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1. It has been already pointed out that, before sets of intervals were
studied for their own sake, various writers had had occasion to make use
of them, and had in this way virtually ohtained the Heine-Borel theorem
without, however, enunciating it. In particular this is true of Cantor,
Heine, Dini, and Darboux, in their proofs of the theorem that the pro
perty of uniform continuity, first considered by Heine, is possessed by
every continuous function.

'Ve do not intend·to enter further into these nlatters here.* It is ,
however, not only interesting but of some importance to notice that a
slight modification of Heine’s proof enables us to obtain a theorem, in
eluding the Heine-Borel theorem as a special case. 'Ve have indeed only
to retain that which is essential in Heine’s argument and reject that which
IS accessory.

The new theorem t so obtained is not only more general than the
Heine-Borel theorem; it leads to results unobtainable byapplication of the
Heine-Borel theorem· alone, and in particular to a number of theorems
relating to intervals which have been at the base of much of the work in
the modern theory of derivates and their integrals. The new theorem
accordingly may well be destined to introduce order into the somewhat
heterogeneous collection of theorems of the type of the Heine-Borel
theorem which have been formul빠ed and employed from time to time by
writers on the Theory of Functions of a Real Variable.

We propose in the present paper to state the theorem in question, and
to modify Heine’s reasoning in such a way as to render it .applicable for
the purposes of proof. For the convenience of readers, we give Heine’8
own brief demonstration ve'rbαtim. We then pass to the deduction as
corollaries of the theorems relating to sets of intervals above referred to.
It will be noticed that nowhere are transfinite numbers employed.

• The re훌dar may refer to a footnote in a paper entitled “ Note on Overlapping Regio:ps, "

by W. H. Young (1912) , Messenger of Mathematics , pp. 126,127.
t Bee below, § 3.
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2. As is well known, a continuous function I(x) has the property of
uniform continuity; that is to say , given any positive quantity e, we can
find a positive quantity d , so that, in any interval of length 등 d in the
fundamental segment, the oscillation of the function 같 2e; in symbols it
comes to the same thing if we say

Ilix+ h)-j(x) I~ e,
-d 같 h 등 d.

We proceed to reproduce Heine ’s proof of this property in the original. *

“ Bezeichnet Se eine beliebige Grosse, so existiert eine solche Zahl,
dass von x = α bis zu ihr hin I(x)-j(α) absolut 같 Be ist. Ein Wert de l'

dies leistet, ist del' grosste und macht zugleich f (x) -I (α) - Be = o.
Diesel' Wert sei Xl. In ahnlicher Art findet man eine Zahl X2 als die
grosste, welche bewirkt, dass von x =XI bis x= x2 immer II(x)-I(xl ) I같 Be

bleibt. So fahrt man fort; kommt man nach einer endlichen Anzahl n
von Operationen zu X 1t = b, oder findet, dass Ij(x)-f(짜- I) I von χ = Xn-I

bis x = b noch nicht Be uberschreitet, so ist de l' Satz bewiesen.
“ Es bleibt noch de l' F'all ubrig, dass kein n existiert, dass also die

Grossen Xl' Xi' ..• eine unendliche Reihe von wachsenden Grossen bilden,
die unter b liegen. Diese Reihe ware dann eine Zahlenreihe, deren Zahl
zeichen X sei: hervorzuheben ist ihre Eigenschaft, nach del' fur jedes n
die Gleichung besteht, I(xπ+ l) -I(꽤 = Be. Nun sei η。 von del' Be
schaffenheit, dass I(X) sich von I(X- η) urn weniger als e unterscheidet,
so lange η < ηo. Zwischen die Zahlen X- ηo und X mogen von de l'

Zahlenreihe X 1H Xn+b ••• , etc. , fallen, so dass Ijexπ+1)- j (xn ) I kleiner als
Be ware , wahrend andereseits es Be sein musste. Die zu Grunde liegende
Annahme ist daher unmoglich, und die Funktion ist eine gleichm없Big

continuirliche. H

The beginning of this proof contains the germ of a very powerful mode
of treating sets of intervals. Heine has, corresponding to each point x of
theclosed interval (a , b) , a set of intervals on the right and on the left
of x , with x as common end-point; these are the intervals for which

-Se등I (x+ h) -j(x) 등 Se (0 < h)

on the right, and - Be 같I (x)-j (x-λ) 같 Be (0 < h)

on the left.
These intervals, which, f6r fixed x , form a set of potency c, since they

include all the intervals with x as end-point inside anyone of them ,.

... H. Heine, Oct .• 1871, Jour~ 쩌r-reme ·u짜d angewandte Mathematik ,Vol. LXXIV, p. 188.
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Heine replaces by αn ~ιnique interval on each side oj the point x , namely
the smallest interval with x as end-point containing all the given intervals
on the appropriate side. We may call these intervals r :/C and l~. These
intervals have the property that some interval with x as end-point, whose
other end-point is outside 감 but as near to it as we please, is not an in
terval of the given set associated with the point X; and similarly on the
left there is such an interval, not associated with X and containing lx'

H'aving so reduced our intervals to an unique pair at each point, Heine
starts with the left-hand point of the interval, the point a , and takes the
corresponding in뼈rval r，α. Let Xl be its right-hand end-point; he then
takes 'rXl' which abuts빠 Xl with r a, and so on. He points out that, if this
process comes to an end after a finite number of stages, that is , if we
f1r r ive at a point Xη which is either b or lies to the right of b, the theorem
is proved. We have therefore only to discuss the possibility of th6
alternative hypothesis, that no such number n exists.

SuppQse this is the case, then the abutting intervals ra, rX1 , rX2, form
an infinite set of abutting interyals, and their end-points a , Xl' 쩍， form
a monotone sequence, proceeding towards the right. They therefore
define uniquely a limiting point X, to the right of them all.

