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1. The most general of Lebesgue’s already classical results in con-
nexion with the fundamental theorem of the Integral Calculus * is that
which states that, if one of the derivates of a continuous function is finite
and summable, its Lebesgue integral is the function itself. It was pointed
out by Beppo Levi t that, in the case of an analogous result, it followed by
simple Cantor induction that that result is still true if the value + @, or
— @, or both, are assumed by the derivate at a reducible set of points only.
By employing the notions of positive and negative variation rather more in
the form originally given to them by Jordan, I showed ! that the theorem,
equally in the Lebesgue or in the extended form, could be split up into two
components, relating respectively to functions upper semi-continuous on
the right and lower semi-continuous on the left, and functions upper semi-
continuous on the left and lower semi-continuous on the right respectively.
In a slightly more recent paper § I showed by an entirely different method
that another result of Lebesgue’s, almost as general as the one just
referred to, namely, that a function of bounded variation is an integral
if one of its derivates is finite, could be generalised in this sense that the
assuming of the value infinity with determinate sign by the derivate was
permissible at any countable set of points or, even more generally, at any
set of points which contained no perfect sub-set.

Since then a careful examination of the proof given by myself of
Lebesgue’s former theorem has led me to the conclusion that that result,

¥ The first statement of this theorem is on p. 123 of Lebesgue’s Legons sur U'intégration,
Paris, 1904. The first wholly satisfactory proof is to be found in Lebesgue’s paper, ‘‘Sur les
fonctions dérivées,” 1906, Rend. dei Lincei, Ser. 2, Vol. xv, p. 5. The only correct proof in
English, as far as I am aware, is that in my paper ‘‘On Functions of Bounded Variation,”
1910, Quarterly Journal of Mathematics, Vol. xr11, p. 78.

t ‘“Ancora alcune osservazioni sulle funzioni derivate,” 1906, Rend. dei Lincei, Ser. 2,
Vol. xv, pp. 359 seq.

{ Loc. cit., supra, first footnote.

§ ‘‘ Note on the Fundamental Theorem of Integration,’’ 1910, Proc. Camb. Phil. Soc.,
Vol. xvi1, pp. 35-38. :
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like the one just referred to, is capable of a similar extension, that we are,
in fact, in the extended enunciation, at liberty to substitute for the word
“ reducible " the word * countable.”

Combining this result with those corresponding to the two components
for the two classes of non-continuous functions above described, I find that
we get the following general statements, which include all others so far
made :—

If a lower derivate of @ function which is upper semi-continuous on the
right and lower semi-continuous on the left assumes the value + o at
a countable set of points only, and is summable over the set of points at
which 1t is positive, the function is a lower semi-integral and ts accord-
ngly expressible as the sum of an integral and a monotone nowhere
wncreasing function of x. Moreover, its positive variation is the integral
of any one of tts derivates over the set of points where the lower derivate
1 question s positive. .

If an upper derivate of a function which 1s lower sems-continuous on
the right and upper semi-continuous on the left assumes the value —®
at a countable set of points only, and is summable over the set of points
where it 15 negative, the function is an wpper semi-integral and is accord-
ingly expressible as the sum of an integral and a nowhere decreasing
Junction. Moreover, its negative variation is the integral of any one of
its derivates over the set of points where the upper derivate in question
15 negative.

As I think it would be difficult to exaggerate the importance in the
theory of derivates of Lebesgue's original theorem, I propose tc show
in the present communication how these generalisations may be obtained.
In the method of proof I have adopted I have kept in view the principle
which actuated my wife and myself in a recent joint paper on the Exist-
ence of a Differential Coefficient, published in the Proceedings of this
Society.* = In that paper the fact that we had not succeeded to our own
satisfaction in proving Lebesgue’s general theorem without the use of
Cantor’s numbers was mentioned.

