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Handling missing observations

The best solution to handle missing data is to have none.
– Sir Ronald Aylmer Fisher

▶ In practice we can only try to minimise the missingness
▶ An increase in missingness will lead to a decrease in power
▶ Analysis can handle missing data (e.g. average number of animals)

▶ No need for imputation

▶ Analysis cannot handle missing data (e.g. population totals)
▶ Imputation is required
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Number of animals per site
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Population totals
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Some imputation methods

▶ Popular in ecology for analysis of population trends
▶ Underhill index, 118 citations (Underhill & Prys-Jones, 1994)
▶ TRIM, 310 citations (Pannekoek & Van Strien, 2005)
▶ birdSTATs, Access shell around TRIM (Meij, 2013)
▶ All are single imputation methods

▶ Popular in medical and social science
▶ Multiple imputation, 9625 citations (Rubin, 1987)
▶ Only emerging in field of ecology
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Single
imputation
versus multiple
imputation

w
w
w
.IN

BO
.b
e



The similarities

▶ Replace missing values with imputed values
▶ Imputed values are based on a model

▶ The model can be very basic
▶ A constant
▶ The overal mean

▶ The model can be elaborate
▶ Use available covariates (e.g. year, season, site, climate, …)
▶ Use correlation structures (e.g. temporal, spatial, …)
▶ Use a relevant distribution (e.g. Poisson, negative binomial, …)
▶ Use zero-inflation

▶ Final analysis on the augmented dataset

7 / 20

w
w
w
.IN

BO
.b
e



The differences

▶ Single imputation replaces missing values only once
▶ It uses the best available single value: the predicted value of the model
▶ Single imputation ignores model uncertainty and natural variability

▶ Multiple imputation replaces missing values several times
▶ It uses each time a different random value
▶ Based on

▶ The distribution of predicted values of the model
▶ The noise of the model

▶ Multiple imputation takes both model uncertainty and natural variability
into account
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Example dataset
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Example of one imputation set
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How to handle the randomness in multiple imputation?

▶ Since the imputed values are random, every imputation set will have
different values

▶ Hence the results of the analysis after imputation will be different
among imputation sets

▶ Solution:
1 Create L imputation sets
2 Run the analysis on each imputation set
3 Average the parameter of interest B and its standard error σB among

imputation sets using the formulas below

B =
1
L

L∑
l=1

B̂i

σ2
B =

1
L

L∑
l=1

σ̂2
Bi
+

L+ 1
L

L∑
l=1

B̂i − B
L− 1
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Example of 20 imputation sets
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Analysis of 20 imputation sets
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Comparison of results

●

6

8

10

12

4.5 5.0 5.5 6.0
Slope

In
te

rc
ep

t

Type

● Complete

Multiple
imputation

Single
imputation

Truth

14 / 20

w
w
w
.IN

BO
.b
e



Advice on
imputation
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General recommendations

▶ Forget single imputation
▶ Use multiple imputation

▶ Use a reasonable complex model
▶ Too simple: model will smooth too much
▶ Too complex: unstable or unreliable model
▶ Use the relevant distribution!

▶ Number of imputations (Graham et al., 2007)
▶ Aim for L = 100 when computational effort is reasonable
▶ L = 3 can be su cient (<10% missing and <5% power falloff)

▶ Proportion of missingness
▶ Multiple imputation is robust, even with 50% to 75% missing data

▶ Type of missingness
▶ Missing not at random (MNAR) can introduce biased results
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Effect of imputation model and type of missingness (Onkelinx
et al., in press)
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Available R packages

▶ R (R Core Team, 2013) is free and open source software for statistical
computing

▶ Some packages for multiple imputation

Package Counts
Mixed
model GUI

Missing
covariate Reference

multimput X X Onkelinx et al. (2016)
Amelia X X Honaker et al. (2011)
mice X X van Buuren &

Groothuis-Oudshoorn
(2011)
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