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VII.—On the Adelphic Integral of the Differential Equations
of Dynamics. By Professor E. T. Whittaker, F.R.S.

(.MS. received September -21, 1916. Read November 20, 1916.)

§ 1. Ordinary and singular periodic solutions of a dynamical system.—
The present paper is concerned with the motion of dynamical systems
which possess an integral of energy. To fix ideas, we shall suppose that
the system has two degrees of freedom, so that the equations of motion
in generalised co-ordinates may be written in Hamilton's form

(•/</, PH 'ft/., ?H dp1 _ PH dp2 _ PH .
dt opl' dt dp.,' dt dq1' dt cq.,

where (qv q2) are the generalised co-ordinates, (pv p2) are the generalised
momenta, and where H is a function of (qv q2, pv p2) which represents the
sum of the kinetic and potential energies.

The successive states of the system may be illustrated by the motion
of a point whose co-ordinates referred to the axes are (qv q.2): the curve
described by such a point is called a trajectory. Particular interest
attaches to those trajectories which are closed curves: these are known as
periodic solutions.

I wish to draw attention in the first place to a distinction which should
be made in regard to these periodic solutions; the matter may perhaps be
elucidated most readily by considering a particular problem, namely, that of
the motion of a particle on the surface of an ellipsoid under no external
forces. The particle describes a geodesic on the surface, so the periodic
solutions are simply those geodesies which are closed curves. Now for a
geodesic on an ellipsoid we have Joachimstal's equation

pd = constant,

where p denotes the perpendicular from the centre of the ellipsoid on the
tangent-plane at the point, and d is the diameter parallel to the tangent
to the geodesic at the point. The same equation holds for the lines of
curvature on the ellipsoid; so that every geodesic may be associated with
a line of curvature, namely, that line of curvature for which pd has the
same value as it has for the geodesic. We shall speak of the geodesic as
" belonging to " the line of curvature. There is only one line of curvature
having a prescribed value for pd, but there is an infinite number of geodesies
having this value for pd, so that an infinite number of geodesies " belong-
to " each line of curvature. Now the line of curvature consists of two
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96 Proceedings of the Royal Society of Edinburgh. [Sess.

closed curves on the ellipsoid (being in fact the intersection of the ellipsoid
with a confocal quadric): the region between these two portions of the
lino of curvature is a belt extending round the ellipsoid: and all the
geodesies which belong to this line of curvature are comprised within this
belt,* and touch the two portions of the line of curvature alternately. The
matter is represented schematically in the diagram, where ABCDEF and
PQRSTU are the two portions of the line of curvature, and AJRKELPMCT
is an arc of one of the geodesies belonging to it, touching one of the

0

portions of the line of curvature at A, C, E, and touching the other
portion at R, P, T.

In order that the geodesic may be closed, it is necessary (as in all poristic
problems) that a certain parameter (depending in this case on the value of
the constant pd of the line of curvature) should be a rational number: the
geodesic is unclosed if this parameter is an irrational number. If it is
closed, then there are oo1 other geodesies which belong to the same line of
curvature and which are also closed ; but if it is not closed, then no other
geodesic belonging to this particular line of curvature can be a closed
geodesic, f

* Ignoring the exceptional case of those geodesies which pass through an umbilicus.
f This is obvious in the case when the ellipsoid is of revolution : for then the two

portions of the line of curvature are parallel circles on the surface, and the oo1 geodesies
which belong to this line of curvature are obtained from each other by mere rotation about
the axis of symmetry.
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1916-17.] Adelphic Integral of Differential Equations. 97

Now consider the connection between the oo1 members of the family
of geodesies which belong to the same line of curvature. It is known *
that if

4> (9i, ?2> Pv Pi) = Constant

is an integral of a dynamical system, then the infinitesimal contact-trans-
formation which is defined by the equations

o/'i 3p2
 C1i r'1i

(where e is a small constant) transforms any trajectory into an adjacent
curve which is also a trajectory. If we apply this theorem to the motion on
the ellipsoid, we find without much difficulty f that the infinitesimal trans-
formation which corresponds to the integral

pd = Constant

transforms any geodesic into another geodesic which belongs to the same
line of curvature.

Summing up, we see that the oo2 geodesies on an ellipsoid may be classi-
fied into oo1 families, each family consisting of oo1 geodesies: the members of
any one family are either all closed or all unclosed: and a certain continu-
ous group of transformations, which is closely associated with the integral
pd = Constant, transforms any geodesic into all the geodesies which belong
to the same family.

Besides these geodesies which can be arranged in families, there are
on the ellipsoid three other closed geodesies, namely, the three principal
sections of the ellipsoid. These have quite a different character: they
are solitary, instead of belonging to families: and the infinitesimal
transformation which has just been mentioned tranforms them not
into other geodesies but into themselves—that is, they are invariant
under the transformation. This last property suggests a resemblance
with the theory of " singular solutions" of ordinary differential
equations of the first order: for if a differential equation of the first
order admits a particular infinitesimal transformation, then this
infinitesimal transformation changes the ordinary integral-curves into
each other, but it leaves invariant the singular integral-curve. On
account of this resemblance I propose to call a periodic solution
(of a dynamical system with two degrees of freedom) ordinary if

* Of., e.g., my Analytical Dynamics, § 144.
t As this problem of motion on an ellipsoid is only a special case of the general theory

which is given later, I do not give the analysis relating to it in detail.
VOL. XXXVII. 7
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it belongs to a continuous family of oo1 periodic solutions for which the
constant of energy has the same value, and which are transformed into
each other by the infinitesimal transformation belonging to a certain
integral (this is specified more closely later on); but a periodic solution is
to be called singular if there is no periodic solution adjacent to it which
corresponds to the same value of the constant of energy: the above-
mentioned infinitesimal transformation leaves the singular periodic solutions
invariant.

