexes (Online Methods). Parmbsc1 predicted 

persistence lengths in the range of 40–57 nm (Supplementary Table 11), close to the 

generally accepted value of 50 nm. The computed static persistence length, stretch and 

twist torsion modules were around 500 nm, 1,100–1,500 pN, and 50–100 nm 

respectively, also in agreement with experimental values (Supplementary Table 11). 

Finally, we explored the ability of parmbsc1 to describe relaxed and stressed DNA 

minicircles. We performed three 100 ns simulations of a 106-bp minicircle with ten turns 

(106t10), which should have zero superhelical density (σ =0) and therefore no 

denatured regions19,20 (Supplementary Fig. 20). A kink was observed only in a single 

replica for one of the register angles, while in the remaining simulations the DNA 

remained intact (Supplementary Fig. 20). On the contrary, negatively supercoiled 100-

bp (100t9; σ = –0.05) and 106-bp (106t9, σ = –0.10) minicircles formed distortions due 

to the superhelical stress, as previously reported experimentally using enzymes that 

digest single stranded DNA19,20. 

 

Having demonstrated the ability of parmbsc1 to describe stable and metastable DNA 

structures and DNA flexibility, we finally studied conformational transitions. Parmbsc1 

reproduced the spontaneous A to B-form DNA transition in water, and the A form was 

found, as expected, to be stable in 200 ns control simulations in a 85% ethanol and 15% 

water mixture (Supplementary Fig. 21). Parmbsc1 also reproduced the unfolding of DNA 

d(GGCGGC)2 in a 4 Molar pyridine solution (Supplementary Fig. 21), and the effective 

folding of d(GCGAAGC) in water (Supplementary Fig. 22), suggesting the ability to 

capture long-scale conformational changes in DNA. 

 



Based on the wide series of tests we report, we conclude that parmbsc1 provides good 

representations of the static and dynamic properties of DNA. We anticipate that 

parmbsc1 will be a valuable reference force-field for atomistic DNA simulations under a 

diverse range of conditions. 

 

METHODS 

 

Methods and associated references are available in the online version of the paper.  
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10. Lankaš, F., Špačková, N., Moakher, M., Enkhbayar, P. & Šponer, J. Nucleic Acids 
Res.38, 3414–3422 (2010). 

11. Thamann, T.J., Lord, R.C., Wang, A.H.J. & Rich, A. Nucleic Acids Res.9, 5443–5458 
(1981). 

12. Abrescia, N.G.A., González, C., Gouyette, C. & Subirana, J.A. Biochemistry43, 
4092–4100 (2004). 

13. Cubero, E., Luque, F.J. & Orozco, M. J. Am. Chem. Soc.123, 12018–12025 (2001). 

14. Soyfer, V.N. & Potaman, V.N. inTriple-helical nucleic acids 1st edn. (Springer - 
Verlag New York, 1996). 

15. Fadrná, E. et al. J. Chem. Theory Comput.5, 2514–2530 (2009). 

16. Martín-Pintado, N. et al. J. Am. Chem. Soc.135, 5344–5347 (2013). 

17. Olson, W.K., Gorin, A.A., Lu, X.-J., Hock, L.M. & Zhurkin, V.B. Proc. Natl. Acad. 
Sci.95, 11163–11168 (1998). 

18. Pérez, A., Lankas, F., Luque, F.J. & Orozco, M. Nucleic Acids Res.36, 2379–2394 
(2008). 

19. Moroz, J.D. & Nelson, P. Proc. Natl. Acad. Sci.94, 14418–14422 (1997). 

20. Du, Q., Kotlyar, A. & Vologodskii, A. Nucleic Acids Res.36, 1120–1128 (2008). 

 



 

FIGURE LEGENDS 

 

Figure1|Analysis of the Drew-Dickerson dodecamer. (a) Visual comparison of MD 

average structure (brown) and NMR structure (PDB id: 1NAJ) (light blue) and X-ray 

structure (PDB id: 1BNA) (green). (b) RMSd of 1.2 µs trajectory of DDD compared with B-

DNA (blue) and A-DNA (green) form (coming from the standard geometries derived from 

fiber diffraction, see Online Methods section Validation of MD simulations). (c) RMSd 

compared to experimental structures (with (dark) and without (light) ending base-pairs): 

X-ray (green) and NMR (blue). Linear fits of all RMSd curves are plotted on top. (d) 

Evolution of total number of hydrogen bonds formed between base pairs in the whole 

duplex. (e) Helical rotational parameters (twist, roll, and tilt) comparison of average 

values per base-pair step (standard deviations are shown by error bars) coming from 

NMR (cyan), X-ray (dark green), 1 µs parmbsc0 trajectory2 (black) and 1.2 µs parmbsc1 

trajectory (violet). 

