
Puppet librarian and Git

August 2016

Author:
Dmytro Petruk

Supervisor(s):
Nacho Barrientos

CERN openlab Summer Student Report 2016

CERN openlab Summer Student Report 2016

Project Specification
Puppet is used by CERN extensively in order to manage server configuration of
over 23k servers in its data centers. The project is to evaluate Python libraries
which interface to the Git source code management system and enhance the
CERN Jens Puppet library component to improve performance and build on
community contributions for better future compatibility.

CERN openlab Summer Student Report 2016

Abstract

To have the most up to date version of the configuration files for the servers, Jens
interfaces directly to the Git binaries to synchronize GitLab repositories and Puppet
environments.

The initial implementation of the Git module, which is responsible for interacting
with Git repositories, was built on just creating a new Git process for each
operation. The aim of this project was to evaluate all the libraries in the wild for
interacting with Git, go for the best and rewrite git.py using it but also to improve
error processing and increase test coverage for better future development.

CERN openlab Summer Student Report 2016

Table of Contents
1 Introduction .. 5

2 Previous implementation.. 8

3 Development .. 9

4 Deployment .. 9

5 Summary.. 10

6 Extra work .. 11

7 Acknowledgements .. 13

8 Bibliography ... 13

CERN openlab Summer Student Report 2016

5 | P a g e

1 Introduction
The main tools, technologies and methodologies used in this project were Puppet,
Jens, Python and unit testing. Here is a brief description of each one:

• Puppet1
It is a tool designed to manage the configuration of Unix-like and Microsoft
Windows systems declaratively. The user describes system resources and
their state, either using Puppet's declarative language or a Ruby DSL
(domain-specific language). This information is stored in files called "Puppet
manifests". Puppet discovers the system information via a utility called
Facter, and compiles the Puppet manifests into a system-specific catalog
containing resources and resource dependency, which are applied against
the target systems. Any actions taken by Puppet are then reported.

• Jens2
Jens is the Puppet modules/hostgroups librarian used by the CERN IT
department.

It is basically a Python toolkit that generates Puppet environments
dynamically based on some input metadata and maintains them after. So,
it's Jens' responsibility to distribute the new version of the module when
changes have been pushed to the repository. Jens is useful in sites where
there are several administrators taking care of siloed services (mapped to
what we call top-level "hostgroups") with very service-specific configuration
but sharing configuration logic via modudules.

Jens has been used as the production Puppet librarian at CERN IT since
August 2013.

This tool covers the need of several roles that might show up in a typical
shared Puppet infrastructure:

• Developers writing manifests who want an environment to test new code:
Jens provides dynamic environments that automatically update with
overrides for the modules being developed that point to development
branches.

• Administrators who don't care: Jens supports simple dynamic environments
that default to the production branch of all modules and that only update
automatically when there's new production code.

• Administrators looking for extra stability who are reluctant to do rolling
updates: Jens implements snapshot environments that are completely
static and don't update unless redefined, as all modules are pinned by
commit identifier.

https://en.wikipedia.org/wiki/Puppet_(software)
https://github.com/cernops/jens

CERN openlab Summer Student Report 2016

6 | P a g e

In Jens' realm, Puppet environments are basically a collection of modules,
hostgroups, hierarchies of Hiera data and a site.pp. These environments
are defined in environment definition files which are stored in a separate
repository that's known to the program. Also, Jens makes use of a second
metadata repository to know what modules and hostgroups are part of the
library and are therefore available to generate environments.

With all this information, Jens produces a set of environments that can be
used by Puppet masters to compile Puppet catalogs. Two types of
environments are supported: dynamic and static. The former update
automatically as new commits arrive to the concerned repositories whereas
the latter remain static pointing to the specified commits to implement the
concept of "configuration snapshot”.

Jens is composed by several CLIs: jens-config, jens-gc, jens-reset, jens-
stats and jens-update to perform different tasks. Manual pages are shipped
for all of them.

Basically, the input data that's necessary for an execution of jens-update
(the core tool provided by this toolset) is two Git repositories:

• The repository metadata repository (or the library)
• The environment definitions repository (or the environments)

Jens uses a single YAML file stored in a Git repository to know what are the
modules and hostgroups available to generate environments. Apart from
that, it's also used to define the paths to two special Git repositories
containing what's called around here the common Hiera data and the site
manifest.