It should be noticed that we have inserted the condition " for
which the constant of energy has the same value." If we suppose the
constant of energy to vary, an " ordinary " periodic solution is in general
a member of a continuous family of oo2 periodic solutions, whereas a
" singular" periodic solution is a member of a family of oc1 periodic
solutions.*

There are marked differences between the properties of " ordinary " and
those of " singular" periodic solutions. For instance, the " asymptotic
solutions " of Poincare f can exist only in connection with singular periodic
solutions, and not in connection with ordinary periodic solutions ; an illus-
tration of this is again afforded by the theory of geodesies on quadrics ;
for the only asymptotic solutions among the geodesies of quadrics are
those geodesies which wind round and round the hyperboloid of one
sheet, becoming ultimately asymptotic to the principal elliptic section
of the hyperboloid: and this elliptic section is a singular periodic
solution.

We must now examine into the existence of families of " ordinary"
periodic solutions in the general dynamical system with two degrees of
freedom. For this purpose we recall that in the solution of such systems
by infinite trigonometric series,^ the generalised co-ordinates (qv q2) are
ultimately expressed in the following way : each co-ordinate is a sum of
terms like

a,,m cos (mfi1 + n/32)

where m and n are integers (positive, negative, or zero); the coefficients
amn are functions of two of the constants of integration, a2 and a2 only :
and the angles /3j and /32 are defined by equations

* The case of geodesic problems is exceptional, as in them the value of the constant of
energy is immaterial.

f Nouvelles Meth. de la Mec. Gel., i (1892), iii (1899).
X Gf., e.g., chap, xvi of my Analytical Dynamics.
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1916-17.] Adelphic Integral of Differential Equations. 99

where ^ and n2 are functions of a2 and a2 only, and et and e2 are the two
remaining constants of integration.

Periodic solutions evidently arise when the constants ax and a2 are
such that yUj is commensurable with ,u2: the period of the solution is
then 2TT/V, where v is the largest quantity of which fix and /x2 are integer
multiples.

Suppose then that ax and a2 have such values. Then if the constant ex be
varied continuously, we obtain a family of periodic solutions, each having
the same period (since this does not depend on e^. The constant of energy
depends only on ax and a2, and is therefore the same for each of these
periodic solutions. The family is therefore a family of " ordinary " periodic
solutions.

It might hastily be supposed that by varying e2 as well as e1 we should
get a family of oo2 periodic solutions. But it is easily seen that the trans-
formation which is obtained by varying e2 may be obtained by combining
the transformation which consists in varying ex with that which consists
in adding a small constant to t. Now this latter transformation merely
transforms every orbit into itself (each point being displaced in the direction
of the tangent to the orbit), and so may be disregarded. The e1 and e2

transformations are therefore to be regarded as not distinct from each
other.*

Singular periodic solutions are found chiefly in domains where the
solution by purely trigonometric series is not possible.

§ 2. Definition of the adelphic integral.—Having now distinguished the
" ordinary " and " singular " periodic solutions of a dynamical system, we
shall consider those infinitesimal transformations which change each
trajectory of the system into an adjacent trajectory, in such a way that
every ordinary periodic solution is changed into an adjacent periodic
solution of the same family, i.e. having the same period and the same
constant of energy. In the notation we have just been using, this trans-
formation corresponds to a small change in er This transformation will
be called the adelphic transformation, f The adelphic transformation
changes any solution of the dynamical system, whether periodic or
not, into one of oo1 other solutions which stand in a particularly close
relation to it, being in fact derived from it by a change of the constant
6i only.

* The only case of exception is when all the orbits of the system are periodic.
t From aSe\0i«((j, brotherly, because these orbits stand in very close relation to each

other, and also because the integral corresponding to the transformation stands in a much
closer relation to the integral of energy than do the other integrals of the system.
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To the adelphic transformation there corresponds an integral of the
dynamical system: this integral we shall call the adelphic integral of the
system.

As there is only one really distinct adelphic transformation of a
given dynamical system with two degrees of freedom, so there is only
one really distinct adelphic integral: all other adelphic integrals may
be obtained from this by combining it in various ways with the integral
of energy.*

In practically all the known soluble problems of dynamics with two
degrees of freedom, the integral which enables us to effect the solution is
an adelphic integral. Thus, when the trajectories are the geodesies on an
ellipsoid, the adelphic integral is the equation pd = Constant. When the
problem is that of two centres of gravitation, the adelphic integral is Euler's
integral of that problem. When the solubility of the problem is due to the
presence of an ignorable co-ordinate, say q2, the corresponding integral
(namely p2 = Constant) is adelphic.