So far Heine’s reasoning has been perfectly general and of a masterly
character. At this point, however, he descends to the artifice of a proof ad
hoc. The real point is hidden. This point consists in the -fact that in
side any interval whatever with X as right-hand end-point there is an
infinite number of the points Xi , say

Xπ， Xn+ }, Xll+2, ... ;

and therefore there is certainly an interval (x 1‘’
y,,,) , where Yn lies between

Xn+l and xπ+ 2 ， which is not an interval of the given set for either of its end
points xπ and yπ. Indeed it has been already pointed out that this is a
consequence of the characteristic of the unique interval rx,, '

On the other hand, there is an interval with X as right-hand end-point
which is such that every interval inside it is an interval of the given set.
'fhis is not in general a property of sets of intervals asaociated with the
points of an interval in the way ,we have been considering. It is a special
property of the set of intervals which Heine was contemplating. It
belongs, in fact, to the greatest interval throughout which

-e 같 f(X) - j (X - h}같 e,

in virtue of the fact that

f(X-hn}-j(X-h n+ l) =j(X)-j(X-hn+1)-j(X)+j(X-h녕 .

8BB. 2. VOL. 14. NO. 1228. I
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In fact there was no occasion to take Be, Heine might have taken 2e; he
took Be because he was using the special property that the increment over
anyone of his unique intervals rx and lx was exactly 3e, a property due to
the continuity of f(x). The introduction of this special property instead
of the general one that as near as we please to the point Xn+l there is a
point Yn such that the increment of f (x) over (x n, Yn) is greαtel' than 3e,
must, from our present point of view, be regarded as an artistic fault in
Heine’s proof.

The property which we have assumed in this latter part of Heine’s
proof is then that there is one of the given intervals on the left of X such
that every interval inside it belongs to the given set. A particular conse
quence of this property is that the interval 1'11 corresponding to any point
￠’ in this neighbourhood of the point X, reaches at least to X; and this
consequence is alone needed in the proof.

3. We are thus led to enunciate the following theorem.* 먹he proof
of the theorem is taken almost verbatim from Heine, as will be seen by
comparison with the above extract. For convenience of reference and
classification the theorem, though more general than any contemplated or
required by Heine, is therefore called the Heine-Young theorem, and a
similar nomenclature is adopted for the simpler corollaries from it.

It should be noticed that the proof of the theorem and of its first
corollary is independent of 않1e principle of arbitrary choice, and that it is
shown how in an unique manner the set of intervals required is to be con-
structed.

THEOREM (The Heine-Young Theo1'ern).-If with each point of a closed
segmeηt (α， b) we hαve αSSOC ltα ted α pαi1't of inten'als I냥 αnd ι， sμcλ thαt

(i) x is the left-hαnd end-point of l'x αnd the right-hand end-point
of ι ;

(ii) if x' is an internαl point of ι， then x is an i ’n ternal or end-poψ~t

of 1냥 ;

,.. This theorem was first enunciated by W. H. Young in his course of lectures on “ In
tegration and the Theory of Sets of Points," 1913, at the University of Liverpool. It is here
published for the first time. The second corollary, which is here called the Heine-Lusin
theorem, has recently been used explicitly by Lusin-indicating that it may be proved by
Lebesgue ’s device (see below, § ll)-for the purpose of proving theimportant result that a
CO?ιtinuous function cannot havq αt everypoi'tιt of a set of positive coηtent an infinite differential
coefficimιt. Lusin remarks that his theorem is not a special case of the Heine-Borel theorem,
even in its generalised form. He does not, however, observe that it is virtually this theorem,
rather than the Heine-Borel theorem, which is proved, but not enunciated, by Heine.

t In the ca.ge of the end-points a and b, the intervals Tb and l“ are not used, and need not
exist.
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then ψe can .find α finite nμmber of tλe i'ntervals r~， abutting end-to-end,
αnd cove깨ng over the wλole segment (a, b).·

By hypothesis there is an interval r a, with a as IAft-hand end-point;
let its right-hand end-point be Xl' Similarly there is an interval r';l' with
Xl as left-hand end-point. Thus we proceed; if after a finite number n
of these operations, we arrive at Xπ = b, or if we find that on arriving at
X lI-l the corresponding interval 1".);,, _ 1 contains b, the theorem is proved.

There remains only the case in which no such integer 11, exists, so that
the points Xl' 월， ... form an infinite monotone sequence each lying to the
right of the preceding, and all to the left of b. Let X be the limiting
point. There is then an interval lx with X as right-hand end-point. In
side lx there will fall all but a finite number of the points of the sequence,
since X is the limiting point and the seqnence is monotone and on the
left of X. Let x’‘’ Zπ+1 ， ... lie inside lx. Then, since Xι is an internal or
end-point of lx , 까’‘ must reach at least 3,S far as X , by the hypothesis (2).

But this is not the case, since it reaches only to Xn +l ' Thus the original
supposition is untenable, and the succession of points Xl' X2' .•• cannot be
infinite. This proves the theorem.

COR. 1 (The Heine-Young Theorem for α hαif-opeπ iπterηal} .-If the
interval (α， b) 상 α ιαif open interναl， open on the right, that is , if the
cond'itions of the theoreηι hold for every point except the point b, so that
tλe intervαl lb does not exist, the theorem is still tnιe 하 'W e s~μlb싫’1st쉰ituμιte a
Co1.μLμntablψY '/.찌nJ껴~n값ite 11/1(/ )

I매n f삶ac야t the reasoning of the above proof shows th뻐a따’ιt the po이In따t X can in
t야his case only be the point b.

4. We can now prove the following theorem, due to Lusin, as an
immediate corollary.

COR. 2 (The Heine-Lusint Theorem).--lf associated ψtll. every point
of a closed interval (a, b) we hαve αII the interva l:; with x αs end-point in
α certαin neighboμrhood of the point X 011 both sides,! the?ι a finite

,. It should be noticed that, though the conditions of the theorem refer to both I", and r""
the filling up of the segment is effected by the intervals r", alone. The en않ence of the in
tervals lx constitutesa restriction on the generality of the set of intervals 다·

t See footnote * on preceding page. N. Lusin, “ Sur un theoreme fonda.mentale du calcul
in뼈gral ， " 1911, Recu,eil de la Societe mathemat·앤1ul dB Moscoμ， Vol. XXVIII, 2, in Russian.

t As before, the neighbourho여s of a and b maybe taken to be only on that side of the
point in question which is towards the inte.rvdol (a , b).

