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Abstract

This project has consisted in examining different alternatives for monitoring and ana-
lyzing the log messages produced by the control system software using at CERN. Its
main accomplishments have been a performance measurement of the Logstash tool un-
der both realistic and extreme load scenarios, the development of a flexible and powerful
performance testing tool, and the proposal of a system that automatically determines
the importance that a given log message might have for an operator based on a Bayesian
filter.
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1 Introduction

1.1 Overview
The complexity of the systems currently in place at CERN causes them to output too
many log messages for a human operator to process. Therefore automatic tools are
needed to extract useful information from the contents of the log messages. On the other
hand, a log monitoring infrastructure cannot have a significant performance impact on
the running control systems where the priority must always be that sufficient computing
resources are allocated for it to run properly. For that, it is necessary to assess the
performance of the log monitoring stack before it is implemented in production.
Chapter 2 is concerned with the performance analysis of the ELK Stack (see Section

1.3) and in particular, the most performance critical part of it, Logstash. It describes in
detail the tools developed to accomplish that goal in the Section 2.2.
Once the messages are collected, an interesting improvement would be to try to de-

termine in an automatic way which of them actually reveal critical information about
the state of the system. Chapter 3 describes a proposal to implement such an automatic
relevance determination system based on the same principle as many spam filters.

1.2 WinCC OA
Many control systems at CERN are based on the software WinCC OA (previously known
as PVSS) developed by ETM professional control GmbH. These systems include
the four LHC experiments, as well as other experiments a and infrastructure like the
electrical system.
WinCC OA has been successfully used at CERN and its use is increasing among dif-

ferent experiments. On top of the capabilities that this software provides, there is a
notable effort at CERN to provide developer tools and guidelines to aid the implemen-
tation of control systems. These include the JCOP[1] and UNICOS[2] frameworks. An
ongoing effort within the CERN Industrial Controls & Engineering Group is to provide
tools that help the operators find abnormal situations with their systems by monitoring
different aspects of them. One of them is the log message monitoring with which this
project is concerned.

1.3 The ELK stack
The ELK stack is the proposed solution to parse, store and visualize the log messages. It
is composed by a parser (Logstash), a key-value store (Elasticsearch) and a web interface
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Figure 1.2.1: A modern WinCC OA web interface that controls the ATLAS cooling system

(Kibana) The process is as follows:

Logstash Reads the relevant log files, finds the new log messages and parses them. In
this step it assigns values to different fields based on the contents of the message
and other contextual information. It then sends the resulting key-value structure
to Elasticsearch.

Elasticsearch Indexes the processed log message it receives and allows to retrieve them
according to different criteria and also compute multiple statistics.

Kibana Allows the visualization of statistics related to the log messages.

The Figure 1.3.1 shows an example of the Kibana interface for the CERN electricity
control systems (psen1 and psen2). This gives an idea on how the log monitoring
interface would look like upon successful implementation of the project.
The main focus of this project has been evaluating the performance of Logstash, which

is the most critical part of the stack as it has to run on the same machine as the control
system (other options are discussed in ).
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Figure 1.3.1: An example of a resulting Kibana panel showing statistics such as the number of
events over time, the origin of the log messages by system and the total number
of messages by severity level.

1.4 Code
The code of this project can be found in the following repository:

https://svn.cern.ch/reps/en-ice-svn/trunk/tools/JCOP/Projects/Framework/Software
/Tools/fwCentralLogging/LogAnalysis/Performance-Analysis/

In the discussion of the technical parts of the project in the next chapters, it will be
assumed that the reader has obtained a copy of this code and is able to follow the
instructions to run it.
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2 Measurement of the performance of
Logstash

2.1 Setting up Logstash to monitor WinCC OA log messages
Logstash can be installed via rpm packages on the CERN Linux systems. It can be
started as a system service with options predefined in configuration files as a normal
program. The first option is more useful for deployment and the later is more useful
for evaluating the program, which is the objective. In particular, this allows to specify
the configuration file as a command line option. The necessary configuration file was
already provided. The Logstash configuration file uses a custom JSON-like language in
which the following has to be specified:

Inputs Specifies which log files will Logstash monitor. For a WinCC OA this includes
the log folder of the project.

