V1 Neurons Track the Rate-of-Change of Behavioral Variables
Creators
Description
Population-level neuronal dynamics across the brain are shaped by behavioral state variables, such as running speed or pupil area. Given this real-time integration of state variables within sensory networks, we hypothesized that neurons also track their rate-of-change, providing additional valuable information about fluctuations in behavioral state. We demonstrate that both state variables and their rate of change (first temporal derivatives) can be decoded from population-level activity in mouse primary visual cortex (V1) during both spontaneous behavior and sensory stimulation. This parallel encoding regime relies on partially overlapping neural populations, with some neurons encoding behavioral state, its rate-of-change, or both. Our findings suggest that neural activity within a primary sensory region not only represents an animal’s current behavioral state but also tracks its immediate fluctuations.
Files
ISP2025-G-Stringers-Codes.zip
Additional details
Related works
- Is referenced by
- Presentation: https://youtu.be/yT5KBakPnac?feature=shared (URL)
Funding
- Neuromatch
- Impact Scholars Program
References
- Avitan, L., Pujic, Z., Mölter, J., Zhu, S., Sun, B., & Goodhill, G. J. (2021). Spontaneous and evoked activity patterns diverge over development. eLife, 10, e61942. https://doi.org/10.7554/eLife.61942
- Born, R. T., & Bradley, D. C. (2005). Structure and function of visual area MT. Annual review of neuroscience, 28, 157–189.
- Christensen, A.J., Pillow, J.W. Reduced neural activity but improved coding in rodent higher-order visual cortex during locomotion. Nat Commun 13, 1676 (2022).
- Cong, S., Wang, H., Zhou, Y., Wang, Z., Yao, X., & Yang, C. (2024). Comprehensive review of Transformer‐based models in neuroscience, neurology, and psychiatry. Brain‐X, 2(2), e57.
- Erisken, S., Vaiceliunaite, A., Jurjut, O., Fiorini, M., Katzner, S., & Busse, L. (2014). Effects of locomotion extend throughout the mouse early visual system. Current Biology: CB, 24(24), 2899‐2907. https://doi.org/10.1016/j.cub.2014.10.045
- Franke, K., Willeke, K.F., Ponder, K. et al. State-dependent pupil dilation rapidly shifts visual feature selectivity. Nature 610, 128–134 (2022).
- Ghodrati, M., Zavitz, E., Rosa, M.G.P. et al. Contrast and luminance adaptation alter neuronal coding and perception of stimulus orientation. Nat Commun 10, 941 (2019).
- Harris, K. D. (2021). Nonsense correlations in neuroscience (p. 2020.11.29.402719). bioRxiv. https://doi.org/10.1101/2020.11.29.402719
- Miaomiao Jin, Jeffrey M. Beck and Lindsey L. Glickfeld. Neuronal Adaptation Reveals a Suboptimal Decoding of Orientation Tuned Populations in the Mouse Visual Cortex Journal of Neuroscience 15 May 2019, 39 (20) 3867-3881; https://doi.org/10.1523/JNEUROSCI.3172-18.2019
- Latimer, K. W., Barbera, D., Sokoletsky, M., Awwad, B., Katz, Y., Nelken, I., Lampl, I., Fairhall, A. L., & Priebe, N. J. (2019). Multiple Timescales Account for Adaptive Responses across Sensory Cortices. The Journal of Neuroscience: The Official Journal of the Society for Neuroscience, 39(50), 10019‐10033. https://doi.org/10.1523/JNEUROSCI.1642-19.2019
- Leinweber, M., Ward, D. R., Sobczak, J. M., Attinger, A., & Keller, G. B. (2017). A Sensorimotor Circuit in Mouse Cortex for Visual Flow Predictions. Neuron, 95(6), 1420–1432.e5
- Mineault PJ, Tring E, Trachtenberg JT, Ringach DL. Enhanced Spatial Resolution During Locomotion and Heightened Attention in Mouse Primary Visual Cortex. J Neurosci. 2016 Jun 15;36(24):6382-92. doi: 10.1523/JNEUROSCI.0430-16.2016.
- Musall, S., Kaufman, M.T., Juavinett, A.L. et al. Single-trial neural dynamics are dominated by richly varied movements. Nat Neurosci 22, 1677–1686 (2019).
- Niell, C. M., & Stryker, M. P. (2008). Highly selective receptive fields in mouse visual cortex. The Journal of neuroscience : the official journal of the Society for Neuroscience, 28(30), 7520–7536.
- Okun, M., Steinmetz, N. A., Lak, A., Dervinis, M., & Harris, K. D. (2019). Distinct structure of cortical population activity on fast and infraslow timescales. Cerebral Cortex, 29(5), 2196–2210. https://doi.org/10.1093/cercor/bhz023
- Stringer, C., Michaelos, M., Tsyboulski, D., Lindo, S. E., & Pachitariu, M. (2021). High-precision coding in visual cortex. Cell, 184(10), 2767-2778.e15. https://doi.org/10.1016/j.cell.2021.03.042
- Stringer, C., Pachitariu, M., Steinmetz, N., Reddy, C. B., Carandini, M., & Harris, K. D. (2019). Spontaneous behaviors drive multidimensional, brainwide activity. Science (New York, N.Y.), 364(6437), 255. https://doi.org/10.1126/science.aav7893
- Rigotti, M., Barak, O., Warden, M. et al. The importance of mixed selectivity in complex cognitive tasks.Nature 497, 585–590 (2013).
- Traschütz, A., Kreiter, A. K., & Wegener, D. (2015). Transient activity in monkey area MT represents speed changes and is correlated with human behavioral performance. Journal of neurophysiology, 113(3), 890–903
- Tye, K. M., Miller, E. K., Taschbach, F. H., Benna, M. K., Rigotti, M., & Fusi, S. (2024). Mixed selectivity: Cellular computations for complexity. Neuron, 112(14), 2289–2303
- Viskaitis, P., Tesmer, A. L., Liu, Z., Karnani, M. M., Arnold, M., Donegan, D., Bracey, E., Grujic, N., Patriarchi, T., Peleg-Raibstein, D., & Burdakov, D. (2024). Orexin neurons track temporal features of blood glucose in behaving mice. Nature Neuroscience, 27(7), 1299‐1308. https://doi.org/10.1038/s41593-024-01648-w
- Wang, C., Wang, X., Jing, X., Yokoi, H., Huang, W., Zhu, M., ... & Li, G. (2022). Towards high-accuracy classifying attention-deficit/hyperactivity disorders using CNN-LSTM model. Journal of Neural Engineering, 19(4), 046015