I 2
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’Lumber of tλese intervals cαn befou,nd, αbμ tting end-to-eηd， αnd covering
/긴1 the segment (a, b).

In fact we only have to take for 까 (as Heine does) , the smallest in
terval with x as left-hand end-point containing all those of the given
intervals which have X for end-point, whether originally associated with x
or not, and for lx the given neighbourhood on the left of x. The condi
tions of the theorem are then satisfied.

Therefore there is a finite number of the intervals rx covering up (α ， b),
and abutting end-to-end. Let the points of division be

a , Xl' .•. , Xn-l , b.

'Ve may evidently assume that X n coincides with b, for we may suppose
that none of the given neighbourhoods reach further than b; the intervals
on the right associated with b do not enter into the reasoning, and may
be non-existent.

'Ve may therefore choose an interval of the given set with xπ- 1 as
left-hand end-point reaching either to b or to within the given neighbour
hood of b on the left. Thus, if this interval does not reach b, we may
choose in addition the interval abutting with it and reaching to b, since
this is one of the given intervals associated with the point b. Similarly
we proceed in each of the n divisions, and so obtain the required finite set
of the given intervals.

It is to be observed that it is only in the latter part of this proof that
the principle of arbitrary choice is assumed, and this only a finite number
of times.

5. COR. 3 (The He'ine-Borel* Theore1n).-If correspon값ng to eαchpoιηt

X of α closed segment (a, b) we αre given one or 1Jw re intC'J’vαls co따따n~ng

the point X αs internαl poiηt， then we cα11， find α j i-ni te number of these
inte'1'vαls ， so thαt eαcλ point of the closed segment (α" b) is αn ~ηternαl

point (not αn end-point) of one of tλese ~ηterναls .

In fact if we replace the given intervals corresponding to the point x
by all the intervals with x as end-point contained each in one of the given
intervals, we shall have the conditions of Cor. 1. Having chosen a finite
number of these new intervals in accordance with that corollary, we only

훌 E. Borel enunciated and proved this theorem in a note at the end of his “ These," re
published in the Ann. de l ’Ecole Norm. (3), Vol. XII (1895) , pp. 50 seq. It has been variously
proved since both by the author and others.
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need to replace each by one of the original intervals containing it, to ob
tain that which was required.

This again only requires a finite number of arbitrary choices.
The next corollary shows the power of the original theorem, as more

general than anJ’ required or tacitly proved by Heine.
It is by means of this Lemma, or Lemmas of the same form , that we

are enabled to deal with the question of the integration of derivates, as
well as that of the points at which the derivates are infinite, whereas the
Heine-Lusin and Heine-Borel theorem are inadequate for this purpose,
except in the case when a differential coefficient exists everywhere.

COR. 4 (Yoμng’S Fi1"st Lemma for a Closed Seg l1tent) .-If with each
point i of α closed inter1.'al (α ， b) αs left-hαηd end-point we αre g'wen α%

inte"·11al, or several intervals ‘ forming a fin,ite or infinite set , w~ cαnfi뼈 @

finite nuη~ber of these , noψhe're overlapping, and sμch that the content of
the complementary intervals ιs less thα'It any pre-αssigned positive
qltantity e.

Let G denote the content of the whole set of intervals, and let the
integer n be so chosen that

2G/n < e. (1)

Let us elongate each of the given intervals (x , x+h) on the left by one
μ-th of its length. Now let us define as rx the smallest interval with x as
left-hand end-point ‘ containing all the original intervals which in their
elongated form t contain x as internal point. Let us define lx as the in
terval with x as right-hand end-point of length kx/n , where kx denotes the
upper bound of the lengths of the original intervals with x as left-hand
end-point.

Then, if x is any internal point of lx,

n(x-x’) < kx•

Therefore there is one of the original intervals with x as left-hand end
point which in its elongated form reaches beyond the point x ’. Thus rx’
contains ox as internal point.

We may therefore apply the Heine-Young theorem, and obtain a finite

• An exceptional closed set of content zero clearly makes no di:fIerence.
t It i ,;; hardly necessary to point out that intervals, if any, which originally contained

x as 싸ternal point 훌re not here included; such an interva.l could, of course, not lie in rz ,
whose left-hand end-point is x.
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number of the 띠torvaJs 'r~， abutting end-to-end and covering up the whole
of (α， b).

Let the points of division be

α，- Xl' X2, ... , ‘Eπ- 2 ， Xn-l, Xn ·

Then, since X n is b or lies to the right of it, we can by the definition of
1";x:’‘_ I' which is (Xn- I, Xn), findone of the original intervals, which, in its
elongated form enclosed Xη- I， and whose right-hand end-point lies to the
right of b or at most at a distance (xn-xπ- 1) /n to the left of b. This
interval therefore covers up the whole interval (x-n-I, b) , excepting per
haps two complementary intervals, whose length is less than
2(xn-감-1)ln.

Similarly we choose an interval in each of the n segments between
the points α， Xl' ..• , X n • Thus we get n chosen intervals, nowhere over
lapping, and whose complementary intervals have a content less than

즙 {(xI-α)+ (X2-X1)+ · · · } =풍 (Xn-α) ,

which is less than Gin , that is , less than e. This proves the corollary.

7. It will be noted that in the Heine-Borel theorem we are able to 1'e
place the given sets of intervals correspon:ling to the points X by the set
of αII the completely open intervals containing the point x and lying in a
certain neighbourhood of the point x , namely the interval made up of 1"x

and lx' Such 섭ets of intervals were considered by W. H. Young.* He
introduced the terms “ tile" and “ point of attachment" for such an in
terval and its corresponding point, and, in the case in which to the point
of attachment we have corresponding αII the intervals in a certain neigh
bourhood of it , he speaks of a “ tile which may be chipped as much as we
please." Chipping a tile is, of course, removing a sub-interval containing;
an end-point and not containing the point of attachment.