In the present paper we shall find the adelphic integral for the general
dynamical system with two degrees of freedom, and make this the basis
from which to complete the integration of the system. It will appear that
by this procedure we are enabled to overcome the difficulty formulated in
Poincare's celebrated theorem, that " the series of Celestial Mechanics, if
they converge at all, cannot converge uniformly for all values of the time
on the one hand, and on the other hand for all values of the constants
comprised between certain limits." This unsatisfactory feature of the
usual series springs from peculiarities which are deep-seated in the
nature of the problem, and which are difficult to discern by the
methods of solution employed in Celestial Mechanics. By fixing our
attention in the first place on a single integral of the dynamical
system, rather than attempting at once a complete solution, we shall
find what these peculiarities are; for they manifest themselves very
clearly in connection with the adelphic integral, and (as we shall see)
may be so taken account of in its determination, that they no longer
remain to trouble us in the final stages of the complete integration
of the dynamical system.

§ 3. The form of the Hamiltonian function.—We now proceed to
inquire how the adelphic integral of a dynamical system with two degrees
of freedom may be determined.

* The integral of energy corresponds to that infinitesimal transformation which changes
every orbit into itself, each point of an orbit being displaced in the direction of the tangent
to the orbit.
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1916-17.] Adelphic Integral of Differential Equations. 101

The differential equations will be taken in the Hamiltonian form

dqx 3H dq2 3H dp1 9H dp9 3H ,,>
~dt=dp~1' ~dt=df2' ~<tt = ~dq~x' ~dt = ~dq~2 " ' ' ( )

where

?i, q.2, Vv> P2) = Constant (2)

is the integral of energy.
In general—at any rate in the problems of practical importance—it is

possible * to choose the generalised co-ordinates in such a way that H can
be expanded as an infinite series proceeding in powers of y*rq1 and \/q2, and
in trigonometric functions of multiples of p1 and p2: that is to say, in terms
of the type

q^mq^H cos (ip1 +jp2)

where m and n are integers (positive or zero) and i and j are integers
(positive or negative or zero): moreover, if we call (m + n) the "order"
of a term, the terms of lowest order are linear in qt and q2 and free
from p1 and p2, so that they may be written (s^j + s2g2)> where sx

and s2 are constants. In most cases we find also the condition that
m — \i\ is zero or an even integer, and n — \j\ is also zero or an even
integer.

The Hamiltonian function H may therefore be expanded in the
form

H = .sl2'1 + s2g'2 + H3 + H4 + H5+ (3)

where Hr denotes the terms of order r, so we may write

H3 = q1i(V1 cosi^ + U2 cos 3jOj) + gyZa^Ua cosp2 + U4cos (2px +p2) + U5cos (2px -p2)}

+ 1iicl2{^6C0SPi + U7cos(2p2 +pt) + U8cos(2p2 - f t ) } + y,«{U9cosp2 + U10cos3p2},

and

H4 = ^^(X, + X2 cos 1px + X3 cos ipj

+ 1l^2HXi C0S (Pi +Pz) + X 5 C0S (Pi -Pi) + X 6 C0S (3Pl +Pi) + X7 C0S (3Pl 'Pi)}

+ X9 cos 2px + X10 cos 2p2 + X n cos (2px + 2p2) + X12 cos (2px - 2p2)}

cos(j>x +p2) + X14cos (px -p2) + X15 cos (p1 + 3p2) + X16 cos (px - 3p2)}

+ q2
2\ X17 + X18 cos 2p2 + X19 cos ip2),

the coefficients Uj, U2, . . . U10, Xx, X2, . . . X19 being constants.
It will appear that it is necessary to distinguish three cases: in each

case an adelphic integral exists and will be determined, but the form of the
adelphic integral is different in each of the three cases.

* Cf., e.g., Analytical Dynamics, §§ 184-6.
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CASE I. The ratio sjs2 is an irrational number.
CASE II. The ratio 8-Js2 is a rational number, say equal to m/n (where

m and n are integers and the fraction m/n is in its lowest terms) and
terms in cos (npt — mp2) are absent from H3.

CASE III. The ratio 8js2 is a rational number, say equal to m/n, and
terms in cos (np1 — mp2) are present in H3.

We shall now determine the adelphic integral in each of these cases
in turn.

§ 4. Determination of the adelphic integral in Case I.—Let us then
first suppose that the Hamiltonian function is expanded as in § 3, and
that the ratio sjs2 is an irrational number. We shall now show how
to set up formally a series which, if it converges, is an integral of the
system.

If </>(qv ?2> Pv Pi)= Constant is an integral, we must have (from the
equations of motion)

dq1dp1 dq2dp2 dp1dq1 dp2dq2~

an equation which we may write {</>, H) = 0.
Let us see if this equation can be satisfied formally by a series proceeding

in ascending powers of •Jq1 and Jq2 and trigonometric functions of pt and p2

(like the series for H), whose terms of lowest order are (s1q1 — s2q2): so that
we may write

where </>,. denotes the terms which are of degree r in Jqx and Jqr

Substituting in equation (4), and equating to zero the terms of lowest
order, we have

ad, dfc oH» 3H,,
dpx

 zdp2 oPl *dp2

This evidently implies that to any term A 008(77^ + ̂ 2 ) in H3, there

corresponds a term -* £— A cos (mp-, + np9) in d>,: so the value of <A,
r S7n+sn Ti

may be written down at once. Having thus determined <j>3, we equate to
zero the terms in equation (4) which are of order 4 in •\/ql and -\/q2: this
gives the equation

d<j>, d<f>. dK. 3 H , , , „ .