This is all set up via two configuration keys: repositorymetadata (which is
the directory containing a clone of the repository) and repositorymetadatadir
(the file itself).

The following is how a skeleton of the file looks like:

repositories:
 common:
 hieradata: http://git.example.org/pub/it-puppet-common-hieradata
 site: http://git.example.org/pub/it-puppet-site
 hostgroups:
 ...
 aimon: http://git.example.org/pub/it-puppet-hostgroup-aimon
 cloud: http://git.example.org/pub/it-puppet-hostgroup-cloud
 ...
 modules:
 ...
 apache: http://git.example.org/pub/it-puppet-module-apache

CERN openlab Summer Student Report 2016

7 | P a g e

 bcache: http://git.example.org/pub/it-puppet-module-bcache
 ...

The idea is that when a new top-level hostgroup is added or a new module
is needed this file gets populated with the corresponding clone URLs of the
repositories. Jens will add new elements to all the environments that are
entitled to get them during the next run of jens-update.

What’s a Jens run?
It's an execution of jens-update, which is normally trigged by a cronjob. It
will determine what's new, what branches have to be updated and what
environments have to be created/modified/deleted. The following is an
example of what's typically found in the log files after a run where there was
not much to do (a hostgroup got new code in the QA branch and a new
environment was created):

INFO Obtaining lock 'aijens' (attempt: 1)...
INFO Refreshing metadata...
INFO Refreshing repositories...
INFO Fetching repositories inventory...
INFO Refreshing bare repositories (modules)
INFO New repositories: []
INFO Deleted repositories: []
INFO Cloning and expanding NEW bare repositories...
INFO Expanding EXISTING bare repositories...
INFO Purging REMOVED bare repositories...
INFO Refreshing bare repositories (hostgroups)
INFO New repositories: []
INFO Deleted repositories: []
INFO Cloning and expanding NEW bare repositories...
INFO Expanding EXISTING bare repositories...
INFO Updating ref '/mnt/puppet/aijens-
3afegt67.cern.ch/clone/hostgroups/vocms/qa'
INFO Purging REMOVED bare repositories...
INFO Refreshing bare repositories (common)
INFO New repositories: []
INFO Deleted repositories: []
INFO Cloning and expanding NEW bare repositories...
INFO Expanding EXISTING bare repositories...
INFO Purging REMOVED bare repositories...
INFO Persisting repositories inventory...
INFO Executed 'refresh_repositories' in 6287.78 ms
INFO Refreshing environments...
INFO New environments: ['am1286']
INFO Existing and changed environments: []
INFO Deleted environments: []
INFO Creating new environments...
INFO Creating new environment 'am1286'
INFO Processing modules...
INFO Processing hostgroups...
INFO hostgroups 'aimon' overridden to use treeish 'am1286'
INFO Processing site...
INFO Processing common Hiera data...
INFO Purging deleted environments...
INFO Recreating changed environments...
INFO Refreshing not changed environments...
INFO Executed 'refresh_environments' in 1395.03 ms
INFO Releasing lock 'aijens'...

CERN openlab Summer Student Report 2016

8 | P a g e

INFO Done

One of the modules of the tool is named "git.py" and it is responsible for
performing any kind of interaction with Git repositories. The available
operations are: "gc", "hash-object", "clone", "fetch", "reset" and "show-refs".
Versions up to 0.14-1 were formatting commands, setting environmental
variables if needed, creating new *nix subprocesses, waiting for output from
the process and analyzing the output and the return code.

• Python3
Python is a widely used high-level, general-purpose, interpreted, dynamic
programming language. Its design philosophy emphasizes code readability,
and its syntax allows programmers to express concepts in fewer lines of
code than possible in languages such as C++ or Java. The language
provides constructs intended to enable clear programs on both a small and
large scale.

• Unit testing4
It is a method by which individual units of source code, sets of one or more
computer program modules together with associated control data, usage
procedures, and operating procedures, are tested to determine whether
they are fit for use. Intuitively, one can view a unit as the smallest testable
part of an application. In procedural programming, a unit could be an entire
module, but it is more commonly an individual function or procedure. In
object-oriented programming, a unit is often an entire interface, such as a
class, but could be an individual method. Unit tests are short code
fragments created by programmers or occasionally by white box testers
during the development process. It forms the basis for component testing.
Nosetests and Python's unittest module were used in this project.