The first theorem given by W. H. Young for sets of tiles was
originally called an extension of the Heine-Borel theorem;t in virtue of
the second theorem given by the same author it lllay be called “ The Tile

* “ On an Extension of the 표eine-Borel Theorem," 1904 , Messenger of Mathemat‘C8 ,
“ 'fhe Tile Theorem," 1904, Proc. L01띠em Math. Soc., Ser. 2, Vol. 2, pp. 67-69.

t See next footn야e.
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Theorem for a closed Segment , " and is again a corollary from our
theorem:-

COR. 5 (The Tile Theorern for a Closed Segment).-Given a set of tiles,
which may be chipped as m'uch as ψe please, αnd μ，hose points of αttach

ment .fill 'l앵 α closed segment (a, b), then we cαn dete'rη짜ne α 껴nite nμmber

of the tiles haν썩 the following prope'rties :-

(i) The length of eαcit tile dp i is lp-ss thαn e.

(ii) Eacλ point of (a, b) is coηered by one or more of the chosen
tiles dp ,.

(iii) The point oj αttαchment Pi Of the title dP i is not covered bν αny

other of the chosen tiles , but only by its own tile. dp ,.

(iv) Tλe S'U11t of the tiles differs from the content of (α， b) bν less
thαne’.

Here e and e' are any assigned positive quantities.
In order to satisfy the condition (i) we omit at once all tiles of length

늘 e.

Let us take for 1"x the smallest interval with x as left-hand end-point,
containing all those parts of tiles to the right of the point x , such that the
tile contains x , and its point of attachment is x or lies to the right of x.

Let lx be defined as the smallest interval with x as right-hand end
point containing all those parts of tiles to the left of the point x whose
point of attachment is x. Then, if x' is internal to lx, there is a tile with
x as point of attachment containing x': hence, since x lies to the right of
z ’ , 'I냥’ contains this tile, and therefore contains x.

The conditions of the Heine-Young theorem are thus satisfied.
There is therefore a finite number of the intervals rx covering up (，α， b)

and abutting end-to-end. Let the points of division be

α， Xl' , Xη - It Xη ·

Now, since rXn _
1

is (xη-It X n ), and contains b as internal point, or as

the end-point xn, we can find in (Xn-h X n) a tile containing xπ- 1 and whose
point of attachment is either X n-l or lies in the completely open interval
(Xn-h X,‘) (but cannot coincide with xπ) ， and which reaches as near as we
please to xπ. Thus, if b does not coincide with Xη， this tile covers both
자-1 and b. But if b coincides with x"', we can make this tile reach so
near to b that the abutting interval required to reach b is part of one of
the tiles associated with b. Thus we get one or two abutting tiles
covering xπ-1 and b.
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Again , since 1"x" _2 is (X n-2 , Xn-1) , there is in it a tile whose point of

attachment is either X n-2 or lies in the completely open interval

(x，，_잉， Xπ- 1) ， but does not coincide with X n-1 , and which reaches so near

to xπ- 1 that the abutting interval required to reach X n is part of the

tile first chosen. 'Ve may then , by suitably chipping off from the first

tile a part to the left of xη _h and therefore to the left of its point of

attachment, ensure that the first tile does not contain the point of attach

ment of the second tile, and that the common part is less than e’ /η.

Similarly we treat the remaining segments in order, and so get a finite

number of the given tiles, the sum of whose lengths differs from that of

(α， b) by less than e’ , covering over the whole of (α， b), and satisfying the

condition (iii). This proves the theorem.*

8. The theorems which we have been discussing for a closed interval

might equally well have been stated for a closed set; the reasoning re

quires no sensible alteration, only we have on occasion to prove that

certain points belong to the set, e.g., the point X in the proof of the first

theorem, and we have to remember that instead of abutting intervals, we

have intervals which do not overlap, and whose complementary intervals

are free of points of the closed set, that is, are the whole or parts of black

intervals of the closed set.

.. The proof originally given of the Tile Theorem is imperfect , owing to the fact that ,
though a tile may be chipped as much as we please, we must not chip off the point of attach
ment; in consequence the chipping demanded on p. 68 , loco cit. , lines 20 , 21, for instance, is
not always allowable. This remark refers to both the papers quoted. In fact the proof de
pended in the first instance on the Heine-Borel theorem, which, without previous preparation
of the tiles, is certainly insu닮cient for the purpose in hand. It is only by the use of the more
powerful theorem here given that the result has actually been obtained. In fact , if the closed
segment be (0. 1) and the given tiles are such that they can be reduced by means of the
Heine-Borel theorem to the two tiles (-융， 융) with 흥 as point of attachment , and (융， 읍) with 융

as point of a야achment， no chipping will cause these tiles to have the property (iii).
The theorem here given ('rile Theorem for a closed Segment) was originally used by

W. H. Young to prove that the upper integral of the sum of two upper semi-continuous
functions was the sum of their upper integra쇄. This was thus proved before it was shown
that these upper integrals are , in fact , the generalised integrals in this case. The general
Tile Theorem, a proof of which is given in the present communication, was applied by the
same author (‘ • General Theory of Integration ," 1905, Phil. '1￥am. (A) , Vol. 204 , p. 235) to
prove that the upper integral of a function with respect to a measurable set S was the lower
bound of the corresponding upper summations. The proof there given seems not to utilise
the property (iii) , given by the Tile Theorem; this is, however, only due to a small error of
caloul하ion at the bottom of p. 235 , “ less than " being used for “ greater than "; the correc
tion will afford no difficulty to the careful reader.

π~.B.-D. Mirimanoff has just shown me a very elegant proof of the TIle Theorem
founded on the reasoning in the original paper, and involving an ingenious prepara.tion of the
해es. He is going to publish this.-G. E. C. Y. (Written after completion of paper.)]
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It is , however, still more clear if we deduce these theorems from 야lOse

stated for the closed intervals, using the artifice of associating with each
point not belonging to the closed set a set of intervals of the same form
as that associated in the enunciation with each point of the closed set: but
lying in the black interval containing the point in question.

We thus have the following theorems :-

THEoREM.-1f ψth eαch point x of α closed set S we have αSSOCtαted

apα1，r융 of intervals 자 αnd lx, sμch thαt

(i) x is the left-hand e ηd-poiηt of '1냥 αnd the right-hand end-point
of ι;

(ii) if x ’ 1,S α poi'nt of S internαl to lx, then x is an internal or end
point of '1냥 ;

then we cα% πnd α finite nU'1nber of the intervαls 1'x, non-overlαpptng α.nd

contαining every point of S as internαl or end-point.