 

Figure2|Analysis of non-canonical DNA structures. (a) Comparison of Z-DNA (PDB id: 

1I0T) simulations in neutralized conditions (green) and in 4 M solution of Na+Cl- (blue). 

Structural comparisons at given time points are shown above the RMSd curves. (b) 

Simulation of anti-parallel H-DNA (PDB id: 2AF1) showing deviation of the structure over 

time (highlighted in red). RMSd of (c) parallel d(T-A•T)10, (d) parallel d(G-G•C)10,and (e) 

antiparallel d(G-G•C)10 triplexes. (f) Parallel (PDB id: 352D) and (g) anti-parallel (PDB id: 

156D) quadruplex showing stable structures over time. (h) Structural stability of 

d(GCGAAGC) hairpin (PDB id: 1PQT) and (i) OxyQ quadruplex (PDB id: 1JRN) with ions, 

over time. (j) Human Telomeric Quadruplex (PDB id: 1KF1) with highlighted loops. RMSd 

of HTQ backbone, loop 1, loop 2 and loop 3 regions are shown below. In all panels, 

parmbsc1 (final, averaged or at a given trajectory point) structures (light blue; also 



green for Z-DNA) are overlapped over experimental structure (grey) for comparison. See 

Supplementary Table 1 for information on the PDB structures. 

 

Figure3|Analysis of DNA-protein complexes. Structural details of microsecond 

trajectories of four complexes with PDB id: 1TRO (a), 2DGC (b), 3JXC (c) and 1KX5 (d) 

(500 ns trajectory). Each plot shows overlap of the MD starting (red) and final (blue) 

structures, time dependent mass-weighted root mean square deviation (RMSD in Å) of 

all DNA (red) and protein (cyan) heavy atoms, and comparison of the values of 

rotational helical parameter roll (in degrees) at each base pair step calculated from the 

X-ray crystal structure (cyan) and averaged along the MD simulation (red line with the 

standard deviation envelope in light red). For clarity, in the 1KX5 plot of the roll value, 

the base pair steps are defined by the number of the position along the DNA strand and 

not by the base pair step name. 

 

ONLINE METHODS 

 

 

 

General parameterization strategy. 

AMBER charges and van der Waals parameters for DNA are able to reproduce high-level 

QM data21–23 and hydration free energies24–26, as well as producing reasonable hydrogen 

bond stabilities2, 21–23, 27 and complex properties such as sequence-dependent stabilities 

of duplex DNA2, 28, 29. Thus, we decided to keep the non-bonded parameters unaltered in 

this force-field revision, and focus our efforts in the parameterization of the backbone 

degrees of freedom: sugar puckering, glycosidic torsion, and ε and ζ rotations (taking the 

recently re-parameterized α and γ torsions from parmbsc04). Parameterization of the 

different torsion angles (see below) was done from high-level QM calculations using the 

refined gas phase fitted parameters as initial guesses for the refinement of parameters 



in solution taken now as reference high level Self-Consistent Reaction Field (SCRF)-QM 

data. In cases where fitting of one force-field parameter requires the knowledge of 

another parameter for the optimization, an iterative procedure using parmbsc0 

parameters in the first iteration was employed.  

 

Quantum mechanical calculations. 

Model compounds, shown in Supplementary Fig. 23, were first geometrically optimized 

at the B3LYP/6-31++G(d,p) level30 from which single-point energies were calculated at 

the MP2/aug-cc-pVDZ level31. To reduce errors in the fitting, optimizations were done 

while selected backbone and sugar dihedral angles were constrained to typical values 

obtained from a survey of DNA crystal structures9. We obtained both vacuum and 

solvent profiles for all structures calculated. 3D profiles of ε and ζ were sampled with 10 

º increment in the region of interest (ε = [175 º, 275 º], ζ = [220 º, 330 º]), and with 40 º 

increment in the rest of the profile. Profiles of χ were sampled with 15 º increment and 

profiles of sugar pucker by 10 º in the range of phase angles from 0 º to 180 º, and 

considering the four nucleosides. To increase the accuracy of the profiles, we performed 