Fron. one point of view we might, indeed, have claimed that we had
been successful in doing so ; for it is only in the assumption of the truth
of his lemma on the existence + of a chain of intervals that Lebesgue's

* Ser. 2, Vol. 9, pp. 325-335.

t Lebesgue also used Cantor’s numbers to justify the use of such a chain in calculating
the variation, ‘¢ Encore une observation sur les fonctions dérivées,” 1907, Rend. dei Linces,
Ser. 5, Vol. xv, p. 96. Beppo Levi has given an argument independent of Cautor’s numbers,
which serves the same purpose, ‘‘ Ancora alcune osservazioni sulle funzioni derivate,”” 1906,
Rend. dei Lirncei, Ser. 2, Vol xv, p. 361.
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proof involves Cantor’s numbers implicitly. Now one of the things we did
in the paper quoted was to show how that lemma could be proved without
Cantor's numbers. Our object was, however, to avoid not only the use of
the numbers themselves, but also the use of what might be objected to as
a transfinite construction. A proof is even more convincing if we are {a,b!e
to employ finite sets of intervals only. The contention, indeed, that it 15
only with a finite number of intervals that we ought to operate is not
wholly ungrounded.

In the present paper, therefore, I have been at pains to avoid all trace
of the transfinite construction.

In my process of analysis of Lebesgue’s theorem into its component
parts I have been able to take a further step. In the enunciations above
given, the hypothesis of the summability of the derivate considered over
either the whole interval or a set of points in that interval has to be made.
Now I had succeeded in proving* without transfinite numbers the theorem
that the integral of the derivates of an integral is the integral itself,
another of the important results due to Lebesgue. Subtracting, so to
speak, this theorem from the two above stated as to be proved, we find
that the residual parts take the following form, from which all reference to
the concept of summability has disappeared :

If a function s upper semi-continuous on the right and lower semi-
continuous on the left, and one of its lower derivates is negative or zero
except at a set of points of zero content, then either

(1) that derivate assumes the value 4+ at a more than countable
set of points,

Or (2) the function is a monotone nowhere increasing function, so that
all vts derivates are everywhere negative or zero.

Again,

If a function s lower semi-continuous on the right and upper sems-
continuous on the left, and one of its upper derivates is posttive or zero
except at a set of points of zero content, then either

1) that dertvate assumes the value — o at @ more than countable set
of points, or

* ¢ Functions of Bounded Variation,” loc. cit., §§ 23 and 24, pp. 81 and 82.
SER. 2. VoL. 12. wNo. 1172. P
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(2) the function ts a monotone nowhere decreasing function, so that
all its dertvates are everywhere positive or zero.

From these results those mentioned above follow.

2. T shall first prove the following extension of the lemma in the joint
paper already cited.

Levma.—If with each point of a closed tnterval (a, b) as left-hand
end-potnt we are given an tnterval or several intervals, and e, > e > ...
be any monotone descending sequence of constants with zero as limit, we can
find a finite number of the given intervals, nowhere overlapping, such that
the complementary intervals have lengths which are respectively less than
different terms of the e-sequence.*

By the lemma proved in a preceding number of these Proceedings t we
saw that we could choose out a finite number, say m of the given intervals,
numbered from left to right, d;, dy, ..., d,, nowhere overlapping, and such
that the sum of the lengths of the complementary intervals or gaps is less
than a quantity as small as we please, which we may take to be ¢, This
may be said to constitute the first stage in the process of finding the
required intervals.

Now the intervals were so chosen that there is a definite integer ¢,
different for each gap, so that the chosen interval on the right of the gap
in question is d;, and a definite integer »;, not necessarily different for each
gap, such that &> o M
while, if X is any point belonging to the gap, whether as internal or
end-point, the length of each of the given intervals corresponding to it
is less than e, -, say H< e ) @

To render this quite clear it would be well, perhaps, to recall the mode in
which the intervals d,, dy, ..., dn were chosen. We begin by elongating
all the given intervals on the left by one n-th of their length. Starting

* More generally we have by similar reasoning the following lemma:—

Levya.—If with each point of a closed set S as left-hand end-point, we are given an in-
terval, or several intervals, and ¢, > e, > ... be any monotone descending sequence of constants
with zero as limit, we can find a finite number of the given intervals, nowhere overlapping, such
that in the complementary intervals the points of S can be enclosed in a finite number of intervals
whose lengths are respectively less than different terms of the e-sequence.