Filter Specifies how is the content of the log message parsed into a key-value data struc-
ture. This is done by specifying regular expressions to be matched against the
messages. Other information such as the system name is also included in the data
structure. The main difficulty is the parsing of multi-line log messages, since given
a log line there is no indication that the next line is going to belong to the same
message.

Output Indicates where is the resulting data structure going to be sent. For this project,
this is an Elasticsearch instance running on a dedicated host.

The Logstash configuration file does not allow to access environment variables or any
other way of defining variables such as the paths of the WinCC OA projects or the system
names externally, so that they must be hard-coded in the file. Therefore a mechanism
to generate a Logstash configuration file on deployment should be considered.

2.2 Performance analysis tools
In this project a number of tools to measure the performance of the Logstash process
were developed in a way in which they should be easily adaptable and extensible to
monitor other processes and to entirely different tasks. A first iteration of this toolset
relied on the manual set up of the different components with the help of WinCC OA
graphical user interfaces. This process was then automated by the introduction of a
testing tool which allowed for a great reduction in the number of steps required to run
the tests, making the procedure considerably less tedious and error prone.
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2.2.1 The WinCC OA project
The repository of the code has a folder structure compatible with that of a WinCC OA
project. It is capable of generating error and debug messages at the specified rate, as
well as peaks of error messages generated without delay.
Some components are only required to run the less advanced GUI-based tests. These

include all the panels, the DataPoints and DataPointElements saved in the dplist folder
(since the automatic test tool does not use DataPoints) and the majority of the scripts.
The required components are then:

• The msg folder containing the error message strings.

• The cont_arguments.ctl, peak_arguments.ctl, and debug_arguments.ctl files
in the scripts folder which generate the log messages based on command line ar-
guments.

• The measure_eff_argparse.py script that is used to measure the resource con-
sumption of a given process.

• The logstash_conf folder containing configuration files for Logstash. These must
be edited so that the paths defined in them match those of the project (see 2.1)

These files can be copied in an empty project.

2.2.2 The performance measurement script
The measure_eff_argparse.py script can be used to measure the performance (resident
memory and CPU percentage) of a given process. It is completely general and can be
used to measure the performance of any running process.
It is based on the Python psutil library (with a version greater than 2). It has a rich

command line that allows for optional arguments (including --help).
The usage of the script is:

measure_eff_argparse . py [−h ] [−d MEAS_DELAY] [−a ] [−p KILL_THRESHOLD]
[− t KILL_TIME]
pid f i le_name

where the last two (pid and file_name) are the only required options. The complete
description of the arguments is:

Positional arguments

pid PID of processes to monitor or match against prgrep -of (the oldest running pro-
cess with the given match in its command line)

file_name Filename (without extension) of the csv generated when terminating the
process.

10
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Optional arguments:

-h, –help Show this help message and exit

-d MEAS_DELAY, –meas-delay MEAS_DELAY Delay between measurements

-a, –autokill Terminate measurement when the process uses less than KILL_THRESHOLD
of CPU.

-p KILL_THRESHOLD, –kill-threshold KILL_THRESHOLD CPU percent level to au-
tokill if the option is enabled.

-t KILL_TIME, –kill-time KILL_TIME Seconds below the threshold needed to acti-
vate autokill.

2.2.3 Running Logstash performance tests with testool.py
2.2.3.1 Introduction

The test tool aims to automatize the procedure and allow for an easy replication of the
rests under different environments.
The test are configured via a .ini configuration file whose options should be self-

explicative. Then the test is run with a simple command line:

. / t e s t t o o l . py my_conf ig_f i le . i n i

The results can be recovered with the command:

. / f e t c h_r e su l t s . py

This will download the results and plot them and save the plots.
Also, the tests can be stopped at any time with:

fab stopnow

2.2.3.2 Dependencies

All the dependencies both in client and server are Python libraries. The recommended
way to manage them is though the miniconda installer program. The advantages of
this approach is that it manages properly the binary dependencies, does not require
to compile the packages, allows to use different sandboxed environments (including for
external binaries), can be manages without root privileges. The disadvantage is that not
all the packages are available with the conda installer, and must be installed with pip.
For the test tool to work, the default Python binary must be replaced by the miniconda
one which is done by default on installation by adding the miniconda binaries to the
PATH.

