
‹#›DM	Boot	Camp	•	Tucson,	AZ	•	October	6th	2015
Name	of	Meeting	•	Location	•	Date		-		Change	in	Slide	Master

LSST	Data	Management	Software	Development 

Tim	Jenness  
DM	Deputy	System	Architect	
 
September	12th	2016

‹#›DM	Boot	Camp	•	Tucson,	AZ	•	October	6th	2015NCSA	Seminar	•	September	12th	2016

What	is	the	LSST?

− 8.4m	(6.7m	effective	aperture)	optical	telescope	with	a	3.5-
degree	diameter	field-of-view,	a	3.2	billion	pixel	camera	and	6	
broad-band,	optical	filters	

− A	data	facility	(at	NCSA)	that	will	process,	archive	and	distribute	
survey	images,	associated	transient	alerts,	and	calibrated	
catalogs,	as	well	as	calibration	and	other	metadata.		

We	will	deploy	this	system	for	a	10	year,	time	domain	survey	
covering	>	18,000	square	degrees	of	the	southern	sky.

NCSA Seminar • September 12th 2016 3

Products to be Delivered by the LSST Project

− A stream of ~10 million time-domain events per night, detected
and transmitted to event distribution networks within 60
seconds of observation.

− A catalog of orbits for ~6 million bodies in the Solar System.

− A catalog of ~37 billion objects (20B galaxies, 17B stars), ~7
trillion single-epoch detections (“sources”), and ~30 trillion
forced sources, produced annually, accessible through online
databases.

− Deep co-added images.

− Services and computing resources at the Data Access Centers to
enable user-specified custom processing and analysis.

− Software and APIs enabling development of analysis codes.

A
dded Value 
(Level 3)

N
ightly 

(Level 1)

A
nnual
D

Rs 
(Level 2)

‹#›DM	Boot	Camp	•	Tucson,	AZ	•	October	6th	2015NCSA	Seminar	•	September	12th	2016

LSST	Data	Management

− Data	Management	(DM)	team	tasked	with	delivering	the	data	management	
system:	
− Transport	of	data	from	summit	to	archive	facility.	
− Data	archiving	system.	
− Alert	production	system.	
− Annual	data	releases.	
− Data	Access	Centers.	
− Data	processing	and	analysis	software.	

− Distributed	team	of	~	80	developers	with	6	main	sites:	
− Tucson,	AZ	
− NCSA	
− University	of	Washington	
− Princeton	University	
− SLAC	
− IPAC

‹#›DM	Boot	Camp	•	Tucson,	AZ	•	October	6th	2015NCSA	Seminar	•	September	12th	2016

Work	Packages

− Give	sites	self-contained	work	packages:	database,	process	
middleware,	data	access,	science	pipelines,	developer	support	
tools.	

− Science	pipelines	split	across	two	main	sites	but	with	distinct	
WBS	deliverables.	
− They	are	also	highly	dependent	on	process	middleware	and	

data	access	abstractions.	
− Agile	development	practices	within	6	month	cycles	but	using	

Earned	Value	Management	to	track	overall	progress	(see	Kantor	
et	al	2016,	Proc.	SPIE).	

− All	teams	use	the	same	development	methodology	and	share	
coding	standards.	
− Support	Python	3	(2.7	optional),	and	C++11.

http://dx.doi.org/10.1117/12.2233380

‹#›DM	Boot	Camp	•	Tucson,	AZ	•	October	6th	2015NCSA	Seminar	•	September	12th	2016

Software	Development

− Work	for	a	6	month	cycle	is	categorized	into	epics	associated	with	
a	defined	deliverable.	

− Epics	are	associated	with	particular	teams	and	a	WBS.	
− Epics	are	made	up	of	stories	consisting	of	small	self-contained	

tasks	that	can	be	scheduled	in	a	sprint.	
− Sprints	last	3	to	4	weeks.	
− Stories	and	epics	are	tracked	using	JIRA.	
− Each	epic	in	JIRA	describes	the	overview	of	the	work	and	what	

the	deliverables	are.	
− Each	story	in	JIRA	contains	a	description	of	the	task	and	

deliverable.	
− More	details	in	DMTN-020:	https://dmtn-020.lsst.io

https://dmtn-020.lsst.io

‹#›DM	Boot	Camp	•	Tucson,	AZ	•	October	6th	2015NCSA	Seminar	•	September	12th	2016

Life	of	a	Story

IN	PROGRESS

IN	REVIEW

REVIEWED

DONE

TO	DO

Squash	commits	&	
Jenkins	CI

Github

git	rebase

What	was	delivered?

‹#›DM	Boot	Camp	•	Tucson,	AZ	•	October	6th	2015NCSA	Seminar	•	September	12th	2016

‹#›DM	Boot	Camp	•	Tucson,	AZ	•	October	6th	2015NCSA	Seminar	•	September	12th	2016

‹#›DM	Boot	Camp	•	Tucson,	AZ	•	October	6th	2015NCSA	Seminar	•	September	12th	2016

git	Process

− All	code	is	open	and	on	Github.	
− All	work	is	on	a	ticket	branch.	
− Non-merge	commits	on	master	only	for	critical	fixes	or	trivial	

documentation	patches	(spelling	mistakes).	
− Branches	are	always	rebased	before	merging.	
− CI	can	test	the	state	of	the	system	that	will	exist	after	the	

merge	to	master.	
− History	is	much	easier	to	read	and	git	bisect	is	more	

straightforward.	
− Commits	can	be	split,	squashed	or	re-ordered	before	merging.	
− Commits	should	be	a	self-contained	unit	of	functionality	or	

cleanup.	
− whitespace	changes	always	separate	commits.