As the quantities on the right-hand side are all known, we can solve
this equation for (pi in the same way as the preceding equation was
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1916-17.] Adelphic Integral of Differential Equations. 103

solved for </>3: and thus combining our results we obtain for our integral-
series <j>

Constant = ijiss^j - #.,g2 + q1
?-(Ul cospx + U, cos 3p3)

c o s {2p

±-^U7 cos (2p2 + Pl) +
 S+±pUg cos (2ps -Pl)\

M - U 9 COS j).2 - U 1 0 JCOS 3p2 \

cos(Pl+p,)( _ 2«t TT TT 6v2_
Sl - 2s2)

2 3 8 3 6

. __*2_u TJ _ 3U.,U3

U3U4 - - — - U3U5 + X9)

l ,u,r,-x
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U7U9 + -J^_U8[J10 - U3U6 - -r\rV3

^ TT TT J "o|»o TT TT i / \

+ ^ & _ & ) { - Ufiu9 - s - ^ u 7 u 1 0 + ^ u . u . - u8u.

I 6 10 S + 2S 7 9

+ (s1-2s2)(2s1+«2)
 4 8 '** *=" I5i

Oi-3j»2)( „ 3U6U10 + -J-%_U8U9 - —*V U,U8

cos *>+k - 2 ^ T ^ U « - Mcos

+ terms of the 5th and higher orders in -y/y, and y/q2 . . . . • (5)

The terms of higher order in the series may be determined in the
same way as the terms in <f>s and 04, and we thus obtain the complete
expansion of <p.

We may note that instead of assuming (s1q1 — s2q2) as the lowest term
of our integral, we might have assumed qv or qv or any linear function
of qx and q2; the integral then obtained would be merely a linear combina-
tion of our integral (5) with the integral of energy, whose lowest terms

We may further note that in the above process, when finding <pit we
may if we please add to <pi any terms of the form aq^ +/3<71g'2 + yg'2

2, where
a, /3, y are constants; for these terms are annulled by the operator

s.,-—+s2-—), and therefore <j>i satisfies its differential equation just as

well when these terms are present as when they are absent. The intro-
duction of these terms into <pi will cause changes in the terms of higher
order—in <pb, <p6, etc.: and the sum total of all the changes will merely
amount to adding to our function <f> a quadratic function of the two
integrals which we know, namely, the integral of energy and the integral
(5) itself.

Similarly we may add any terms of the form (aq1
s+ftq]

2q2 + yqxq2 + ?92
3)

to <p6: the ultimate effect is merely to add to our integral a cubic function
of itself and the integral of energy. There is evidently nothing to be
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1916-17.] Adelphic Integral of Differential Equations. 105

gained by doing this, and we may therefore omit these arbitrary terms
in 04, 06, 08, . . .

§ 5. An example of the integral found in § 4, with remarlcs on its
convergence.—As an example, consider the dynamical system which is
specified by the Hamiltonian function

H = 2i?1 sin'ft + q2 sin* p, - 1 + 3 . 2 *

or expanding,

H = 2igj + g2 + 2*51i!( - COSJOJ - ^ cos 3^ )

+ 2-iq^q2{ - 2 cos px - cos (Pl + 2_p2) - cos (p1 - 2p2)} + (6)

The corresponding integral, obtained by substituting in formula (5) is

Constant = <j>s2iqt -q2 + 2*g13( - cosjjj - J cos 3pj)

+ 2 -iqjhq»{ - 2 cos Pl + (1 - y ^ ) 2 cos ( ^ + 2p2) + (1 + ^/ff cos ( ^ - 2j},)}+

(7)

Now it may be verified readily by differentiation that this dynamical system
possesses the integral

Constant = (q2i sin p2 + 2igxig2i sinp0 cosp± - 2'gl
1ig2i sin^ij cosp2)2

_ 1 1

(1 + 2iqxi cosp1 + 2iq1 cos2 pj + 2g0 cos2 p2)t '

which when expanded takes the form

Constant = q2 + 2" 1(1 - y/~i)q^q2 cos (px + 2j>.,)
-21(l+V2)21*?2co8(p1-2/>g)+ (8)

It is evident, on comparing the series, that the series (7) is what would
be obtained by subtracting twice the series (8) from the series (6), which
represents the integral of energy. This shows that for the particular
dynamical system we are considering, the <£-series (5) is identical with the
expansion, formed by ordinary algebraic and trigonometric processes under
conditions which ensure convergence, of a known integral: and the
convergence of the series (5), for sufficiently small values of Jq1 and *Jq2,
is thereby established for this particular system.

It is by considering particular dynamical systems such as this, in which
the convergence of the series can be proved, that I have formed the opinion
that the series (5) is in general convergent, for sufficiently small values of
q1 and q2, so long as the ratio sjs2 is an irrational number. A general
proof of its convergence would probably be very difficult, and I have not
as yet succeeded in obtaining one. But the following considerations may
be adduced in support of the opinion of convergence.