11
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Client dependencies

testool.py After investigating several alternatives, Fabric was found to be the only
that allowed for easily sending ssh commands and understanding the output. The
disadvantage is that it requires a daemonizer program on the server side (see 2.2.3.2).

• Fabric: Installable with

pip i n s t a l l f a b r i c

If using miniconda, pip should be installed first with (conda install pip).

• dateutil (conda install dateutil)

fetch_results.py

• Fabric

• Numpy

• Pandas

• Matplotlib

The easiest way to get these is by installing the whole scientific Python stack:

conda i n s t a l l anaconda

Or alternatively, they can be installed one by one with the conda tool.

Server dependencies

Performance measurement (measure_eff_argparse.py)

• Psutil (version 2). Installable with

conda i n s t a l l p s u t i l

Testing tool
Fabric does not get along really well with detached programs, and some daemon

software needs to be installed on the server. The chosen one is:

• zdaemon (pip install zdaemon)

12

http://www.fabfile.org/
http://www.fabfile.org/
http://www.fabfile.org/faq.html#why-can-t-i-run-programs-in-the-background-with-it-makes-fabric-hang


CERN Summer Student Report 2014

Installing offline In a server without Internet connection, download the necessary pack-
ages (conda packages are in miniconda/pkgs) and their dependencies and install using

conda i n s t a l l −−use−index−cache <package . ta r . bz2>

and

pip i n s t a l l <package . ta r . gz>

for pip packages.
The packages that need to be installed on the server side are found in the testool/python_packages

folder. It can be uploaded to the server and then:

conda i n s t a l l −−use−index−cache s e tuptoo l s −3.6−py27_0 . ta r . bz2 −−yes
conda i n s t a l l −−use−index−cache pip−1.5.6−py27_0 . ta r . bz2 −−yes
conda i n s t a l l −−use−index−cache da t eu t i l −2.1−py27_2 . ta r . bz2 −−yes
pip i n s t a l l ZConfig −3 . 0 . 4 . ta r . gz
pip i n s t a l l zdaemon−4 . 0 . 0 . ta r . gz

Ready miniconda A ready to use miniconda installation is prepared for the server (can
be found in testool/). Just extract it in a server directory and update the PATH
variable, by for example adding this line to .bashrc

export PATH="/path/ to /minoconda/bin :$PATH"

2.2.3.3 Set Up

Once the Python dependencies are met (see 2.2.3.2), the test tool assumes you have the
GenerateErrors project running in your server (and is the only one). Also it would be
convenient to have a host entry in the (local) ~/.ssh/config file describing the host
you want to access.

2.2.3.4 The configuration file

This is an example configuration file:

[ g ene ra l ]
test_name = TestTest
#Host should be con f i gu r ed in . ssh / c on f i g
host = tmachine
end = 13/8/2014 16 :00
generate_errors_path = /home/ unicryo /PVSS_projects/GenerateErrors
#Must be a f i l e in { Pro j e c t f o l d e r }/ logs tash_conf
logstash_binary = /opt/ l o g s t a sh /bin / l o g s t a sh
l o g s t a sh_con f i g_ f i l e = logs ta sh−con f i g−unicryo . c f g
#Take one measurement per minute
monitor_options = −−meas−delay 60
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#Continous manager
[ cont . d e f au l t ]
#ra t e i s messages per second
ra t e = 0 .5

#Peak manager
[ peak . short_bursts ]
r a t e = 0.001
number = 30000

#Another peak manager
[ peak . r egu la r_burs t s ]
r a t e = 0.01
number = 300

test_name Should be an unique string for every test. It is used in the file names and
the title of the plots.

host Is a string to access the server by the ssh protocol that could.

end_date When the test should end (as seen for the local machine clock).

generate_errors_path Is the (remote) path to the WinCCOA project with the ad-
ditional files of the repository (specifically the monitor script and the Logstash
configurations).

logstash_binary The path where logstash is.

logstash_config_file The configuration to use for logtash (must be a file in {Project
folder}/logstash_conf)

monitor_options Options to be passed to themeasure_eff_argparse.py script (see measure_eff_argparse.py
--help for details)

[cont.*] Starts a continuous rate error generator (cont_arguments.ctl) with the rate
(errors per second) given in the rate option.