COR. 1 (Generalised Heine-Lμs낌 Theore l1d).-1f associated 따th eαch

point oj a closed set S ψe hαve αII the intervals with x αs end-point in α

ce'rtain neighbourhood of the poin t x on both sides , then a finite n1.l1nber

of these intervals can be fmιnd， non-oηerlαpp'ing ， αnd contαining all the
points of the closed set S αs internal or end-points.

COR. 2 (The Generαlised Heine-Borel The01'mn).-1f corresponding to
eαch point x of α closed set S μ)e are given one or mo're inte'J'vals contain
ing the point x αs 상n tC1YLα1 point, then we can }ind α πni te number of these
intervαls ， so th따 eαch point of the closed set S is α11， internal point (not
an end-point) of one of these intervαls.

COR. 3 (Yoμng’sF，ψ'st Lemm따).-1f ψth each point of a closed set
S as left-hαnd eηd-point ψe αre gtven αn interval, or severαl intervals,
forming α fi낌te or i.，혀떠te set , we can 껴ηd a ftηite number of these no
where overlapping, and sμch that tλe sμb-set of S in the complementary
intervals cα11， be enclosed in a finite number of iπterηαls wλose content is
less tha'Jι αny pre-assigned pos섬ive q'lιantitye.

• In the case of the end-points of the black intervals onlyone of these intervals need
exist, viz. , that on the contrary side to the black interval, if it is uniquely determined by the
point (as will be the 'Case if S is perfect) , and when x is an end-point of two black intervals
(i.e. , x is an isol와ed point of S) , it is immaterial whether it is lx or rr which exists.

t N.Lu밍n， loco <lit.
:t: w. H. Young and Grace Chisholm Young, “ On the Existence of a Differential Co

efficient,,. 1910, Proc. LOt닝on Math. Soc. , Sere 2, V여. 9, pp. 325-335.



122 PROF. W. H. YOUNG a뼈 GRACE CHISHOLl\I YOUNG [May 14,

COR. 4 (The Tile Theo-rem for a Closed Set).-Giηeπ α set of tiles ,
w값ch may be chipped as 111;μch as we please, αnd whose points of αttach

1Mπt fill μp a closed set S , then ψe can deterntine a finite number of the
tiles having the follo1.lψ1，g properties :-

(i) The length of eαch tile dp i is less than e ..

(i쩨11피i) eac짜It po“nn까lπt of S·i삶s cω0이1)깨’Je'，씬e'，감re뼈d b띠y o~이ne

(피iii) the po“1，.11，짜lπt of α따ttachλ?ηmeηnen따l띠t of α%ηy c뼈hal/en tμi싱lμe 1，.삶s onιlψy cωoω)η)Velαre뼈d b따Y t뻐λ@따t

tile, and not by any other of the chosen tiles;

(i끼 the Slιm of the tiles differs from the content of S by less tlzαn e' ;

λere e αnd e’ αre αny ass'igned posit'ive quantities.

9. The theorems hitherto obtained involve, as has been pointed out ,
the principle of arbitrary choice at most a finite number of times. The
following theorems involve it a countably infinite number of times.

THEORE:\1 (Of the Equiυαlent Countαble Set of Overlα'Pping 1:η tervαls) . •
-Gψen α set of overlα'Pping intervαls， we cαn determine α coμntable set
from arnong tλern haψ1，g the sαme internal points, the sαme external
points and the sαηte isolated end-points αs the give·n set.

The points not internal to the given intervals form a eloRed set, whose
black intervals, considered as cOlllpletely open intervals, consist precisely
of the internal points of the given set of overlapping intervals. Since
these black intervals are countable, it is only necessary to prove the
theorem in each oE them separately, and it will follow that the theorem ,
as stated, is true.

Let then (α， b) be anyone of these black intervals and M its middle
point. Corresponding to each point x of the completely open interval
(a, b), we define the pair of intervals lx and '1'x as follows :-

lx isthe smallest interval μ，i tk x αs right-hand end-point contαψιtng

the l강't-hαnd end-points of αII those of the given intervals ψ}l/1;ch

contain x αs internal point;

r'x is defined in like mαnner， interchanging left αnd rigλt.

.Now, if x' is a point of lx, there is one of the given intervals containing
hoth x and x' as internal points; therefore x is internal to 1'x'.

• W. H. Young, “ Overlapping Intervals," 1902 (not 1903) , Proc. London Math. Soc. ,
Ser. 1, Vo l. xxxv, pp. 384-386. Subsequent proofs have been supplied by the author and
others. The present proof is a fresh one.
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Thus we may apply the Heine-Young theorem for a half-open interval
(Cor. 1, § 3 supra) to the interval (}[, b).

Interchanging left and right, we may apply the same theorem to the
half-open interval (a, M), using the intervals lx instead of r, to cover it up.

We have therefore the whole interval (a, b) covered up by a ceuntably
infinite set of the abutting intervals lx and r x• But each of these can be
covered by two of the given intervals; for instance, if (c, d:) is an interval
re, there is an interval of the given set covering c and reaching so near to
d that it overlaps with ltl' and therefore with one of the given intervals
containing d. This therefore proves the theorem in so far 3,S the internal
points are concerned.

That such It set has also the same isolated end-points, external points
and semi-external points as the given set is easily seen. Indeed an end
point of a set of intervals is a point which, without being an internal
point of the intervals, is the extremity at least on one side of an interval
consisting entirely of such points; thus the identity of internal points
enforces also the identity of end-points. If the end-point is an isolated
one, it is the common extremity of two completely open intervals, one on
each side of it, one at least of which consists entirely of internal points of
the intervals, while the other either does the same, or contains none of
these internal points; a semi-external point, however, has no such interval
on one side of the point, while on the other there is the interval required
to define the point to be an end-point. In both these cases, therefore, the
identity of internal points renders the defining property invariant.