Since the ratio sjs2 is an irrational number, none of the denominators
( s , + s 2 ) , (Si-sJ, ( 2 s 1 + s 2 ) , ( 2 s 1 - s 2 ) , ( s 1 + 2 s 2 ) , {Ss^s^, . . . c a n v a n i s h , a n d
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therefore no term of the series can be infinite. The series is a power-series
in fJql and Jq2, and it has been derived from another absolutely con-
vergent power-series in Jqx and Jq2, namely, the series for H, by operations
which are of an ordinary algebraical and trigonometrical combinatory
character, except as regards the operation of introducing the divisors of
the type (rtiSj^ + ns2) (where m and n are positive or negative integers) in
the integrations. We may therefore expect that the series will converge
for sufficiently small values of .Jq± and Jq2, unless the smallness of some
of these divisors causes the series to diverge for all values of Jqx and s/q2,
however small. Now the values of the integers m and n may indeed be
so chosen that the divisor (ms1 -f ns2) may be as small as we please: but
| m | and \ n | are then large, and since | m \ and | n \ are not greater than the
order of the term, this small divisor can occur only in a term of high order,
where it will be more or less neutralised by the high powers of Jqx and
x/q2: and it was in fact shown many years ago by Bruns * that this state

of things is consistent with the absolute convergence of a series. The
example given by Bruns was the series

CO OO ^y 1H/y 11

"V "V Si ?2

where q± and q.2 are proper fractions and A is a positive irrational number,
which is an algebraic number, i.e. a root of an irreducible algebraic equation

A-' + G! A'-i + GjA*-^ . . . +G,, = 0

with integer coefficients G. If we multiply the numerator and denominator
of any term in Bruns' series by

(m-n A') (TO - n A") . . .

where A', A", . . . are the other roots of the algebraic equation, then the
denominator becomes a polynomial in in and n with integer coefficients:
and as it is never zero, it must be at least equal to unity: while in the
numerator we now have a polynomial in m and n of degree (s— 1): whence
it follows at once that Bruns' series converges.

The series (5) is much more complicated than Bruns' series: and
although the analogy so far as it goes is favourable to the convergence of
(5), yet our opinion must rest mainly on the undoubted convergence of (5)
in the case of particular systems where a test is possible.

§ 6. Use of the integral found in § 4 in order to complete the integra-
. tion of the system.—Still restricting ourselves to Case I, in which the
ratio sjs2 is an irrational number, we now know two integrals of the
dynamical system, namely, the integral of energy (which is obtained by

* Astr. Nach. 109 (1884), p. 215.
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equating the Hamiltonian function to a constant) and the integral expressed
by equation (5). But it is known * that if, in any conservative holonomic
dynamical system with two degrees of freedom, we know one integral in
addition to the integral of energy, the system can be completely integrated,
i.e. we can find expressions for the co-ordinates and momenta (qv q2, pv p2)
in terms of the time and 4 arbitrary constants of integration. We shall
now perform this process, which incidentally will show that the integral (5)
is the adelphic integral of the system.

If we add the integral of energy to the integral (5), and divide
throughout by 2sv we obtain

/, = q1 + ftf \ — U1 cos p1 + — Uo cos 3pt J-

+ gig2-{0 1 ^4 cos (2^ +p2) + -—_ U6 cos (2Pl - p2)}

+ 1ih21-^6 cosPl + — i - U. cos (2p2 +Pl) + —L- U8 cos (2p2 - Pl)\

+ terms of the 4th and higher orders,

where £, denotes an arbitrary constant.

Similarly by subtracting the integral (5) from the integral of energy,
and dividing by s2> we obtain

U 5 C 0 S

, cos (2p2 +Pl) - —^-Ua cos (2p2-Pl)\
1 — •'

4
\ 8-t ~r -JOO 1

+ <2vM —LT
9 cos^)2 + -U l o cos 3p9 i + terms of the 4th and higher orders,

vs9 s2 "J

where l2 represents a second arbitrary constant.
It is an easy matter to obtain qx and q2 from these equations in terms

of (lv l2, pv p2) by successive approximation : in fact, the first approximation
gives qx — lv q2 = l2, and the second approximation gives

f/j = Zj - Zj" • —U, cosp} + —U2 cos 3p, -
s

j • —U, cosp} + —U2 cos 3p, -

c o s ( 2 p i + i 3 2 ^ + 9 7 ^ T U 5 c o s (2<"i"

cos (2 (2^2 -Pl)\

+ terms of the 4th and higher order in Jlt and

G/., e.g., Analytical Dynamics, § 121.
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-s-x-U4co8(2p1+po)-~- tfscos(2Pl -Pi)\
4&-I ~~T~ On AS-t S,-y J

?cos ( ^ +P^ ~ 7~h; u s c o s (2P-2 -

- l2i) —U9 cos^i2 + — Ul o cos 3p2 V
\ S-7 S2 J

+ terms of the 4th arid higher order in y/l^ and \/l».