t Loc. cit., supra, § 1, footnote §.
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with the point a, we then determine the first integer », such that there is
at least one of the given intervals of original length > e,, which in its
elongated form reaches at least to @. The integer r, is accordingly such
that there is no such interval of length > e,_;. That such an integer
must exist follows from the fact that the given intervals include intervals
with a as left-hand end-point. We then selected one of these intervals of
length > e, and called it d,. If a is not the left-hand end-point of d,,
there is a gap between a and d, of length < d; /n, and therefore < ¢,,—/n.
If a is the left-hand end-point of d, there is no gap at a. In any case we
then proceed on the right of ¢, as before. ~The gaps left are all precisely
similar in character. Let us suppose, therefore, for definiteness, that
there was a gap formed at @, and that X is a point internal to the gap,
while H is the length of any one of the given intervals corresponding to X.
Then, since the distance of X from a is less than the width of the gap, and
therefore < ¢,,_,[n, the interval would, if its length were > e, be an
interval of length > e, _: reaching, when elongated, at least as far as a,
contrary to our choice of the integer »,. Thus, the inequality (2) holds for
every point X internal to the gap. The argument applies as it stands if X
is the right-hand end-point of the gap. That it is true when X is the left-
hand end-point @ follows from the choice of 7,; for in the contrary case
such an interval would be an interval > ¢, _; and would reach, of course,
to a ; thus, r, would not be the lowest integer of the type considered.

Thus, the inequality (2) is true, as stated. Moreover, the integer r; in
that inequality has been determined in accordance with the inequality (1).

We have thus shown that the gaps and intervals constructed at what
we may call the first stage possess a certain property, as defined by the
inequalities (1) and (2). At the end of this first stage the extreme gap on
the right is of length less than ¢,. It may also happen that the remain-
ing gaps, taken in order from right to left, are respectively less than
€3, €3y -ovy Emyie

If so, our process is complete ; if not, we stop at the first gap, say G,
in order from right to left, whose length is too great. The gaps to the
right of this we call permanent gaps, and the others transitory gaps at the
Jirst stage.

The gap G, which has arrested us we treat in precisely the same way
as we treated the whole interval, taking the quantity e, instead of e; and
replacing the whole e-sequence by that part of it which begins with e,.

At the end of the second stage we shall then have at least one
permanent gap added to those already obtained, and inay have more.

In the third stage, if it be needed, we have to deal with gaps not made
permanent lying in G, if there be any, and the transitory gaps at the first

r 2
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stage which remain transitory at the second stage. As we proceed steadily
with our permanent gaps from right to left, the gaps other than G, which
were transitory at the first stage will necessarily remain transitory at the
second stage, unless G, has been replaced by permanent gaps only.

As our process proceeds we advance steadily from right to left, always
adding at least one permanent gap to those already obtained and leaving
no transitory gaps behind us. We must, then, in this way either obtain a
finite number of permanent gaps which answer to our requirements or we
must approach a limiting point X, say, of the permanent gaps, our ap-
proach being, of course, from the right.

This point X cannot be internal to any of the intervals chosen at any
any one of the stages as we approach X; for if so that chosen interval
would contain one of the permanent gaps of which X is the limit, and this
is a contradiction in terms.

At each stage of our approach to X, therefore, X must belong to a
transitory gap, either as internal or end-point. Now this is easily seen to
be inconsistent with the inequalities (1) and (2).

In fact, the quantity H in inequality (2) may be supposed to be the
length of an interval (X, X+ H) of the given set. This inequality shows.
that H can only be less than an infinite number of the quantities e, _, if an
infinite number of them coincide. In other words, there is an infinite suc-
cession of integers ¢ for which 7; is the same. But to each such integer  we
have, as the inequality (1) shows, a distinct interval d; of length not less
than the value assumed by an infinite number of the e.’s. Thus, such d’s.
must overlap. But it follows, from our mode of construction, that they do
not overlap ; thus, by a reductio ad absurdum, such a hmiting point X
cannot exist, and, therefore, at one stage all the gaps have been replaced
by a finite number of permanent gaps answering to our requirements.
Thus our lemma has been proved to be true.

8. In the preceding proof I have avoided the use of Cantor’s numbers.
The method of transfinite numbers is a powerful instrument of research.
I propose to illustrate this fact by now deducing the lemma of the pre-
ceding article from the existence of a Cantor chain of intervals postulated
by Lebesgue.