‹#›DM	Boot	Camp	•	Tucson,	AZ	•	October	6th	2015NCSA	Seminar	•	September	12th	2016

Clean	history

‹#›DM	Boot	Camp	•	Tucson,	AZ	•	October	6th	2015NCSA	Seminar	•	September	12th	2016

Testing

− Unit	testing	is	done	using	the	Python	unittest	package.	
− Migrating	to	the	pytest	test	runner	
− Key	advantages	of	pytest:	
− JUnit	XML	output	that	can	be	ingested	by	Jenkins.	
− Ability	to	run	all	tests	at	once	(this	makes	global	variables	

obvious).	
− Can	filter	such	that	only	matching	tests	are	executed.	
− Can	easily	run	coverage	analysis	of	codebase.	

− Developing	large	scale	integration	tests	for	the	science	pipelines	
using	real	data.	

− Track	performance	metrics	of	science	pipeline	over	time.

‹#›DM	Boot	Camp	•	Tucson,	AZ	•	October	6th	2015NCSA	Seminar	•	September	12th	2016

Package	and	version	management

− The	DM	software	consists	of	almost	100	separate	packages	with	
complex	dependencies.	

− Updating	one	package	triggers	rebuilds	of	all	packages	that	depend	
upon	it.	

− A	single	build	should	be	reproducible	based	on	the	state	of	each	
package	used	for	the	build.	

− When	debugging	we	would	like	to	be	able	to	switch	in	libraries	
from	earlier	builds.	

− We	use	the	EUPS	tool	to	manage	the	dependencies	and	allow	
version	management.	
− EUPS	uses	environment	variables	to	adjust	search	paths.	
− Each	build	of	a	package	is	installed	into	a	distinct	directory	tree.	
− https://github.com/RobertLuptonTheGood/eups

https://github.com/RobertLuptonTheGood/eups

‹#›DM	Boot	Camp	•	Tucson,	AZ	•	October	6th	2015NCSA	Seminar	•	September	12th	2016

Continuous	Integration

− Use	Jenkins	for	CI	
− master	should	always	be	releasable.	
− Regular	jobs	ensure	that	master	is	always	buildable	and	passes	

unit	tests	and	integration	tests.	
− Matrix	includes	CentOS	6	and	7	and	OS	X	(2	versions),	along	with	

Python	2	and	Python	3.	
− Developers	can	submit	jobs	at	any	time,	specifying	their	ticket	

branches.	
− Multiple	packages	can	have	the	same	ticket	branches.	
− Multiple	branches	can	be	specified.	

− Some	standalone	packages	(those	without	EUPS	dependencies)	
backed	by	Travis	triggered	directly	by	Github	pull	requests.

‹#›DM	Boot	Camp	•	Tucson,	AZ	•	October	6th	2015NCSA	Seminar	•	September	12th	2016

Decision	Making:	RFCs

You	are	empowered	to	make	decisions	on	any	DM-internal	matter—such	as	
technical/algorithm	issues,	process	improvements,	and	tool	choices—when:	
1. you	are	willing	and	able	to	do	the	work	to	implement	the	decision	

yourself	or	with	people	who	agree	with	you,	
2. you	(collectively)	are	willing	and	able	to	fix	any	problems	if	it	goes	wrong,	

and	
3. you	believe	that	all	affected	parties	(including	your	immediate	manager)	

would	not	seriously	object	to	your	decision	and	implementation.	

We	use	an	RFC	(Request	for	Comments)	process	to	publicize	and	discuss	
changes.	The	purpose	of	an	RFC	is	to	inform	others	about	the	existence	and	
content	of	the	proposed	decision	and	implementation	in	order	to	allow	
them	to	evaluate	its	impact,	comment	on	it,	refine	it	if	necessary,	and	agree	
(implicitly	or	explicitly)	or	object	(explicitly)	to	its	execution.

‹#›DM	Boot	Camp	•	Tucson,	AZ	•	October	6th	2015NCSA	Seminar	•	September	12th	2016

RFCs	are	a	JIRA	workflow

‹#›DM	Boot	Camp	•	Tucson,	AZ	•	October	6th	2015NCSA	Seminar	•	September	12th	2016

Coding	Standards

− LSST	DM	Developer	guide:	https://developer.lsst.io	
− Python	coding	standard:	https://developer.lsst.io/coding/

python_style_guide.html	
− Written	in	terms	of	PEP8.	

− C++	coding	standard:	https://developer.lsst.io/coding/
cpp_style_guide.html

https://developer.lsst.io
https://developer.lsst.io/coding/python_style_guide.html
https://developer.lsst.io/coding/cpp_style_guide.html

