

Flanders State of the Art

Handling missing observations with multiple imputation

BirdNumbers 2016, Halle, Germany

Thierry Onkelinx, Koen Devos & Paul Quataert Research Institute for Nature and Forest, Brussels, Belgium

Introduction

Handling missing observations

The best solution to handle missing data is to have none. – Sir Ronald Aylmer Fisher

- > In practice we can only try to minimise the missingness
- > An increase in missingness will lead to a decrease in power
- > Analysis can handle missing data (e.g. average number of animals)
 - No need for imputation
- Analysis cannot handle missing data (e.g. population totals)
 - Imputation is required

Number of animals per site

Population totals

Some imputation methods

> Popular in ecology for analysis of population trends

- Underhill index, 118 citations (Underhill & Prys-Jones, 1994)
- TRIM, 310 citations (Pannekoek & Van Strien, 2005)
- birdSTATs, Access shell around TRIM (Meij, 2013)
- All are single imputation methods
- > Popular in medical and social science
 - Multiple imputation, 9625 citations (Rubin, 1987)
 - Only emerging in field of ecology

Single imputation versus multiple imputation

The similarities

- Replace missing values with imputed values
- Imputed values are based on a model
 - The model can be very basic
 - A constant
 - The overal mean
 - The model can be elaborate
 - Use available covariates (e.g. year, season, site, climate, ...)
 - Use correlation structures (e.g. temporal, spatial, ...)
 - Use a relevant distribution (e.g. Poisson, negative binomial, ...)
 - Use zero-inflation
- Final analysis on the augmented dataset

The differences

Single imputation replaces missing values only once

- > It uses the best available single value: the predicted value of the model
- **Single imputation ignores** model uncertainty **and** natural variability
- Multiple imputation replaces missing values several times
 - It uses each time a different random value
 - Based on
 - The distribution of predicted values of the model
 - The noise of the model
 - Multiple imputation takes both model uncertainty and natural variability into account

Example dataset

Example of one imputation set

How to handle the randomness in multiple imputation?

- Since the imputed values are random, every imputation set will have different values
- Hence the results of the analysis after imputation will be different among imputation sets
- Solution:
 - Create L imputation sets
 - 2 Run the analysis on each imputation set
 - S Average the parameter of interest *B* and its standard error σ_B among imputation sets using the formulas below

$$\overline{B} = \frac{1}{L} \sum_{l=1}^{L} \hat{B}_{l}$$
$$\overline{\sigma}_{B}^{2} = \frac{1}{L} \sum_{l=1}^{L} \hat{\sigma}_{B_{l}}^{2} + \frac{L+1}{L} \sum_{l=1}^{L} \frac{\hat{B}_{l} - \overline{B}}{L-1}$$

Example of 20 imputation sets

Analysis of 20 imputation sets

Comparison of results

Advice on imputation

General recommendations

- Forget single imputation
 - Use multiple imputation
- Use a reasonable complex model
 - Too simple: model will smooth too much
 - Too complex: unstable or unreliable model
 - Use the relevant distribution!
- Number of imputations (Graham et al., 2007)
 - > Aim for L = 100 when computational effort is reasonable
 - > L = 3 can be sufficient (<10% missing and <5% power falloff)
- Proportion of missingness
 - Multiple imputation is robust, even with 50% to 75% missing data
- Type of missingness
 - Missing not at random (MNAR) can introduce biased results

Effect of imputation model and type of missingness (Onkelinx *et al.*, in press)

Available R packages

 R (R Core Team, 2013) is free and open source software for statistical computing

Some packages for multiple imputation

Package	Counts	Mixed model	GUI	Missing covariate	Reference
multimput Amelia mice	X X	Х	Х	X X	Onkelinx <i>et al.</i> (2016) Honaker <i>et al.</i> (2011) van Buuren & Groothuis-Oudshoorn (2011)

References I

Graham J.W., Olchowski A.E., & Gilreath T.D. (2007). How many imputations are really needed? Some practical clarifications of multiple imputation theory. Prevention Science 8(3): 206–213 doi: 10.1007/s11121-007-0070-9 Honaker J., King G., & Blackwell M. (2011). Amelia II: A program for missing data. Journal of Statistical Software 45(7): 1–47 doi: 10.18637/jss.v045.i07 Meij T. van der (2013). birdSTATs. Species Trends Analysis Tool (STAT) for European bird data

Onkelinx T., Devos K., & Quataert P. (2016). Multimput: Using multiple imputation to address missing data URL:

https://github.com/inbo/multimput doi: 10.5281/zenodo.48423 Onkelinx T., Devos K., & Quataert P. (in press). Working with population totals in the presence of missing data. Comparing imputation methods in

terms of bias and precision. Journal of Ornithology Pannekoek J., & Van Strien A. (2005). TRIM 3 Manual (TRends & Indices for Monitoring data)

R Core Team (2013). R: A language and environment for statistical computing. Version 3.0.1 URL: http://www.r-project.org/ Rubin D.B. (1987). Multiple imputation for nonresponse in surveys. John Wiley; Sons, Ltd.: New York, NY.

Underhill L.G., & Prys-Jones R.P. (1994). Index numbers for waterbird populations. I. Review and methodology. Journal of Applied Ecology 31(3): 463–480 doi: 10.2307/2404443

van Buuren S., & Groothuis-Oudshoorn K. (2011). mice: Multivariate imputation by chained equations in r. Journal of Statistical Software 45(3): 1–67 doi: 10.18637/jss.v045.i03