We suppose, then, a chain of intervals to stretch in the usual manner
from the left-hand extremity of the interval of integration to the 1ight-
hand end, and we wish to show that we may omit all but & finite number
of these intervals in such a manner as to obtain gaps of the lengths.
required by the lemma.
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Starting from the right-hand end b, we can clearly take a gap of length
less than e, and having its left-hand extremity coinciding with one of the
right-hand end-points of the intervals of the chain. Since the semi-
external points of the chain form a closed set, there is one of them which
is nearest to the gap just formed of those on the left of the gap; this
point is, moreover, not the left-hand extromity of that gap. We treat
it in precisely the same way as we treated b, taking e, instead of e,.
Between the two gaps there is only a finite number of the intervals,
because between them there is no limiting point of the original chain.
Moreover, if we continue the process thus started, it is bound, after a finite
number of steps, to come to an end. For if not the gaps so formed would
necessarily have a limiting point to the left, which they would approach
indefinitely near. This point would be a limiting point of the left-hand
end-points of the gaps; that is, of end-points of intervals of the chain
lying on its right. But the chain has only limiting points which are
approached from the left, so that this is impossible. Thus, after a finite
number of steps, we obtain the system of gaps and intervals required.*

4. We now pass to the following theorem on the nature of a derivate.

TarorEM.—If F(x) is @ function which is upper semi-continuous on the
right and lower semi-continuous on the left and has a derivate which is
< 0 at @ set whose complementary set has zero content, then either

(i) the derivate has the value +® at a more than countable set of
points, or

(i) its values at all the points of content zero are also < 0, so that
the function is a monotone nowhere increasing function, all of whose
derivates are < 0.

Suppose for definiteness that it is the lower right-hand derivate F, (z)
which is known to be << 0, except at a set G of zero content, about which
we only know that at all but a countable set of points Py, P,, ..., of G
F. () is finite. At the points P, the value is quite unknown, and
may a prior: be +o.

Let us attach to each point P, an interval (z, < %) of length less than d,t

# The argument is & modification of that of Heine, used by Beppo Levi in dealing with
the variation of a function, loc. cit.

+ We may of course also secure that the sun of all these intervals is less than d. This
is, however, not required in the present argument.
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with P, as left-hand end-point, and so small that
Fa+h)—Fx) < 27 %.

This is possible since F(xr) is upper semi-continuous on the right.
Then the sum of the positive increments of F(z) over any non-overlapping
set of these intervals is less than e.

Next let us take any small positive quantity %, and let = be a point at
which =Dk < F,@ < ik,
where ¢ 1s any positive integer.

Since these points form a sub-set of the exceptional set of zero
content, we can enclose them all in a set of intervals of content less
than 2~ %/(¢+1)k. To each such point x let us attach an interval (z, z+7)
of length less than d, with z as left-hand end-point, contained in an
interval of the enclosing set just constructed, and such that

Feth ”]3 =@ < iy

Then the sum of the positive increments of F(z) over any non-
overlapping set of these intervals is less than (¢+1)%k times the sum
of their lengths; that is, it is less than 27¢, since these intervals all
lie inside the enclosing intervals of content less than 27'¢/(i+1) k.

Let us do this for every positive integer .

Finally, let z be a point at which F,(r) is not positive, and let us
attach to every such point an interval (z, z+4%) of length less than d and

such that F@+h—F(2)
e

"Then the sum of the positive increments of F(z) over any non-overlapping
set of these last intervals is less than %k (b—a), if (a, b) is the whole segment
in which we are working.

We have now attached to each point of («, b) an interval on the right
of it of length less than d. Hence, by the lemma, we can choose out
a finite number of these intervals, nowhere overlapping, and such that the
complementary intervals are respectively less than different termis of any
convenient monotone descending sequence ¢, qg, ..., With zero as limit.
~ Let us choose the g-sequence so that ¢, < d, and in any interval
(y, y+Fk) of length less than ¢,, (n =1, 2, ...),

Fy+k—Fy) < 277%,

< k.

which is possible, since F (z) is upper semi-continuous on the right. Then
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the sum of the positive increments of F(z) over these complementary
intervals is less than e.

Also, by what hag already been pointed out, the sum of the positive
increments of F(z) over the chosen intervals is less than

e+ i2=?12" etk(b—a) < 2e4+k(b—a).

Now, since F(z) is upper semi-continuous on the right and lower
semi-continuous on the left, we can choose d so small that the positive
increment of F'(z) over the finite set of intervals consisting of the chosen
intervals and the complementary intervals has the positive variation P,
finite or infinite, of F(z) for limit as d > 0.* Hence P < 2e+k(b—a).