This proves the theorem.
It should be noticed that the construction here given is such that, Ul·

any closed interval containing only internal points of the set there is only
a finite number of the given intervals.

10. The proof of the Tile Theorem in its general form, which also in
volves the principle of arbitrary choice a countably infinite number of
times, will now be given by means of the Heine-Young theorem.

THEOREM (The Tile Theorem).-Given a set of tiles, each of which may
be chipped as much. as is convenient, whose points of attachment fill up a
measurable set S; we can determine a finite or countably infinite 'number
of the tiles, having the following properties :-

(i) the linear dimensions of each of the chosen tiles dP j are less
than e ;

(ii) each point of S is covered by one or more of the chosen tiles;
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{i피 tλe point of attach'lnent Pi of the chosen tile dp t is -not covered bν

αtty other of the chosen t'iles, bμt only by its own tile dp . ;

(iv) the sum of the tiles d(lfers frorn the content of S by less thαne’ ;
here e and e’ αre αny assigned small positive qμantities.

By the definition of the content of a m'easurable set, we can find a set
of non-overlapping intervals of content lying between Sand S+훌e’ ， and
having all the points of S as internal points. Since the tiles may be
chipped, and their points of attachment are all inside these intervals, we
may so chip them that they themselves all lie inside these intervals.
Whatever set of the tiles we then choose will certainly ha\"e content less
than S+융e’ . We shall suppose all the tiles chipped so as to satisfy the
condition (i). If we now show how to choose the tiles, so chipped, so as
to satisfy the condition (iii), it is evident that we can further chip the tiles
so that the sum of their overlapping parta, which contain no point of
파tachment ， is less than 융e’ ; the sum of the chosen tiles will then differ
from their content by less than 훌e’ . If the chosen tiles then contain the
whole set S , their content will lie between Sand S+훌e’ ; and ther엉

fore their sum will differ from S by less than e’, so that the condition (iv)
will be satisfied.

It remains therefore only to show how to choose the tiles so as to
satisfy the conditions (ii) and (iii).

We may evidently suppose that the tiles are so chipped that their
points of attachment are their middle points. Let q.v denote the right
hand half of dx' The point of attachment of such a half-tile qx is then
its left-hand end-point, and the half-tiles may be chipped on the right
as much as we please, but not on the left at all.

These half-tiles for values of x in the set S fill up a set of non
overlapping intervals, whose internal points are the same as those of the
half-tiles, and w40se left-hand end-points are either p.oints of S or limit
ing points of S , while the right-hand end-points are certainly not points
of S. Let these intervals be arranged in the usual way* in order
(AI' B I ) , (A 2, B비， ....

Let (~， bl) be a closed interval inside (A b B I ) , which, if Al is a point
of S, is such that al coincides with AI; for the moment we shall neglect
this latter case, but return to it subsequently. With each point x of the
closed interval (aI' bl) we can associate a pair of intervals lx and '1’'x, where

* Sothat greater intervals precede smaller, and of two equ와 intervals that oomes first
which liesmQre to the left.
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lx is the least interval with x as right-hand end-point containing all the
points of attachment of half-tiles containing x as internal point, and rx

is the least interval with x as left-hand end-point such that lx+1'" contains
all those half-tiles. Then, if x' is a point internal to lx, there is a half
tile containing both x and e', so that x is internal to 1'x·. We may there
fore apply the Heine-Young theorem.

We have thus a finite number of the intervals 1'>:; covering every point
of the closed interval (aI, b-), Let these be t·l , 1"2, ... , 1'"" and the points
of division be P, or all P 2 , Pa, ••. , P"" and P"'+l beyond bl •

Then, by the definition ofr>:;, every point internal to it may be the
right-hand end-point of a half-tile containing its left-hand end-point x.

There is therefore a half-tile ql containing Pm and bt • If QI be the
point of attachment of ql' QI falls between two of the points of division,
say Pi and P i+ lo or coincides with one of them, say P i+ h where 'i is less
than m.

We then complete this half-tile by adding on a piece on the left so
small as not to reach to Pi. We can then, since PiPi + 1 is rp i and con
tains QI, find a half-tile containing Pi and overlapping with the first
chosen tile, but so little as not to contain QI- We then treat this tile
as we did the first chosen tile, and go on a stage further. After at most
m stages therefore we shall have obtained at most tit tiles, covering over
the closed interval (aI' bt), and such that none of their points of attachment
lie in the parts where they overlap. Let (a;, bD be the interval thus
tiled over, containing (aI' bl ) and contained in (AI> B I) .

Bisecting the intervals (AI' a;) and (b;, B t ) at ag and b2 respectively,
we can in like manner cover over (ag, a l ) and (bI> bg), previously chipping
all the tiles whose points of attachment are not internal to the tiles
already chosen so as not to contain any of the points of attachment of
those chosen tiles.

We thus add on to the tiles first chosen a finite number of tiles so as
to cover the larger interval (ag, bg), and still to have the required property
that the point of attachment of any chosen tile should not be covered by
any other of the chosen tiles.

Thus we proceed stage by stage to cover intervals (ag, bg) , (aa, ba) , ... ,

each lying inside the next following, and approaching (AI' B t ) at'! limiting
interval. We have thus defined such a countable set of the given tiles as
was required, covering every point of the completely open interval (AI> B I ) ,

and having the required property.
Here we have assumed that Al is not a point of S. In the contrary

case the argument still holds, the intervals (AI' at), (ag, a l ) , ••• disappear
ing altogether. We only have to remark that, in this case the chosen tile
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containing Al must have Al for point of attachment, since there was no
half-tile containing points internal to (AIBI) whose point of attachment
lay outside (AI' B I ) . We may then choose the left-hand end-point of this
tile so as not to be internal to any of the intervals (AiBi), for AI , being a
point of S cannot be a right-hand end-point of one of the intervals (AiBi),
so that there is certainly a sequence of points external to the intervals
(AiBi), and having Al for limiting point. We may then omit fronl
consideration all those of the intervals (Ai, B i) which lie in this tile.
Thus, whereas in the former case, when Al is not a point of S, we go on
to (A 2, B 2), in this latter case we should go on to that (Ai, B i) which
has the lowest index i among those not already omitted.