[debug.*] Starts a continuous rate debug message generator (debug_arguments.ctl) with
the rate (errors per second) given in the rate option.

[peak.*] Starts a peak error generator (peak_arguments.ctl) with the rate (peaks per
second) given in the rate option and the number of erros per peak given in the
number option.

Any number of continuous and peak managers can be started.

14
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2.2.3.5 The code

The code should be understandable and easy enough to modify to eg monitor other
process. A few key points are:

• The running tests are kept track of in the .running.csv file. Only one test per host
can run at the same time.

• The program will try to remove all the WinCCOA logs before starting a new test.

• The run_detached function is responsible for starting the zdaemon process. It
returns the standard output of the command. The pid of the detached command
can be obtained with the parse_pid function. If the kill_on_end flag is set (yes
by default), the process will be stopped on the end_date.

• The program will generate a killfile on the remote machine which will sleep until the
end date and the stop the managers, logstash and the monitoring script. Another
killnowfile can be executed with fab stopnow to stop the tests at any time (if
executed directly on the remote server the .running.csv file has to be amended
after recovering the data).

• The monitor_decorator decorator can couple to the output of a run_detached
process and will start the monitoring script to that process. Currently it is only
applied to Logstash.

2.3 Results of Logstash performance tests
2.3.1 Set Up
The latest tests were performed on a machine that is alike those used in production:
cs-ccr-pvss2. There is a single system, GenerateErrors that generates log messages
in a way that mimics a typical running system (specifically, the PSEN1 system). The
produced error rates are:

• A continuous rate of 0.5 errors per second.

• Peaks of 300 errors every 100 seconds.

• Peaks of 30000 errors every 10000 seconds.

The processed log messages are sent to an Elasticsearch instance running in pcitco192.
A testing tool was developed to allow running tests in different configurations. This

allows to easy repeat the test with different machines and configurations. See here for
more details.
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2.3.2 Results
Here are presented the results for the first 17 hours of a still running test with the config-
uration specified in 2.3.1 (figures 2.3.1 and 2.3.2). Similar tests have showed analogous
results. The mean CPU usage is 4.27% (with peaks to up to 200% for a small amount of
time that are averaged out in the graph). The memory increased until it was stabilized
at 720 Mb, and until it jumped to 751 Mb. The garbage collector is expected to kick in
before memory usage reaches 1 Gb and free some memory.

Figure 2.3.1: CPU usage

2.3.3 Different configurations
The test and discussions have concluded that the best way to run Logstash is having
one instance per machine, and then sending the messages to Elasticsearch. A number of
different configurations were mentioned:

Several Logstash processes It was tested if several Logstash processes on the same
machine (running more two WinCCOA systems) would perform better. However,
since the Logstash has high initial memory costs (of starting the JVM and JRuby),
this is not the case. Also, the JVM processes do not share memory with each other.
The CPU usage was also worse in this configuration.

NFS mount It was suggested to have several log folders mounted on a central machine
trough NFS. However it was argued that this would generate too much network

16
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Figure 2.3.2: Memory usage

traffic for the possible performance gains in memory and CPU, and it was not
tested.

Offloaded parsing A Logstash configuration was tried in which only the minimum mes-
sage processing was done in the running system. This showed little CPU gains
(order of 20% of the total usage) and did not influence the memory usage.

2.3.4 Other considerations with Logstash
2.3.4.1 Problems with WinCC OA log rotation

It was shown that Logstash loses log messages when the WinCC OA log file is renamed
to with the .bak extension. It also loses the backup file when the original file is renamed
a second time. This could be solved by making clever use of the postLogFileHandler1

feature of WinCC OA.
Alternatively, making use of the standard Linux logrotate mechanism could con-

stitute a more robust solution and also more compatible with Logstash. This however
would not work for Windows systems.

1https://j2eeps.cern.ch/wikis/display/EN/howCanIPreserveMyPvssIILogfile
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2.3.4.2 Flush bug

The multiline feature keeps the last few log messages to be sent to Elasticsearch. See
this ticket.