2 Previous implementation
To be able to perform basic operations on Git repositories Jens used to start
subprocesses which communicated with Git binaries on the system to
fetch/clone/reset/etc repositories. Working on such low level of abstraction implied
rudimentary error handling, low level calls and high cost of further modifications
and extensions due to redundant code.

Thus, the goal of the project was to stop using this custom made solution and to
use a popular and maintained solution (see the original issue for more details:
issue#8)

https://en.wikipedia.org/wiki/Python_(programming_language)
https://en.wikipedia.org/wiki/Unit_testing
https://docs.python.org/2/library/unittest.html
https://github.com/cernops/jens/issues/8

CERN openlab Summer Student Report 2016

9 | P a g e

3 Development
The first step of the project was to evaluate popular open source libraries for
Python to work with Git repositories.

After comparing capabilities of a number of existing libraries (pygit2, GitPython,
python-git, dulwich, StGit, Gittle) the choice has been made towards GitPython's
direction, since it is actively maintained, highly flexible, it allows to use a large
number of wrapped functions that can be customized and it possesses an
extensive documentation.

The next step was to re-implement the same functionality using GitPython. For
achieving this step, existing unit tests made a huge impact on the development
speed since it was easy to see whether new partial implementations seemed to
behave in a correct way just by running the test suite.

In the meanwhile, a few bugs were fixed and code was refactored to achieve higher
readability and maintainability (e.g. reducing number of arguments for a lot of
methods by reimplementing the settings class as a singleton object; see the merge
request: MR#15)

A new feature to abort Git operations after a certain time limit has also been
introduced.

Now if some operations exceed a specified time, the connection is cut instead of
waiting forever until the server replies (see the merge request: MR#14)

Moreover, some tests have been added to validate code more extensively (see
the MR: MR#9)

4 Deployment
The next step was to deploy a new version of Jens and test it in a real environment.

An RPM package has been built and deployed through CERN's central package
repository to the Development instance, where it was consuming data from
production, though results were not used anywhere further, besides the log files
that were monitored to try to spot issues. During this phase a few bugs and
problems were discovered and fixed in the meanwhile, some examples:

1. Absence of the needed version of the library installed on the target OS
for deployment (CERN CentOS7). At first, the newest version of the
library has been used for development (2.0.8), but it turned out that only
version 1.0.1 was available. So, it was necessary to rewrite some of the
already written code.

https://github.com/cernops/jens/pull/15
https://github.com/cernops/jens/pull/14
https://github.com/cernops/jens/pull/9

CERN openlab Summer Student Report 2016

10 | P a g e

2. Leakage of file descriptors. The available version of the library doesn’t
close files properly, leading to an exhaustion of file descriptors available
for the process. The problem was fixed after following a suggestion of
the library’s author found on GitHub.

3. Failure to perform hard resets on repositories. It turned out that there
was a bug in the library and an another way of doing this operation
needed to be used. This bug wasn’t spotted by the tests, but by
analyzing log files. So, tests to validate this functionality were added.

Then, after testing on the Development instance, the latest Jens was deployed on
QA instances, where it was running in parallel with production nodes. After this
deployment we decided to freeze and not to release more versions for a week.
And given that no more bugs were encountered during this phase, it was safe to
deploy to the production servers.

Timeline of the development and deployment process

5 Summary
Thus, after going through the entire process of the software development, a
new release of Jens has been rolled out and it is running in production today.
As a result, all project goals have been achieved and version 0.17-1 of Jens
has improved error handling and increased test coverage.

During the implementation of this project some lessons have been learnt:

• Tests save time in the future, due to the smaller probability of having
code regressions.

• It’s not always possible to have the desired environment (e.g. libraries
on the servers).

https://github.com/gitpython-developers/GitPython/issues/60#issuecomment-148637260

CERN openlab Summer Student Report 2016

11 | P a g e

6 Extra work

Due to the fact that the main project was finished way before the deadline, I
received another task to work on. It was to write an extension to the CLI tool named
ai-foreman, which is a wrapper for the Foreman API used by CERN’s IT
department. My task was to design and implement functionality to create and
remove hostgroups.