Proceeding thus in order through the intervals (AI' B i ) we obtain a
countably infinite set of the given tiles covering every point of S, and
having the required property (iii). This proves the theorem since the
remaining conditions were already satisfied.

11. Lebesgue* in his proof of the Heine-Borel theorem has introduced
a very valuable principle, which is itself in embryo in Heine’s proof.
Heine, as we have seen , replaces all the given intervals with α as left
hand end-point by the smallest interval containing them , which is in his
case at the same time the larg‘est of these given intervals. Lebesgue re
places all the interval용 ￦ith a asleft-hand end-point in which the theorem
is trμe by the smallest interval containing them. In replacing the actual
point b by a hypothetical point X, Heine has passed from the considera
tion of a closed interval (α， b) ahout which we cannot yet affirm that the
theorem is even approximately true, to a hypothetical interval (α， X) , open
O~ the right,which is such that in every suf좌cientlysmall interval contained
in it the oscillation of the function is less than 6e , that is to say a certain
approximation to the theorem is true. Lebesgue’s device consists in
taking a hypothetical interval (α， X) , the smallest interval containing all
the intervals with α as left-hand end-point in which the theorem to be
proved is itself true. That such an interval, if it does not reach to , b,
lTIUst be open on the right is evident, since otherwise we could extend it
on the right, by adding on one of the given intervals associated with the
point x. It remains therefore only to show that such an interval (a , x)
cannot be open on the right.

This principle of Lebesgue’s enables us to prove theorems which would
seem to lie beyond the scope of the methods so far used.

• H. Lebesgue, Le~ns sur Z’Integrat1mι， 1904 , p. 105.
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el > e2 > eg ••

We shall apply this principle first to prove Young’S Second Lemma,
which includes Young’S First Lemma as a special case.

YOUNG’S SECOND LEMMA.*-If ψtλ eacλ point of α closed inte1"val
(a, b) as left-hand eηd-poiπt， 'W e a 'l ’e giηen αn interval, or seve1'αl 'inter
ναls ， forming α .fini te or in.πnite set , ψe can fiι뼈 α finite nμηtber of the
giηen 1/1ιtervαls ， no'Where ove-rlapping, and sztCh titαt the comple1nentary

intervαls， ω. gaps, hαve lengths which are 1'espectivelν less tilαn d~fferent

terms of αny chosen monotone descending seqμence.

Let ra denote the smallest intervaJ with α as left-hand end-point COl1 

taining all the intervals with α as left- hand end-point in which the theorem
is true, r“ taking the place of (α ， b) in the enunciation. rrhere must be
such an interval 1"a, because the least interval containing all the given
intervals associated with the point a is such an interval in which the
theorem is true. Then , if Ta contains b as internal or end-point, the
theorem is true in (α， b) . If not, let, if possible, a point X, internal to
(a , b) , be the right-hand end-point of rα . Then X determines at least one
interval D x of the given set. t If therefore the theoreUl is true in (α ， X) ,
it is true in the larger interval got by appending D x to 1'a . Since 1'a ,
however, contains all such intervals with α as left-hand end-point , this is
impossible. Therefore the interval (a , X) , if it exists, nl l1st be open on
the right, that is to say, the theorem is not true in (α， X).

But we see at once that this is impossible. For if y be a point of
(α， x) at a distance from X less than el , the theorem is true in (a , ν) .

Therefore taking the. monotone descending sequence

e2 > eg > ...,

each of whose terms is supposed less than el , we can find a finite number
of intervals from the given set, non-overlapping and such that the re
maining parts of (α ， y) are respectively less than different terms of this
sequence. Since (y, x) is less than el' it follows that these chosen inter
vals cover over the whole of (α， X) except a finite number of gaps which
are respectively less than different terms of the monotone descending
sequence

Since this iEt any monotone descending sequence, this proves that we ,were

# “ OnDerivates and their Primitive Functions," 1912 , Proc. London Math~ Soc. , Sar. 2,
Vol. -12, pp. 210-212.

t If we wish to be more definite, we can take the smallest interval containing all. the
intervals Dx. We c훌1 in what follows then append, not Dx, but say, h싫f of 1Y'~
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mistaken in supposing that the theorem was not tru~ in (a , X). Th us, by
a redμctio ad absurdμ11ι it is proved th와 the theorem is true.

12. As before, using the artifice of associating with each point not
belonging to a certain closed set an interval, or set of intervals, contained
in the corresponding black interval of the closed set, we have the usual
generalisation of the preceding Lemma.

YOUNG’S SECOND LEMMA IN ITS GENERALISED FORM.-If ψth eαcit point
f α closed set S αs left-hαnd end-point, we are give·n αμ intervαl， or
several intert'als forming α finite or infinite set , μ'e can find α finite
n~ιmber of the given intervαls， nowhere overlαpping， and sμch til，αt， in the
complementαry intervals the points of S cαn be enclosed in α 껴ηite nμη'l， 

ber of extra intervals, not overlαpping with one α'nother， or with the
chosen intervals, and whose lengths αre respectively less thα11， di함rent

terms of anν chosen monotone desceηd낌9 seqμence.

13. It does not seem that this principle of Lebesgue’s will aid us in
obtaining a proof of Lebesgue's own Lemma, the enunci와ion of which is
as follows :-

LEBESGUE’s LEMMA.-If 떠th each point of a closed intervα1 (α， b) as
left-hand end-poiηt we are givθ'l， an interval, or sevel'α1 inte'rvals,f01'miηg
α finite or in.쳐낌te set , we cα% ‘iηd α countαble set of the intervals, ηDn 

overlα'Pping ， and contαining every point of the closed interval (a, b) as
낌terηα 1 or left- hand end-poiηt.

Such a set of intervals is said to form a Lebesgμe chain, stretching
from a to b.