2.3.5 Limiting resource usage
2.3.5.1 CPU

CPU usage can be effectively limited by setting the niceness of the Logstash process to
a high value. This will allow it to run at full speed when the resources are free while not
stealing CPU time from more critic processes.

2.3.5.2 Memory

The initial amount of memory that the Java process allocates can be controlled with
the -Xms option. Not setting this option will make the JVM heuristics decide the initial
amount of memory. Experiments show that regardless of the initial memory allocated,
the Logstash process will expand until it consumes around 700 Mb if allowed.
The maximum amount of memory (after which the process crashes) can be set with

the -Xmx option.
These options can be passed to Logstash by setting the JAVA_OPTS environment

variable before starting it.

2.3.6 Conclusions
Logstash consumes more resources than what one would expect for its functionality.
This is due to the many layers of abstraction it is built on (JRuby over a Java Virtual
Machine). However these resources amount for a small percentage of those available on
a production system running WinCC OA systems. Specifically, the Logstash process
consumes on average around 0.7 % of the total memory and 0.08 % of the CPU. Also,
these systems run typically at loads that are far from their maximum capacity.
Logstash is a tool in very active development, and it did seem easy to find and ask

for information when needed. It is also somewhat immature and a number of bugs are
to be expected (see 2.3.4) .
The requirements for developing from scratch a custom specialized tool that would

work instead of Logstash were also assessed2. This would involve significant costs of
development which would not pay off without the real need to optimize the process. Of
the off-the-shelf alternatives to Logstash, Heka looks promising. It should give better
performance, but it is newer and less tested than Logstash. It would also require to
rewrite the parser in the Go language.
The easiest and most obvious configuration of Logstash (one running instance per

system) should work well for a typical system.
2https://espace2013.cern.ch/en-dep-ice-scd-col/_layouts/15/WopiFrame.aspx?sourcedoc=/en-dep-ice-
scd-col/Shared%20Documents/Projects/JCOP%20Framework/Components/Central%20Logging/Hypothetical
%20Logstash%20substitute.docx&action=default
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3 Automatic relevance determination of log
messages

3.1 Introduction
In this chapter we propose a system able to determine automatically if a given log
message is important or not. The requirements for such system are:

Automatic While the system should use the knowledge of human operators to tell it
what constitutes an important message, it should be able to learn from that infor-
mation and classify the new incoming messages by itself.

Real time Typically the existence of an abnormal situation in a control system requires
an immediate action and therefore the classifier should be able to asses the impor-
tance of a log message immediately after it is produced.

Resource-cheap The classification process should not demand a big fraction of the com-
puting resources of the systems it runs in.

This solution should in no way be considered tested or production ready, but rather a
proof of concept worth to build upon. In Section 3.4 some fundamental limitations are
described, along with proposals to circumvent them.

3.2 Naive Bayes classification
A naive Bayes classifier is a simple probabilistic that can satisfy the requirements out-
lined in Section 3.1. It has several additional features that make it well suited for the
task:

• It is simple both to understand conceptually and to implement.

• It has proven to work reasonably well for similar problems (namely, many spam
filters are based on this approach).

• It is efficient for large datasets and a number of feature, and can be sequentially
updated (online training) without needing to access past data (except possibly to
compute some features).
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3.2.1 Messages to features
Given the message `, calculate an array of features:

`→ (x1, x2, x3, ..., xn)

Each feature can be a different data type. Some examples are:

• Categorical data: xi ∈ {’INFO’, ’WARNING’, ’SEVERE’, ’CRITICAL’}

• Numerical data: xi = #of similar messages

• Text, xi is the actual content of the log message.

Out of these, there are many examples and implementations to treat text and numerical
data (see for example the scikit-learn Python library [3]), however no implementation
was found to treat categorical data that was flexible enough and able to satisfy the
requirements in Section 3.1. Therefore a suitable implementation was developed as will
be discussed in Section 3.3. In the following we consider that the possible values of xi
correspond to some finite and possibly unknown a priori set.
It is possible to convert numerical to categorical data by binning it (assign different

labels to intervals in the allowed range of the variable), or if that is not desired, prob-
ability estimates of different naive Bayes methods can be combined together by simple
multiplication thanks to the statistical independence assumption.