CCSD(T)/complete basis set (CBS) calculations32, 33 on key point along the Potential 

Energy Surface (for ε and ζ these points were BI, BTRANS and BII states; for χ minima of 

anti and syn regions, and maximum between them; and minima of North, East and 

South conformations for the sugar pucker). These calculations were performed first by 

optimization at the MP2/aug-cc-pVDZ level, followed by single-point calculations at the 

MP2/aug-cc-pVXZ (X = Triplex and Quadruplex) levels. CBS energies were obtained by 

extrapolating to infinite basis set, from the scheme of Halkier et al.32, and adding the 

correction term of the difference from CCSD(T) and MP2 with the 6-31+G(d) basis set. 

These high level points were introduced with increased weights in the global fitting (see 

below). All QM calculations were performed with Gaussian09 

(http://www.gaussian.com). 

 

Solvation corrections in QM calculations. 



The solvent calculations were done at the single-point level using our version of the 

polarizable continuum model (PCM) from Miertus, Scrocco and Tomasi (MST)34–40. For 

comparison, test calculations were performed using Cramer and Truhlar SMD (Solvent 

Model based on Density) model41, and the standard Integral Equation Formalism (IEF)-

PCM36 as implemented in the Gaussian09 package, obtaining very similar results (data 

not shown). Consequently, only MST values were used in this work. 

 

Molecular mechanics and Potential of Mean Force calculations. 

Molecular mechanics (MM) reference calculations of the QM-optimized structures in 

vacuo were obtained from MM single-point energy calculations using the AMBER 11 

package (http://ww.ambermd.org). MM profiles in solution were recovered from 

potential of mean force (PMF) calculations created with umbrella sampling (US)42 

procedures in explicit solvent conditions (no restraints were used on any dihedrals out 

of the reaction coordinate in these calculations). US calculations were carried out with a 

weak biasing harmonic potential of 0.018 kcal mol–1 deg–2. The resulting populations 

were integrated using the Weighted Histogram Analysis Method (WHAM, 

http://membrane.urmc.rochester.edu/content/wham).US calculations typically involve 

40–100 windows, each consisting of 2–5 ns of equilibration and sampling times in the 

order of 1–2 ns. Simulation details in PMF-US calculations were the same as those 

outlined below in the validation of MD simulations section. 

 

Force-field fitting. 

The procedure of force-field fitting was similar to parmbsc0 parameterization process4. 

In order to avoid altering other torsional parameters of the general force-field, we 

introduced new atom types depending on the parameterization. For ε, ζ,  and sugar 

pucker parameterization we assigned the atom type CE to C3’ atom. For χ 

parameterization we assigned C1 to the C8 atom of adenine and C2 to the C6 atom of 

thymine, while keeping unchanged the atom types CK for guanine and CM for cytosine. 

Charges for model systems used in the parameterization were calculated from standard 



RESP methods mimicking the original amber parameterization. We used the standard 

torsions definition, i.e. ε = C4’-C3’-O3’-P, ζ = C3’-O3’-P-O5’, χ = O4’-C1’-N9-C8 (for dA and 

dG) and χ = O4’-C1’-N1-C6 (for dC and dT). For sugar pucker parameterization we chose 

ν1=O4’-C1’-C2’-C3’, the δ backbone and the ν2=C1’-C2’-C3’-C4’ dihedrals, since they 

connect the two corrections: ε/ζ and χ43–45. 

 

As in the parmbsc0 parameterization, we used a Monte Carlo method for fitting residual 

energy, or QM-MM difference (Eq. I), to a Fourier series limited to the third order to 

maintain the AMBER force-field philosophy (Eq. II). The rotational barrier Vn and the 

phase angle α of each periodicity (n = 1, 2, 3) were fitted to obtain the minimal error in: 

 

𝐸dih,𝑥 = 𝐸𝑄𝑀 − 𝐸𝑓𝑓𝑏𝑠𝑐0(𝑥=0) (I) 

 

where x stands for a specific torsion or a combination of torsions (in the case of ε and ζ) 

and ffbsc0(x=0) refers to the standard parameters and the specific x torsion set to zero 

(that used in reference MM or US calculations noted above). The dihedral term is 

defined as: 

 

𝐸dih = ∑ ∑
𝑉𝑛

2
[1 + cos(𝑛𝜑 − 𝛼)]3

𝑛𝑡𝑜𝑟𝑠𝑖𝑜𝑛𝑠   (II) 

 

where torsions denotes a torsion, n stands for the periodicity of the torsion, Vn is the 

rotational barrier,φ is the torsion angle, and α is the phase angle. 