We know from the general theory of Dynamics * that the expressions
thus found for q1 and q2 must be the partial differential coefficients with
respect to p1 and p2 of some function of (lv l2, pv p2) : and, in fact, we have
obviously

_ d W _ dW

where

W = l1p1 + l2p2 - Zji( —\J1 sin Pi + —-U2 sin 3p1
V 6^ S

{JLU8 sin p2 + H - ^ T - U * sin (2Pl +p3) + ^ ^ U j sin (2Pl -

—U6 sin P l + - J _ U 7 sin (2^2 +Pl) + _ 1 _ U 8 sin (2^., -
S 6b T i SS-,

~ h*l —U, sin p0 + — U10 sin 3p, J-

+ terms of the 4th and higher orders in Jlx and Jl2 . . (9)

The terms in which p1 and p2 occur otherwise than in the arguments
of trigonometric functions are

Pj(Zj + terms of the 4th and higher order in Jl± and Jl2)
+P2(l2+ „ „ „ „ )

Denote the coefficients of px and p2 in this expression by ax and a, re-
spectively : express lx and l2 in terms of ĉ  and a2 by reversion of series,
and replace Zx and l2 throughout in the series (9) by these values in terms
of ctj and a2; so that we now have

W = a +a - a » r i U s i n + —Usin3

- 0^2*1 _U3 sin JJ2 + 9o U4 sin (2Pl +p2) + _- -U5 sin (2p1 - p.,)]

^ i + -———U7sin(2/j2+p1) + —- U8 sin (2^ , -

- a,«] -U 9 sinp2 + ̂ —UJ0 sin 3p2 \2 \
- J

+ terms of the 4th and higher orders in ^/aj and v/a2 . . . (10)

* Cf., e.g., Analytical Dynamics, § 121.
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and now px and p2 do not occur except in the arguments of trigonometric
functions and in the terms (ax px + a2 p2)-

Now the equations

aw aw „ aw o ew
dp1 ap2 3ax 3a,

define a contact-transformation from the variables (ql, q2, p1, p2) to the
variables (alt a2, /3X, /32): so in terms of these new variables the differential
equations take the form

But we know that ax = Constant and a2 = Constant are two of the integrals
of the system, since ^ and l2 are constant: and therefore

so when H is expressed in terms of (alt a2, ̂ 1 ; /32), it will be found to involve
Oj and a2 only : and then the second pair of equations (11) give

where ex and e2 are arbitrary constants.
Thus we have the complete solution of the dynamical system expressed

by the equations
aw_ dw_
"Pi 8P2

aw 8H(ai,a2) aw dR(ai,a2)
= I + €, , = 5 !> T € 2 ,

o 0oa2

where W is given by equation (10), and the four arbitrary constants of
integration are (a1; a2, elt e2). On referring to the form of W, we see that
these equations enable us to express qx and q2 as purely trigonometric
series, the arguments of the trigonometric functions being of the form

where m and n are integers (positive, negative, or zero) and where ^ and
j32 are linear functions of the time, given by equations (12). We have
thus obtained expressions for the co-ordinates in terms of the time, by
means of series in which the time occurs only in the arguments of
trigonometric functions.

It is moreover evident that a change in ev in which the other constants
of integration (e2, a1; a2) are left unaltered, does not affect either of the
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constants lx and l2 (since these depend only on ax and a2) and therefore does
not affect the constant of the integral (5) or the constant of energy: this
shows that all the orbits, which differ from each other only in having
different values of the constant ev have the same values for the constant of
the integral (5) and the constant of energy: and hence that the infinitesimal
transformation which corresponds to the integral (5) transforms these
orbits into each other: that is to say, the integral (5) is the adelphic
integral of the dynamical system.

§ 7. Determination of the adelphic integral in Case II.—We now pro-
ceed to the discussion of " Case II," in which the ratio sjs2 is a rational
number (say equal to m/n), but no term in cos (np1 — mp.2) is present among
the third-order terms in the Hamiltonian function H. Certain terms of
the series (5) now contain in their denominators the factor (ns1 — ms2),
which vanishes since sjs2 = m/n: and therefore the series (5) as it stands
cannot converge in Case II, unless the terms which have zero denominators
have numerators which also vanish. We have here come upon the real
root of the principal difficulty of Celestial Mechanics : by removing it here,
so as to obtain a valid adelphic integral in Cases II and III, we shall be
enabled to remove it from the whole subject.

To fix ideas, we shall suppose that s1 = 2, s.2 = l, so that 8-Js2 has the
rational value 2, and the denominator (s1 — 2s2), which occurs frequently
in the series (5), is zero.

In this case the equation for <p3 becomes

dp1 dp.2 BjOj dp2'

and indeed the equation for any one of the functions </>3, </>4, </>-, . . . takes
the form

2— + —'= a known sum of terms of the type rj^'^.y" sin (kj^ + Zp.,).
PPi °Pi

Now in integrating the differential equations for <£3, <£„. . . . in § 4, we
used only the " particular integral," which corresponds term-by-term to the
known function on the right-hand side of the equation : so that, e.g., the
integral of the equation

would be taken to be

The reason for this was that the " complementary function," or arbitrary
part of the solution of the differential equation, is a function of (s2y^ — S]£>2)>
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and so does not contain terms of the type appropriate to <j>s. But when
s1 = 2, s2 = l, the arbitrary part of the solution of the differential equation
does contain terms of the type proper to <j>3, and these must be taken
account of; so that we must take the integral of the equation

to be
4>3 = - l<7l? C 0 S Pi + a 2 r 2 2 C 0 S (Pi -

where a is an arbitrary constant. In this way we obtain terms tuith
arbitrary coefficients in <f>3, <£1; <f>5, . . .: and these arbitrary coefficients
must be chosen in such a way as to reTnove terms with vanishing denomi-
nators from the subsequently determined part of <f>. This principle enables us
to obtain, in Case II, an adelphic integral free from vanishing denominators.