3.2.2 Statistical independence
Statistical independence is the main assumption of the naive Bayes model, and the one
that is most often completely wrong. It states that all the features are uncorrelated and
the fact that the feature x1 has the value α1 does not affect the probability of any other
feature, for example x2 having a particular value α2. In this case we can write:

P (x1 = α2, x2 = α2, ...) −→
independence

P (x1 = α1)P (x2 = α2)

With this assumption joint probabilities turn into multiplications of individual proba-
bilities.
We estimate the probability of some feature having a particular value by simply di-

viding the number of occurrences of that value between the total number of occurrences
of the feature:

P (x1 = α2, x2 = α2, ...) = #(x1 = α1)
#x1

#(x2 = α2)
#x2

Note that we do not assume that the occurrences of x1 are the same than those of x2.
This allows to consider missing features (for example debug log messages do not have
the same fields as error log messages) and richer initialization options, as discussed in
3.3.2.1.
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Now for each set of values α = (α1, α2, ...αn) feature array x = (x1, x2, ..., xn) we want
to predict the target variable y:

y ∈ {’important’,’not important’}

We compute the posterior probability P (y = important|x = α) as a function of prior,
likelihood and evidence which we evaluate as:

Prior P (y) Counts for important over total counts.

Likelihood P (x|y) Counts for x over importants

Evidence P (x) Counts for x over total counts

The Bayes theorem states that the posterior probability is then:

P (y|x) = P (x|y)P (y)
P (x) (3.2.1)

and since we know how to estimate each of the variables, we can obtain a result for it.

3.3 Implementation
3.3.1 Discarded technologies
Some technologies were evaluated to determine if they could avoid the need to implement
the categorical classifier from scratch, but it was determined that this would lead to a
more complicated and less maintainable design:

Elasticsearch scripts Since the operations that are required are very simple, it was stud-
ied if they could be implemented using the Elasticsearch script API. However this
was found to be very constrained and underdocumented at present. For example,
the Python scripting only supports Jython 2.5 and scripts have to be run as eval
statements. While it would be possible to implement the classifier despite these
limitations, the difficulty and future maintenance costs do not seem to pay off.

Existing implementations The existing naive Bayes implementations (in particular scikits-
learn) were found to not be convenient for categorical features and online training:
The input is usually a fixed size numeric vector and categories are mapped into tu-
ples of numbers. Adding dynamically new possible values to the categories requires
the input vector to be resized, which is absolutely impractical.

3.3.2 Classifier
A categorical classifier was implemented in a way that is well suited for one-by-one online
training and to be smart about new unseen inputs.
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3.3.2.1 Classifier initialization

It is possible to set “blind priors” to enable the production of sensible outputs even before
the operators have started to manually sort the results in order to train the classifier:
The probabilities of P (x = α) are estimated as:

P (x = α) = #(x = α) + wx=α ∗ priorx=α
#x+ wx=α

Where priorx=α an estimation of a probability that a vector containing this value is
important and wx=α is a measure of how confident we are in this estimation. The bigger
it is the more messages must be amended for the classifier estimation to change. When
this is substituted in the Bayes formula (3.2.1) it will produce the appropriate result.
This feature allows to write code like this to initialize the severity feature:

b l i nd_pr io r s = { ’DEBUG’ : 0 . 5 , ’INFO’ : 0 . 5 ,
’WARNING’ : 0 . 7 , ’SEVERE’ : 0 . 9 , ’FATAL: 0 .95 ’}

bl ind_weight = 100
s ev e r i t y_ f = Feature ( ’ s ev e r i t y ’ , b l ind_pr ior s , bl ind_weight )

3.3.2.2 Valid input

The classifier is implemented in a way that allows for flexible valid input which can be
sorted out properly with the right initialization options. In particular all of the following
are valid input:

• Vector with missing features.

• Vector with new unseen features.

• Vector with new unseen value for a feature.

The implementation has the option to set default probabilities for unknown values, in a
way similar to 3.3.2.1.

