SULLA DERIVATA SECONDA MISTA DI UN INTEGRALE DOPPIO.

Nota di Guido Fubini (Torino) e Leonida Tonelli (Parma).

Adunanza del 13 febbraio 1916.

I.

(da una lettera di Leonida Tonelli a Guido Fubini).

Egregio Professore,

Desidererei sottoporle la seguente questione. Consideriamo la funzione

$$F(xy) = \int_0^x \int_0^y f(xy) dx dy,$$

dove f(xy) è una funzione integrabile, nel senso del Lebesgue, in un certo campo A, contenente l'origine (o, o). Il Lebesgue ha dimostrato (ed è molto facile il vederlo) che, quasi dappertutto in A, esiste la derivata parziale $\frac{\partial F}{\partial x}$, uguale a $\int_{0}^{y} f(xy) dy$. Ha poi aggiunto ¹) che, trascurando un insieme di misura nulla, esiste anche la derivata seconda mista $\left(\frac{\partial^{2} F}{\partial x \partial y}\right)$, uguale a f(xy). Questa derivata l'ho scritta racchiusa in una parentesi per ricordare che essa non è una vera derivata seconda. Per definizione, detto \overline{A} l'insieme, di misura uguale a quella di A, che resta togliendo l'insieme che si è detto di trascurare, la $\left(\frac{\partial^{2} F}{\partial x \partial y}\right)$, in un punto P(x, y) di \overline{A} , è il limite del rapporto

(1)
$$\frac{\frac{\partial F(x, y')}{\partial x} - \frac{\partial F(x, y)}{\partial x}}{y' - y},$$

per $y' \implies y$, considerato soltanto nei punti P'(x, y') di \overline{A} . Ora io pongo la seguente questione: si può dimostrare che, quasi dappertutto in A, esiste la derivata seconda mista $\frac{\partial^2 F}{\partial x \partial y}$ [uguale necessariamente, per quanto sopra si è detto, a f(xy)]? Si tratta cioè di

¹⁾ H. Lebesgue, Sur l'intégration des fonctions discontinues [Annales scientifiques de l'École Normale Supérieure (Paris), IIIe série t. XXVII (1910), pp. 361-450], vedi anche Ch. J. de la Vallée Poussin, Cours d'Analyse, 2e édition, t. II (Paris, Gauthier-Villars, 1911), p. 122.

togliere la restrizione, relativa a y', della definizione di $\left(\frac{\partial^2 F}{\partial x \partial y}\right)$, e di dimostrare che quasi dappertutto esiste il limite di (1) per y' tendente liberamente a y.

Mi è riuscito di rispondere affermativamente alla domanda posta nel caso della f(xy) limitata ed anche in alcuni casi notevoli in cui la f(xy) è illimitata; ma non nel caso generale. Crede Ella che si possa rispondere affermativamente anche nel caso generale? Poiche Ella si è già occupata, e con tanto successo, di questioni prossime a questa, così mi permetto di importunarla con questa mia.

Ecco, frattanto, come si trattano il caso della f(xy) limitata e quegli altri cui sopra ho accennato. Sia $\varphi(xy)$ una funzione integrabile linearmente rispetto alla x, in un certo intervallo (a, b), per tutti i valori di y di un intervallo (c, d). Fissato un valore di y di (c, d), la $\varphi(x, y)$ è quasi dappertutto in (a, b) la derivata di $\int_a^x \varphi(xy) dx$. Dico che si può determinare un insieme I di (a, b), di misura m(I) = b - a, sul quale la y(x, y) sia la derivata di $\int_a^x \varphi(xy) dx$, per tutti gli y di (c, d). Consideriamo i valori razionali di y, compresi in (c, d). Ad ognuno di essi corrisponde un insieme I_y di (a, b), di misura b - a, sul quale la φ è la derivata di $\int_a^x \varphi(x, y) dx$. Indichiamo con I l'insieme dei punti comuni a tutti gli I_y detti. I ha misura uguale a b - a e su esso la $\varphi(x, y)$ è la derivata di $\int_a^x \varphi(x, y) dx$ per tutti i valori razionali di y, compresi in (c, d). Siano ora \overline{y} un valore irrazionale di (c, d) e y, un valore razionale tendente a \overline{y} , per $r \longrightarrow \infty$, e supponiamo $[ipotesi \alpha]$ che $\varphi(xy_r)$, per $r \longrightarrow \infty$, tenda uniformemente a $\varphi(x\overline{y})$ su tutto (a, b). Allora è $\varphi(x\overline{y}) = \varphi(x, y_r) + \varepsilon(x, y_r)$, con $\varepsilon(x, y_r)$ tendente uniformemente a zero per y, $\longrightarrow \overline{y}$, e quindi

$$\int_{a}^{x} \varphi(x\overline{y}) dx = \int_{a}^{x} \varphi(x, y_r) dx + \int_{a}^{x} \varepsilon(x, y_r) dx.$$