In fact , if (α， X) is , as before, the smallest interval containing all the
intervals (a, y) in which the theorem is true, it is perfectly true that if yl
is a point of (a , X) , and y2 another point of (α， X), between Yl and X,
there is a Lebesgue chain stretching from a to Yl' and another from a to
Y2 , but it does not follow that these two chains have a common end-point,
so that we can replace the first chain by a part of it which is also a part
of the second chain. If we could make this assertion, we could find a
series of chains, each con뻐ined in the next, and having X for the limit
ing point oftheir right ·hand end-points, from which we could conclude
that there was a Lebesgue chain stretching from α to X. As this asser
tion cannot be made, we cannot draw any such conclusion, and the
method seems to fail.

If, however, with Pal," we consider only the special case of the Lemma

• J. Pal, “ Beweis des Lebesgue-Young’schen Satzes," 1912, Bend. eli Pal. , Vol. XXXIII,
pp. 352 , 353.
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where there is a definite interval connected with each point, and not Bo

set of intervals, we can prove the missing point, and so apply the argu
ment to obtain the required proof without Cantor's numbers.

In fact, from the definition of a Lebesgue chain it follows that, what
ever property we may take as a test, there is always a nearest interval
of such a chain to a, having the required property; it is in consequence.
of this that the intervals of the chain form a well-ordered set. For, if
not, we could choose out an infinite succession of intervals of the chain
having the property, each lying to the left of the preceding. These
would accordingly determine a limiting point Y to the left of all of
them and not to the left of a. 'I'he interval of the chain to which Y is
an internal or left-hand end-point must therefore overlap with some of
the intervals of the succession, contrary to the property of the chain
that its intervals are non-overlapping, Thus the assumption cannot
be true, which proves the statement made at the beginning of this.
paragraph,

Now let L 1 denote the part (or whole) of the Lebesgue chain from a
to Yl got by omitting any of its intervals to the right of that which
contains Yl' and let L 2 denote the second chain, that from a to Y2,
where Y2 lies between Yl and X, as in the argument given above. Then,
by what has just been proved, there is a nearest interval of L 1 to a
which is not an interval of L 2, or else every interval of L 1 is an in
terval of L 2, in which latter case L 1 is a part of L 2 , which, as we
have seen, will suffice for the purposes of proof. Suppose then that
this latter is not the case, and let Y be the left-hand end-point
of the interval of L 1 nearest to a, not belonging to L 2- Then all
the intervals of L 1 to the left of Yare intervals of L 2, and there
fore are identical with the part of L 2 to the left of Y, since the
intervals so characterised cover over every point of (a, Y), and the in
tervals of L 2 do not overlap. Hence Y cannot be an internal point of
any intervals of L 2 to the left of Y, and must therefore be a left-hand
end-point of an interval of L 2 not belonging to L 1• But, by the hypo
thesis that there is only one of the given intervals associated with the
point Y, and this interval is an interval of L 1, which is a contradiction.
Therefore this assumption is untenable, and L 1 is a part of L 2-

Thus in the special case when there is only one interval associated
with each point, and not a set of intervals, it appears that the principle
of Lebesgue will afford us a proof of the Lemma without the use of
Cantor's numbers. In the applications this simplified form of the
Lemma will often suffice, in fact, it suffices to prove the theorems of
Lebesgue on the derivates of continuous functions, owing to the. fact.

SER. 2. VOL. 14. NO. 1229. K
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that the intervals (x, x+h) associated with a point z, being characterised
by an equality of such a form as the following

[f(x+h)-f(x)] / h -c e,

include, by reason of the continuity of f (z), a largest such interval, which
may accordingly be taken to be the unique interval associated with the
point x. In the more general theorems in the Theory of Functions of It

Real Variable of the type of Lebesgue's theorems, however, we have no
such unique interval, and we are bound to have recourse to the general
form of Lebesgue's Lemma, or to employ other means.

The only proof" extant of Lebesgue'S Lemma is that sketched by him
on p. 62 of his Leeons sur l'Integration (1902), and written out at length
in "Functions of Bounded Variation," by 'V. H. Young and Grace
Chisholm Young, Quarterly Journal of Mathematics, Vol. XLII, p. 73
(1910). It depends on Cantor's numbers of the second class, and involves
for the purposes of proof those of still higher classes.

On the other hand, Young's Second Lemma, which has shown itself
capable of achieving all that has been effected by Lebesgue's Lemma, and
has served to prove fresh results, has here been proved t without the
introduction of Cantor's numbers, or even of that of transfinite ordinal
types.

• In our paper" On the Existence of a. Differential Coefficient " (1910), Proe, London
Math. Soc., Ber. 2, Vol. 10, pp. 332 seq., an attempt was made to show the virtual identity of
Lebesgue's Lemma with Young's First Lemma, and, in point of fact, the reasoning there
given deducing the latter from the former was correct; the proof of the remaining half of the
statement seems to contain a flaw, so that a rigid proof of Lebesgue's Lemma without Cantor's
numbers is still a desideratum. Lebesgue's Lemma, as stated above, though it involves the
distinction of right and left, does not contain the idea of order, nor do transfinite numbers
enter into its enunciation. On the other hand, we have shown that all the results which have
been obtained by means of it including all Lebesgue's results, can be obtained without the
use of transfinite numbers. Indeed although the flaw in question is unfortunately repeated
in the proof of Young's second Lemma without transfinite numbers in the paper" Derivates
and their Primitive Functions" (1912), Proc, London Math. Soc., Ser. 2, Vol. 12, p. 212, the
proof given in the present paper may be substituted for it, so that the main argument of the
paper applies equally whether the use of transfinite numbers be allowed or not. It may be
well to point out that the original flaw, which occurs in the second paragraph of p. 333 of
Vol. 10, is due to the fact that at each stage intervals will have in general to be omitted, as
being too large for the gaps in which we are operating. This requires the intervals at each
point to have zero as the lower bound of their lengths, a condition which is not demanded in
the enunciation on p. 332. Moreover, even if we add this demand to the enunciation the
interval (c, c + he), referred to on p. 333, would be certain to drop out at some stage. It is
moreover evident that, when there is an unique interval associated with each point, the
Lebesgue chain from a to b is unique, whereas the intervals obtained as in Young's Lemma
may, in general, be chosen in a variety of ways, with end-points not coinciding with those
of the chain. This shows the impossibility of deducing Lebesgue's Lemma from Young's.

t See preceding footnote.