Thus, since % and ¢ are as small as we please, P must be zero. This
proves that F'(r) is a monotone non-increasing function of x, and hence
that, under the circumstances assumed, (i) is true. The alternative
circumstances are given in (i). Thus the theorem is true.

5. The corresponding theorem with regard to the derivate of a function
which is lower semi-continuous on the right and upper semi-continuous on
the left follows, of course, by a mere change of sign. It may be well also
to point out, though this is scarcely less obvious, that the theorems are
equally true if we replace the particular derivate referred to in the enuncia-
tion by any of the other derivates, upper, lower, or intermediate, provided
it is always on the right hand or always on the left hand. In other words,
if we regard the right-hand derivates, for example, as defining a many-
valued function, defined for the whole interval, we may take any of the
one-valued functions which may be formed by taking at each point of the
interval, by any law whatever, some one of the values of the many-valued
function in question, the statements of this and the preceding article are
still true.

Similar remarks apply to the other theorems about to be proved. In
fact, in all cases the case considered in our enunciations is the most
unfavourable case ; or, if we prefer it, instead of deducing the remaining
cases from the unfavourable case as an immediate consequence, we may
content ourselves with remarking that the proof is, word for word, the
same in such remaining cases.

6. If we prefer to use instead of the lemma of § 2 the theorems of
Lebesgue, as extended by myself,t which state (a) that we can find a chain of

# ¢« Functions of Bounded Variation,”’ Quarterly Jowrnalof Mathematics, Vol. xu, § 5, p. 59.
t Ibid., §19 and §18, pp. 72-74.
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the given intervals placed so that each interval has for left-hand end-point
a right-hand end-point of another interval or a limiting point of intervals
lying on its left, every point of (a, b) being either an internal point or a
left-hand end-point of the intervals of the chain, and (3) that the positive
variation may be calculated by means of such chains, instead of only by
means of divisions of (a, b) into a finite number of parts, we can give
an alternative ending to the proof of § 4, beginning after the sentence:
' We have now attached to each point of (e, b) an interval on the right of
it of length less than d.” We proceed as follows.

By Lebesgue’s lemma we can choose out a chain of these intervals
stretching from @ to b. The sum of the positive increments of F(z) over
the intervals of the chain is, by what has been pointed out, less than

e+i§l2“e+k(b—a) < 2e+kb—a)

Now, since F'(z) is upper semi-continuous on the right and lower semi-
continuous on the left, the positive increment of F'(x) over the intervals of
the chain has, as d decreases indefinitely the positive variation P of F ()
a8 limit, since all the intervals of the chain are of length less than d.

Hence P < 2e+k(b—a),

and therefore since ¢ and % are as small as we please,
P=0.

This proves that F(z) is a monotone non-increasing function of z, and
that, under the circumstances assumed, (ii) is true. The alternative
circumstances are given in (i). Thus this proves the theorem.

7. From the theorems given in §§4 and 5 the generalisations of
Lebesgue’'s theorem stated in the introduction at once follow. For
definiteness, take that which refers to a function which is upper semi-
continuous on the right and lower semi-continuous on the left, and denote
this function by f(z). Let f; denote the integral of, say, the lower right-
hand derivate over the set of points where that derivate is positive. Then

" f1 possesses a differential coefficient except at a set of content zero. More-
over, its derivates are everywhere > 0. Hence the lower right-hand
derivate of f—f, is nowhere greater than the corresponding derivate
of f. Hence it assumes the value 4 at a countable set of points at
most. Again, since f; is an integral, its differential coefficient agrees with
the integrand, except at a set of content zero ; it therefore agrees with the
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lower right-hand derivate of f at points where the latter is > 0, with the
exception at most of a set of content zero. Hence thc lower right-hand
derivate of f—f; is < 0, except at a set of content zero. Moreover,
it assumes the value 4 ® at a countable set of points at most. Hence,
by the theorem just proved, f—f, is a monotone nowhere increasing
function, and therefore, since f, i3 an integral, f has the form stated in
the enunciation. Finally, the positive variation of f is clearly the positive
variation of f, ; that is, f; itself.

Thus our theorem is proved. Similarly the corresponding theorem is
proved.