Foreman groups hosts using hostgroups which before could only be created and
deleted using the UI as there was no CLI interacting to the API. This is an easy
task when there's only a single hostgroup to create or remove, however it gets
more cumbersome when an entire new hostgroup tree has to be added or
removed. To alleviate this situation, the task was to write a new subcommands for
ai-foreman to add and remove hostgroups, recursively if needed.

1. Addhostgroup

The aim of this command was to be able to add the specified hostgroup. In
the situation when the complete tree of the parent hostgroups does not
exist, there has to be the possibility to enforce the creation of all necessary
hostgroups recursively.

Options:

• [HOSTGROUP] ...

A list of hostgroups to create. Example: "foo/bar".

• -p, --parents PARENTS

Create parent hostgroups if they don't exist yet.

Implementation was written in a form of a simple recursive function, which
goes up through the hostgroup tree until finding an existing hostgroup from
the hierarchy and then creating hostgroups one-by-one.

If the parents option is not enabled and the parent tree does not exist an
exception is raised.

Examples :

• $ ai-foreman addhostgroup playground/ibarrien/bar/baz

Could not create hostgroup ‘baz’ in Foreman because some parts of
the hostgroup hierarchy (playground/ibarrien/bar) do not exist (use
–p to create hostgroups recursively)

CERN openlab Summer Student Report 2016

12 | P a g e

• $ ai-foreman addhostgroup playground/ibarrien/bar/baz –p

Creating hostgroup ‘playground/ibarrien/bar’...

Hostgroup ‘playground/ibarrien/bar’ created in Foreman

Creating hostgroup ‘playground/ibarrien/bar/baz’...

Hostgroup ‘playground/ibarrien/bar/baz’ created in Foreman

2. Delhostgroup

The delhostgroup command was needed in order to remove a specific
hostgroup. If the hostgroup possesses children hostgroups – there should
be possibility to enforce removal of them. If the hostgroup (or its’ children)
has any hosts – no hostgroups should be deleted.

Options:

• [HOSTGROUP] ...

A list of hostgroups to remove. This subcommand will never delete
hostgroups if it finds any host when traversing the hostgroup tree,
regardless of the presence of -r flag. Example: "foo/bar".

• -r, -R, --recursive RECURSIVE

Remove the hostgroup and its children recursively.

At first, a list of all potential hostgroups for removal is prepared, in DFS
order. This step is needed to be done separately, to be able to verify the
absence of hosts for every potential hostgroup to be removed, before
actually removing them. If none of those hostgroups has hosts – hostgroups
are deleted from the last visited.

Examples :

• $ ai-foreman delhostgroup playground/ibarrien/bar

Hostgroup playground/ibarrien/bar can not be deleted since it
contains children hostgroups. Use --recursive option

• $ ai-foreman delhostgroup playground/ibarrien/bar –r

Removing hostgroup ‘playground/ibarrien/bar/baz’...

Hostgroup ‘playground/ibarrien/bar/baz’ removed

Removing hostgroup ‘playground/ibarrien/bar’...

Hostgroup ‘playground/ibarrien/bar’ removed

CERN openlab Summer Student Report 2016

13 | P a g e

During the development of these functionalities, a number of both unit and
functional tests were added

7 Acknowledgements
Firstly, I would like to express my sincere gratitude to my supervisor Nacho for his
continuous support duing my internship project, for his patience and motivation.
His guidance helped me all the time.

Also, I would like to thank Akos, who helped me to overcome problems during my
second project.

8 Bibliography
1. Puppet wikipedia
2. Jens GitHub
3. Python wikipedia
4. Unit testing wikipedia

https://en.wikipedia.org/wiki/Puppet_%28software%29
https://github.com/cernops/jens
https://en.wikipedia.org/wiki/Python_%28programming_language%29
https://en.wikipedia.org/wiki/Unit_testing

	Puppet librarian and Git
	August 2016
	Author:
	Dmytro Petruk
	Supervisor(s):
	Nacho Barrientos
	CERN openlab Summer Student Report 2016

	Project Specification
	Table of Contents
	1 Introduction
	2 Previous implementation
	3 Development
	4 Deployment
	5 Summary
	6 Extra work
	7 Acknowledgements
	8 Bibliography