 

Our flexible Metropolis Monte Carlo algorithm allows the introduction of different 

weights in the fitting for each point of the profile, as well as weighting of energy slopes 

to guarantee smooth transitions, or even mixing information from different profiles 

obtained in different conditions or with different levels of QM data. Fittings were done 

taking all the data in consideration, but with increased weighting at the profile minima 

(typically five times more than others) specially at the key points computed through the 



most accurate CCSD(T)/CBS approach (typically weighted nine times more than others). 

For certain cases like the sugar puckering, detailed attention was needed to properly 

reproduce the transition region, which was achieved by increasing the importance of 

the energy maximum and by also introducing weights to the slopes in the calculations. 

As described before4, around 5–10 acceptable solutions of the Monte Carlo refinement 

were tested on short MD simulations (around 50–100 ns) for one small duplex 

d(CGATCG)2 rejecting those leading to distorted structures. The optimum parameter set 

(see Supplementary Discussion and Supplementary Table 12), without additional 

refinement was extensively tested against experimental data. Note that the way in 

which the parameters were derived does not guarantee their validity for RNA 

simulations, for which the use of others already validated RNA force-fields are 

recommended45. 

 

 

Validation of MD simulations. 

We performed MD simulations with the PMEMD code from the programs AMBER 11-12 

(http://www.ambermd.org), or with GROMACS46, depending on the given simulation. As 

shown in Supplementary Fig. 24, results are insensitive to the simulation engine or to 

the use of CPU or GPU-adapted codes47. Unless otherwise noted NPT conditions with 

default temperature and pressure setting, at 300 K and pressure of 1 atm, where used. 

Calculations employed an integration step of 2 fs in conjunction with SHAKE48 (or 

LINCS49 in the case of GROMACS), to constrain X-H bonds with the default values. The 

TIP3P50 or SPCE51 water models were used, with a minimum buffer of 10 Å solvation 

layer beyond the solute, and the negatively charged DNA was neutralized with Na+or K+ 

ions52. Test simulations with added salt (Na+Cl-) showed that DNA helical conformations 

were not much dependent on the surrounding ionic strength in the 0 to 0.5 M range 

(Supplementary Discussion and Supplementary Fig. 25). Long range electrostatic 

interactions were calculated using the particle mesh Ewald method (PME)53 with default 

grid settings and tolerance. All structures were first optimized, thermalized and pre-



equilibrated for 1 ns using our standard protocol8 and were subsequently equilibrated 

for an additional 10 ns period. Conformational snapshots were saved every 1, 10, 20, or 

even 100 ps depending on the system size, the objective of the simulation, and its 

length. Simulations mimicking crystal environments were carried out as described 

elsewhere54 for d(CGATCGATCG)2 (PDB: 1D23) using 2 µsec simulation with 12 unit cells 

(or 32 duplexes) in the simulation periodic box (Supplementary Fig. 14), for a total of 64 

µsec of duplex simulation. 

 

For annotation of conformational regions at the nucleotide level we used standard 

criteria. Sugar puckering (C3’-endo for P between 0 º and 36 º (canonical North) C4'-exo 

for P between 36 º and 72 º, O4’-endo for P between 72 º and 108 º (canonical East), 

C1’-exo for P between 108 º and 144 º, C2'-endo for P between 144 º and 180 º 

(canonical South), C3'-exo for P between 180 º and 216 º, C4'-endo for P between 216 º 

and 252 º, O4'-exo for P between 252 º and 288 º (canonical West), C1'-endo for P 

between 288 º and 324 º, and C2'-exo for P between 324 º and 360 º), glycosidic torsion 

(anti for 90º to 180 º or -60 º to -180 º, and syn for -60 º to 90 º). BI (ε trans, ζ gauche-) 

and BII (ε gauche-, ζ trans). An H-bond is annotated using standard GROMACS rules and 

was considered broken when donor-acceptor distance was greater than 3.5 Å for at 

least ten consecutive picoseconds. Reference A-DNA and B-DNA fiber conformations 

were taken from Arnott’s values55. Whenever possible, the simulations were validated 

against experimental data obtained in solution. 