3.3.2.3 Code

The code (bayesfilter/category_classifier.py) contains documentation of the most
important functions as well as some basic tests. The classifier objects can also be pickled
(saved as python objects) which is a basic way of storing the classification data.

3.3.3 Computed features
A proof of concept implementation of the classifier has been developed (file bayesfilter/
es_classifier.py). It uses a library of convenience functions to interact with the Elas-
ticsearch database bayesfilter/estools.py. The features that are considered are:

• Host name.
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• System name.

• Severity.

• Similar messages in the last five minutes.

• Identifier of the message (for errors).

3.3.4 Client-Server architecture

Logstash Elasticsearch

server.py

client.py

Parsed messages

Fetch
Classify

Display messages

Train

Figure 3.3.1: Representation of the relation between the components of the system.

The executable code of the sample is implemented as client and a server based on the
tornado1 library.

• Server:

– Polls ElasticSearch to find unclassified messages.
– Classifies the messages.
– Accepts user input to train the classifier.

• Client:

– Receives new messages from server.
– Classifies the messages manually to train the classifier

Client and server communicate using the Websockets protocol. This is a bidirectional
communication standard supported by the major browsers. It should allow to easily
implement the client code along the Kibana interface.

1http://www.tornadoweb.org/
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3.4 Future work
3.4.1 Intelligent weighting of messages
Using all the incoming messages to automatically train the classifier would lead to un-
stable behavior: A message repeating many times would dominate in all the probability
estimates for its features.
For example, if a system is stuck in a loop that throws a message with severity ’SE-

VERE’ and these are determined to be not important, then if these were automatically
fed to the classifier, the probability of the ’SEVERE’ trait corresponding to an important
message would approach zero over time. This is a known problem for spam filters, and
a strategy to address it is called tf-idf[4], which stands for term frequency-inverse docu-
ment frequency. The idea is that the weight of features values that occur mire frequently
is decreased compared to the less frequent ones.
Several decisions are needed in order to implement this, such as whether to apply

the weight reduction to similar messages (one weight per message) or to same category
values (different weight for each feature in the message, based on counts). In the first
case, a precise definition of similar messages is also required.

3.4.2 Computing other features
More informative features can be imagined than those outlined in 3.3.3.

3.4.2.1 Origin of the messages

An important shortcoming of the WinCC OA logs is the impossibility to determine in
which script or panel was the message originated. This could be resolved by standard-
izing the message strings in a way that they provide this information.

3.4.2.2 Incorporating text

Another addition could be using standard text classification techniques to incorporate
the raw text of the messages into the classification algorithm.

3.4.2.3 Pattern recognition techniques

Another group is working on the problem of determining automatically which situations
are important for an human operator using pattern recognition techniques. This has a
key advantage over the approach proposed here in that it is able to exploit the correla-
tions between different events, which are obviously very important in determining the
importance of a given state.
The naive Bayes approach is blind to the correlations between the features it trains by

construction. However this can be bypassed by computing features that are themselves
function of the global state of the system rather than only of the contents of the log
message. The feature “Similar messages in the last five minutes” that is computed in
the sample implementation is an example of this idea.
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Therefore one can imagine that patterns that are determined to correspond to impor-
tant situations are mapped into features of the log messages, whose relevance is finally
computed using the naive Bayes approach, which also takes into account the opinion
(and the evolution thereof) of the human operators in charge of the systems.
Some care must be taken in the performance hit caused by computing these features

if the real time classification capability is to be preserved.

3.4.3 Implementation thoughts
While the implementation of this idea is still a long way ahead, some ideas were briefly
discussed during the development of this proof of concept sample:

• Placing the server between Logstash and Elasticsearch (see 3.3.1) would give the
classification earlier and reduce database operations, since it would no longer be
necessary to retrieve the messages and update them with the classification infor-
mation.

• The performance (speed, memory, CPU) should be assessed for typical systems
compared to Elasticsearch. While the classifier concept is simple in terms of im-
plementation and computation, calculating some features might impact the per-
formance.

• The architecture allows for multiple processes performing classification and com-
municating with clients simultaneously. In this case some database technology
should be used to manage the classifier state and allow concurrent I/O operations.
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