§ 8. Study of a particular dynamical system, as an illustration of the
method of § 7.—We shall now illustrate the working of this principle by
an example. Consider the dynamical system which is specified by the
Hamiltonian function

H = 2q, sin2/*, + </, sin2p., + -
(1 + 2,q^ cospj + 2i c o s 2 ^ + 2q., cos2 p2) I

(13)

(1 + 2qxi cos/>! + qx cos2 p1 + 2q2 cos2 p2)i

If this be expanded in ascending powers of Jqt and Jq2, we obtain

H = 1qx + q2 + qil( - f cos jjj - f cos 3^) + 2l
2(ff + S£- cos 2Pl + ff cos iPl)

+ qxq2{ - 3 - 3 cos 2p1 - 3 cos 2p2 - § cos (2px + 2p2) - % cos (2px - 2p2)}
+ q.,2{ - ~Q - | cos 2j»o - ^ cos 4p.,} + terms of the 5th and higher order

in •\/q1 and \/q2,
so that in this case sx = 2, s2 = 1.

As explained at the end of § 4, we may assume that the lowest term
of the adelphic integral is simply q2. Then if we write

<t> = <h + <l>3 + <t>i + <t>o+ • • •

the equation to determine </>3 is

2^8 + ^8 = 0,
°Pl dP-Z

so by § 7,
<£s = a(Jl1-2 C 0 S (Pi ~ 2Po)>

where a is an arbitrary constant.
The equation for ^4 now becomes

+ ( 3 + T) s i n ( 2 p i + iPi) ~ ( 3 + T
, 2 ( ! sin 2p2 +1 sin ip2)
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of which the integral is

+* = ffife{ - (3 + T ) COS 2p* ~ (^ + ¥ ) cos (2ft + 2^} + (* + T ) COS

+ q.2
2( - f cos 2JJ, - -^ cos 4p2).

The equation to determine <p5 is now

and we have to choose a so as to annul the terms in sin (p1 — 1p2) on the
right-hand side of this equation. On calculating these terms, we find

(from | ^ ) ¥?1%2 sin {Pl - 2p,)

(from (<£4, Hg)) - ¥ ( l + ̂ )?i«?2 s i n (Pi - 2p2)

(from (4>3, H4)) + iipa2i%2 s i n (Pi - 2p2)-

The quantity a must therefore satisfy the equation

which gives
a = - 2.

Substituting this value of a in <f>3 and 04 our integral becomes

Constant = q2 - 2g-1*g2 cos (pj - 2j?2)

+ 2l22{f C0S 2^2 + 4 C0S (2Pl + 2Pi) ~ I C0S (2Pl ~ 2?2)} + 1i\ - \ C0S 2P-2 - 1% C0S ^
+ terms of the 5th and higher orders in ^ and ^ 2 . . . . (14)

Now it may be verified by differentiation that the dynamical system
specified by equation (13) possesses the integral

Constant = £{N/2?2 sinp.2 + q1
ij2q2 cosp1 sinp2 - 2j2q1q2 sinpl cos p.,}2

1 +91*008 Pl ( 1 5 )

(1+ 2g1
icos^1 + 51 cos2^-)-2^2 cos2p2)

s ' ' '

and this integral is adelphic, as may be shown by completing the solution,
or more simply by remarking that the integral (15) is a function of the
variables (V?i> V°2> Pi> P2) which is one-valued and free from singularities
for a certain range of values, and therefore the infinitesimal transforma-
tion corresponding to it will also be one-valued and free from singularities,
and so must transform closed orbits into closed orbits.

But on expanding this integral (15) in ascending powers of •y'qj and
-v/q2 by the multinomial theorem, we arrive at the series (14). This shows
that, for the dynamical system we are considering, the series obtained by
the process of § 7 converges for all real values of px and p2 so long as \qx\
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and | q21 are inferior to certain fixed quantities, and that the series repre-
sents the adelphic integral of the dynamical system.

§ 9. Determination of the adelphic integral in Case III.—The principle
for the removal of vanishing divisors from the adelphic integral, which
was explained in § 7 and illustrated in § 8, is not sufficient for the purpose
if the Hamiltonian function contains, among its third-order terms, a
term in cos (s2£>j—s^): for this term gives rise to a vanishing divisor
in <£3, and the arbitrary terms which are used in order to annul terms
with vanishing divisors do not come into operation early enough to
remove vanishing divisors from <£3.

In this " Case I I I " we must make use of another principle (concurrently
with the principle of § 7) which may be explained thus: Suppose that an
integral of a system of differential equations in variables (qv q2, pv p2) is of
the form

where y is the arbitrary constant and /j. is a definite constant formed of
quantities occurring in the differential equations. The integral in this
form ceases to have a meaning when /j. tends to zero. But we may derive
from it an integral which has a meaning when yu-s-O, by merely supposing
first that n is different from zero, and multiplying the equation throughout
by ft, so that it becomes

M/(?H q» Pi, Pi) + ff(iv iv Pv Pi)=n
and then making ,u->0 ; the equation becomes

g(iv ?2> Pv Pi) = c>

where c denotes L t ^ 0 (MY)- This is the desired form of the integral when
ju. is zero.