 

A variety of analyses were performed to characterize the mechanical properties of DNA 

based on MD simulations. Flexibility analysis was performed using essential dynamics 

algorithms56–58, base step stiffness analysis17, 59, 60, and quasi-harmonic entropies 

computed by using either Andricioaei-Karplus61 or Schlitter62 procedures. Similarities 

between essential deformation movements were determined using standard Hess’s 

metrics63 as well as energy-corrected Hess-metrics59. The calculation of polymer 

deformation parameters (persistence length, stretch and twist torsion modules) was 



done following different approaches to reduce errors associated to the use of a single 

method to move from atomistic simulations to macroscopic descriptors: i) extrapolation 

of base step translations and rotations17, 59, ii) analysis of the correlations in the 

conformations and fluctuations of the DNA at different lengths64, and iii) an 

implementation of Olson’s hybrid approach, which requires additional Monte Carlo 

simulations using MD-derived stiffness matrices65. Dielectric constants of DNA were 

computed using Pettit’s procedure66, 67. 

 

The trajectories were analyzed using AMBERTOOLS (http://www.ambermd.org), 

GROMACS46, MDWeb68, NAFlex69, and Curves+70, as well as with in-house scripts 

(http://mmb.irbbarcelona.org/www/tools). 

 

 

NMR analysis. 

Analysis of the ability of MD trajectories to reproduce NMR observables (NOE-derived 

interatomic distances and residual dipolar couplings) was done using the last 950 ns of 

microsecond trajectories. We used the Single Value Decomposition (SVD) method 

implemented in the program PALES71 to obtain the orientation tensor that best fitted 

the calculated and observed RDC values. Violations of the NOE data were computed 

using the tool g_disre, included in the GROMACS package, using distance restraints 

derived from the deposited BioMagResBank database72, or as described below when 

NOEs were collected de novo using full relaxation matrix experiments. 

 

The novo NMR experiments. 

Samples (3 mM oligonucleotide concentration) were suspended in 500 µL of either D2O 

or H2O/D2O 9:1 in 25 mM sodium phosphate buffer, 125 mM Na+Cl-, pH 7. NMR spectra 

were acquired in Bruker spectrometers operating at 800 MHz, and processed with 

Topspin software. DQF-COSY (Double Quantum Filter – Correlation spectroscopy), 

TOCSY (Total Correlation spectroscopy), and NOESY (Nuclear Overhauser effect 

http://mmb.irbbarcelona.org/www/tools


spectroscopy) experiments were recorded in D2O and H2O/D2O 9:1. The NOESY spectra 

were acquired with mixing times of 75, 100, 200, and 300 ms, and the TOCSY spectra 

were recorded with standard MLEV 17 spin lock sequence, and 80 ms mixing time. 

NOESY spectra were recorded at 5 and 25 ºC.  

 

The spectral analysis program Sparky (https://www.cgl.ucsf.edu/home/sparky) was used 

for semi-automatic assignment of the NOESY cross-peaks and quantitative evaluation of 

the NOE intensities. Quantitative distance constraints were obtained from NOE 

intensities by using a complete relaxation matrix analysis with the program 

MARDIGRAS73. Error bounds in the inter-protonic distances were estimated by carrying 

out several MARDIGRAS calculations with different initial models, mixing times and 

correlation times (2.0, 4.0 and 6.0 ns). Final constraints were obtained by averaging the 

upper and lower distance bounds in all the MARDIGRAS runs. 

 

Availability of force-field parameters and porting to different MD codes. 

The refined parameters are incorporated in amber-format libraries accessible from 

http://mmb.irbbarcelona.org/ParmBSC1/. Porting to GROMACS format was done from 

amber topology files using external utilities (amb2gmx74 and acpype75 tools accessible 

at https://simtk.org/home/mmtools and https://github.com/choderalab/mmtools). 

Porting to NAMD (http://www.ks.uiuc.edu/Research/namd) is not required since direct 

reading of AMBER topology files is possible. 

 

Data Management. 

Trajectories and the analysis performed were placed in a novel dual database 

framework for nucleic acid simulations using Apache’s Cassandra to manage trajectory 

data, and MongoDB to manage trajectory metadata and analysis. Results are available 

at http://mmb.irbbarcelona.org/ParmBSC1/. Details on the Barcelona’s nucleic acids 

database will be presented elsewhere. 

 

http://mmb.irbbarcelona.org/ParmBSC1/
https://simtk.org/home/mmtools
https://github.com/choderalab/mmtools
http://mmb.irbbarcelona.org/ParmBSC1/
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