Se x_1 è un punto qualunque di I, si ha perciò

$$\Lambda \int_a^{x_1} \varphi(x, \overline{y}) dx = \varphi(x_1, y_r) + \overline{\varepsilon},$$

$$\lambda \int_{1}^{x_{1}} \varphi(x\overline{y}) dx = \varphi(x_{1}, y_{r}) + \overline{\varepsilon},$$

con $\overline{\varepsilon} \longrightarrow 0$, $\overline{\varepsilon} \longrightarrow 0$, per $y_r \longrightarrow \overline{y}$; e analogamente per $\Lambda' \int_a^{x_1} \varphi(x, \overline{y}) dx$ e $\lambda' \int_a^{x_1} \varphi(x, \overline{y}) dx$. In x, esiste dunque la derivata di $\int_a^x \varphi(x \overline{y}) dx$ e tale derivata è uguale a

$$\lim_{y_r \to y_r} \varphi(x_1, y_r) = \varphi(x_1, \overline{y}).$$

L'ipotesi α) è soddisfatta se la $\varphi(x, y)$ ha, rispetto ad y, la prima derivata parziale limitata, ed anche se è $\int_a^b \left| \frac{\partial \varphi}{\partial y} \right|^{1+\alpha} dx < M$, qualunque sia l'y di (c, d), con $\alpha > 0$.

Basta porre $\varphi(xy) = \int_a^y f(x, y) dy$, per avere i risultati accennati.

LEONIDA TONELLI.

II.

(da una lettera di Guiro Fubini a Leonida Tonelli).

Egregio Professore,

Ho pensato alla Sua questione senza leggere le Sue considerazioni, per non essere spinto a trattare il problema in un modo anzichè nell'altro. E mi sono accorto poi di aver battuto proprio la Sua strada, con piccole modificazioni, così da ottenere precisamente il risultato da Lei desiderato.

Conservo le Sue notazioni e pongo

$$F(xy) = \int_0^x \int_0^y f(xy) \, dx \, dy.$$

Poichè, per l'ipotesi da Lei fatta, la f(xy) è integrabile, secondo Lebesgue, in un campo superficiale, anche |f(xy)| è integrabile. Cioè f(xy) è la differenza di due funzioni positive integrabili. Io posso studiare ciascuna di queste due funzioni separatamente, cioè posso supporre f(xy) positiva. Si dimostra col Suo metodo che vale la

$$\frac{\partial F}{\partial x} = \int_0^y f(x \, y) \, dy$$

per tutti i valori razionali di y e per tutti i valori di x che non appartengono a un certo gruppo G di misura lineare nulla.

Sia x un punto non appartenente a G; sia y irrazionale; siano y_1 , y_2 numeri razionali qualsiasi tali che $y_1 < y < y_2$. Suppongo, per es., le h, x, y, y_1 , y_2 , positive. Allora è

$$\int_{x}^{x+h} \int_{o}^{y_{1}} f \, dx \, dy \leq \int_{x}^{x+h} \int_{o}^{y} f \, dx \, dy \leq \int_{x}^{x+h} \int_{o}^{y_{2}} f \, dx \, dy.$$

E ciò perchè $f \ge 0$ e perchè il campo a cui è esteso il primo integrale è contenuto nel campo cui è esteso il secondo, il quale è contenuto in quello cui è esteso il terzo. Dividendo per h e passando al limite per h = 0, ne deduciamo: I numeri derivati a destra di $\int_0^x \int_0^y f \, dx \, dy$ sono compresi tra le derivate di $\int_0^x \int_0^{y_1} f \, dx \, dy$ e

 $\int_{0}^{x} \int_{0}^{y_{2}} f dx dy, \text{ che per ipotesi esistono e valgano}$

$$\int_0^{y_1} f \, dy \quad e \quad \int_0^{y_2} f \, dy.$$

E ciò qualunque siano i numeri razionali y_1 e y_2 tali che $y_1 < y < y_2$. Passando al limite per $y_1 = y_2 = y$, poichè $\int_0^y f dx$ è funzione non decrescente e continua della y, si trova che la derivata di F(x, y) rispetto ad x, qualunque sia y, e purchè x non appartenga a G, vale proprio

$$\int_0^y f \, dy,$$

che noi possiamo ora derivare rispetto ad y, etc. etc.

Guido Fubini.