Our case is not so simple as this, since the vanishing divisor occurs not
only in the inverse first power, but in an infinite series containing all
the inverse powers. The method we follow, which will be illustrated in
the next article, is really equivalent to using the principle of § 7 in order
to remove all inverse powers of the small divisor except the first, and
then using the principle of this article in order to remove this inverse
first power.

§ 10. Example of the principle of § 9.—We shall now show by consider-
ing a particular dynamical system how the principle just mentioned is
applied in order to obtain an adelphic integral free from vanishing divisors
in " Case III."

Consider the dynamical system whose Hamiltonian function is
H = 2i - 2?2 + SiiUj cos Pl + ?1?21U4 cos (2Pl +i>2) (16)

VOL. XXXVII. 8
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Now if the Hamiltonian function is
H=*i2i + *2?2 + 3 i i u i C0SPi + ?i?25U4 cos (2p1 +p2),

where sx and s2 are arbitrary, the adelphic-integral series to which we are

led by the method of § 4 is

2s - s
Constant = s ^ - s2q2 + g1^'U1 cosp1 + —! 2 g^g^U,, cos (2px + p2)

+ s>- U1U4gl%
2S1+S2 W l ! / 2

+ Tj' 2U Q 2<7 i _ ^ _ { - 3 C0S(4Pi+P2) _ 6 cos (
1 4 1 22s + s \ 3s + s 4 s + s 3 s + s 2

6 cos j»2\

+ *2 »2 )

,

+ XJ U V *
1 * J S

+ terms of the 6th and higher orders in Jql and Jq2 . . (17)

I n our problem s1 = l , s 2 = — 2, so 2 s x + s 2 is a vanishing denominator. This

denominator m a k e s i ts appearance in t h e four th t e rm of the above expression,

and occurs in every subsequent te rm, be ing squared in the coefficient of the

fifth-order t e rm q^ q£ cos (2p1+p2). We mus t now modify this series (17)

so as to obtain an integral which has no vanishing denominators.

In t he first place, we apply the principle of § 9 : t he lowest term which

is affected by the vanishing denominator is the te rm

we therefore try to form an integral whose lowest term (discarding the

non-essential factors (2s1 — s2) and U4) shall be

2i$2* c o s (2i?i +P2) •

If then we suppose this integral to be

Constant = ^ s g ^ t cos (2^+^) + ̂ >4 + 0s+ $6 + • • •

where <pr denotes the terms of degree r in •y/q1 and -\/qs, and substitute in

the equation (0, H) = 0, we find on equating to zero the terms of order 4

that <pi is to be determined from the equation

g - 2 g j = q^V, { 2 sin (Pl + p2) + sin (3Pl +p2)}

The integral of th is is

<A4 = 2i-22iui i'2 c o s (Pi+Pz) - c o s (3Pi +P2)}

to which, however, we may add te rms of t h e t ype

(18)
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where a, /3, y are arbitrary constants, since these terms satisfy the
differential equation and are of the type prosper to 04. It should be noticed
that these terms are not now superfluous, as they were in the general case
studied in § 4; for in the general case the addition of such terms to $t would
merely be equivalent to adding on an arbitrary quadratic function of the
integral of energy and the adelphic integral: but in our present case the
adelphic integral does not begin with terms linear in ql and qv and therefore
a quadratic function of it does not account for terms like those in (18).
The arbitrary constants in (18) are to be determined in such a way as to
make terms with vanishing denominators disappear from the higher-order
terms of <f>. Thus, writing now

4>4 = 2i*22i ui{2 c o s (Pi +Pi) ~ K0S (sPi + P2)} + a ? i 2

and substituting in the differential equation satisfied by <j>& which is

dp2

we find that on the right-hand side of (19) the terms involving sin (2p1+p2)
(which would lead to vanishing denominators on integration) are

- 32j.Vui2 s i n (2P

and these will collectively vanish provided

In this way, by repeated application of the principle of § 7, we are able to
remove all terms with vanishing denominators and obtain an adelphic
integral free from them.

§ 11. Completion of the integration of the dynamical system in Gases
II and III.—Having now in §§ 7-10 overcome the difficulty caused by the
presence of terms with vanishing divisors in the adelphic integral in Cases
II and III, we can use this integral in order to integrate the dynamical
system completely, just as was done for Case I in § 6. We thus obtain
expansions for the co-ordinates in terms of the time in all cases: but these
expansions are completely different in form, according as the dynamical
system falls under Case I, II, or III. This result supplies the underlying
explanation of Poincare's theorem that the series of Celestial Mechanics
cannot converge uniformly over any continuous range of values of the
constants: for the series to which he was referring were of the kind which
we have classified under Case I, and we have seen that when the constants
sv s2 are continuously varied, these series must be replaced by the series
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appropriate to Case II or Case III, whenever the ratio Sj/s2 passes from an
irrational to a rational value. The advantage of solving by means of the
adelphic integral is that the forms of the adelphic integral corresponding to
the three cases can be readily determined: and thus the difficulty is
removed before the adelphic integral is used in order to obtain the complete
expressions for the co-ordinates in terms of the time.

(Issued separately April 30, 1917.)
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