Published April 14, 2025 | Version v1
Dataset Open

GloCE v1.0: Global CO2 Enhancement Dataset 2019-2023

  • 1. ROR icon University of Hong Kong
  • 2. ROR icon Columbia University
  • 3. ROR icon Chinese University of Hong Kong
  • 4. ROR icon Chinese University of Hong Kong, Shenzhen

Description

We present a globally consistent, satellite-derived dataset of CO_2 enhancement (ΔXCO_2), quantifying the spatially resolved excess in atmospheric CO_2 concentrations as a collective consequence of anthropogenic emissions and terrestrial carbon uptake. This dataset is generated from the deviations of NASA's OCO-3 satellite retrievals comprising 54 million observations across more than 200 countries from 2019 to 2023.

  • The dataset is now encrypted and will be openly accessable once the article review process completes. 
  • If you are eager for early access of the dataset, please email <your name, affiliation, and data use> to yulunzhou@hku.hk. We will carefully consider your request. 

 

Dear reviewers, please download the datasets here and access using the password enclosed in the review documents. Many thanks!

 

Data Descriptions ----------------------------------------- 

  • CO2_enhancement_global.nc contains all enhancement data globally. 
  • CO2_enhancement_cities.nc contains all enhancement data in global urban areas. 
  • Each data row contains the following columns: <latitude, longitude, time, xco2, co2_enhancement>
  • Datasets are stored in netcdf files and can be accessed using the Python code below:

# install pre-requests

! pip install netcdf4
! pip install h5netcdf

# read co2 enhancement data
import xarray as xr
fn = './CO2_Enhancements_Global.nc'
data = xr.open_dataset(fn)
type(data)

  • please refer to xarray documentation for basic xarray operations. https://docs.xarray.dev/en/latest/generated/xarray.Dataset.html

 

Please cite at least one of the following for any use of the CO2E dataset.

Zhou, Y.*, Fan, P., Liu, J., Xu, Y., Huang, B., Webster, C. (2025). GloCE v1.0: Global CO2 Enhancement Dataset 2019-2023 [Data set]. Zenodo. https://doi.org/10.5281/zenodo.15209825

Fan, P., Liu, J., Xu, Y., Huang, B., Webster, C., & Zhou, Y*. (Under Review) A global dataset of CO2 enhancements during 2019-2023. 

 

For any data inquiries, please email Yulun Zhou at yulunzhou@hku.hk. 

Files

Files (1.5 GB)

Name Size Download all
md5:666b2cced46662eb60748cfa8edec11d
34.2 MB Download
md5:aa33309ea1c6778dbf91c0a6737ebffc
1.4 GB Download

Additional details

Funding

Ministry of Science and Technology of the People's Republic of China
National Key Research and Development Program of China 2022YFB3903704