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Scope of the work

Analyse the potential of meta–modelling techniques based on
Radial Basis Functions (RBF) in aeroacoustics

Develop dynamic meta–models for high-efficiency
optimisation in presence of aeroacustic objectives and
constraints.

Estimate the uncertainty related to breakthrough
technologies in general–purpose analysis tools.
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The context

Sustainable development of civil aviation is strongly noise–constrained

Aeroacoustics must be considered in the conceptual design phase

Simple noise models are not available for innovative concepts

ARTEM (Aircraft noise Reduction Technologies and related Environmental iMpact)

Robust MOCDO of unconventional configura-
tions including low–noise objectives and/or con-
straints

ANIMA (Aviation Noise Impact Management through Novel Approaches)

Stand–alone models to include new technologies
and concepts in impact management and analy-
sis tools
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The tool

FRIDA (FRamework for Innovative Design in Aeronautics)

Multi–Objective, Multi–disciplinary Robust Design Optimization
environment developed by Roma Tre Aircraft Design Group for
classic (T&W) and innovative (BWB, PP) configurations

U. Iemma et al. Metamodels for engine noise shielding



Summary

Meta–Models (MM) definition

RBF–based deterministic and adaptive–stochastic MM

Simple 1D benchmark

An early application to shielding (1D and 2D)

Current activity
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Meta-models for aeroacoustic Simulation–Based Design

Meta-model = the model of a model
In our context: a fast model reproducing the response of a costly
simulation
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Meta-models for aeroacoustic Simulation–Based Design

Meta-model = the model of a model
The Training Set (TS) gives the response at a set of points
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Meta-models for aeroacoustic Simulation–Based Design

Meta-model = the model of a model
The Meta–Model (MM) reproduces the response at any x ∈ DTS
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Meta-models for aeroacoustic Simulation–Based Design

Accuracy is strongly application–dependent

Location and number of TS points

Properties of the target response f (x, y)

Characteristics of the surrogate model f̂ (x, y)

Many different approaches are available . . .

In the present work we focus on Radial Basis Fuctions (RBF)

Simple implementation

Demonstrated effectiveness in medium– to high–dimensional
problems

Versatility: the choice of the RBF kernel makes possible the
tailoring of the MM
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Deterministic RBF MM

RBF MM

Given a training set TS of M points [ξi , f (ξi )]Mi=1, with
Dim(ξ) = N, the RBF model of the sampled response is

f̂ (ξ) =
M∑
i=1

wi ϕ (|ξ − ξi |)

Weights wi are obtained by imposing the reproduction of TS,
A w = f, with [A]ij = ϕ

(∣∣ξi − ξj
∣∣).

RBF Kernels

Kernel choice is a key point (Gaussian ϕ (r) = e−(γ r)2

, Inverse quadratic
ϕ (r) = 1/

[
1 + (γ r)2

]
. . . ). For the moment, let’s start with simple

polyharmonic splines

ϕ (r) = r ε, ε = 1, 3, 5, . . .
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Deterministic RBF MM

RBF tuning

Specifically, we will use the cubed Euclidean distance

ϕ (|ξ − ξi |) =


√√√√ N∑

k=1

(
ξk − ξki

)2

3

The RBF sensitivity to local curvature can be mitigated with an
auto–tuning procedure

ϕ (|ξ − ξi |) =


√√√√ N∑

k=1

c2
k

(
ξk − ξki

)2

3

where ck is a function of max local curvature.
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A simple benchmark

The problem

Target: field induced by a moving isotropic point source in a
co–moving region

Design variable: position of the source xs

Parameters: Mach number Ms , observer location xM
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A simple benchmark

Design and Training spaces

Design space: region of the physical space where the source
can be located

Training space: region of the abstract space of all the
possible experiments

ξ =


xs
Ms

xM


U. Iemma et al. Metamodels for engine noise shielding



A simple benchmark

xs ∈ [(0.5, 0.5), (2, 2)]

A line of N microphones along z = 0

Ms ∈ (0.2, 0.4)

Here, the training set comprises Ns = 5 source positions, N = 40
monitoring points and 3 values for Mach.

Number of training experiments is Np = 600

Off–set and off–domain evaluations

TS reproduction

Off-set prediction

Off-domain prediction
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A simple benchmark

Ms = 0.2, xs ≡ (1.5, 1.5) Ms = 0.2, xs ≡ (0.5, 0.5)

Training set reproduction

Ms /∈ TS , xs ∈ TS Ms ∈ TS , xs /∈ TS Ms /∈ TS , xs /∈ TS

Off set prediction

Ms /∈ DT , xs ∈ DT Ms ∈ DT , xs /∈ DT Ms /∈ DT , xs /∈ DT

Off domain prediction
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So, for deterministic MM. . .

Definition of the best TS is not a trivial task (D.O.E.?
. . . EXPENSIVE !)

Verification of MM accuracy needs the time–consuming
model to be run

Improvement of the MM can be a resource–draining task
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So, for deterministic MM. . .

Definition of the best TS is not a trivial task (D.O.E.?
. . . EXPENSIVE !)

Verification of MM accuracy needs the time–consuming
model to be run

Improvement of the MM can be a resource–draining task

Let’s go
DYNAMIC, ADAPTIVE and STOCHASTIC!
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Stochastic RBF MM

Stochastic RBF

ϕ (|ξ − ξi |) =


√√√√ N∑

k=1

(
ξk − ξki

)2

ε

, ε ∼ Unif [εmin, εmax ] ≡ Dε

Stochastic MM

Is the expected value EV of f̂ over ε

f̂s(ξ) = EV
[
f̂ (ξ, ε)

]
=

∫
Dε

f̂ (ξ, ε)P(ε) dε
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Stochastic RBF MM

MM Uncertainty

Each estimate of f̂s(ξ) is associated to an uncertainty Uf̂ (ξ)

It is defined as the difference of the relevant α–quantiles

Uf̂ (ξ) = q(α1, ξ)− q(α2, ξ) = CDF−1(α1, ξ)− CDF−1(α2, ξ)

with

CDF (y , ξ) =

∫
Dε

H[y − f̂ (ξ, ε)]P(ε) dε
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Dynamic–Adaptive MM

MM quality

Uf̂ (ξ) can be used to measure the local reliability of the MM
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A dynamically adaptive MM can be built

1 Build the MM on the current TS

2 Search for Max [Uf̂ (ξ)], ξ ∈ DT

3 Increase TS with new point at Umax and update MM (with
the costly model)

4 Stop when Umax ≤ Uconv
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The simple benchmark

Same as before, but now with dynamic, stochastic approach

Uf̂ (ξ) = q(0.975, ξ)− q(0.025, ξ) (95% confidence band)

Uconv = 10−5

Initial TS with M = 3

Monte Carlo method with 15 random samples for ε ∈ [1, 3]
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A simple benchmark

Progressive update of TS

. . .
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A simple benchmark

Additional samples only where needed (high uncertainty)

Uncertainty quantification using the MM =⇒ FAST !

Minimises the calls to the high–fidelity model (only TS
update)

Once that Uf̂ < ε a deterministic model (faster, no Monte
Carlo) can be built on the converged TS
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A simple 1D shielding exercise

The problem

Target: ∆SEL at a monitoring point located 2 chords
underneath a NACA 0012 foil

Design variable: position of the source along the chord, xs at
0.1 chord above the foil

The TS is one–dimensional
and coincides with D

ξ = xs
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A simple 1D shielding exercise

The TS is updated when Umax ≤ 0.001

Uf̂ (ξ) = q(0.975, ξ)− q(0.025, ξ) (95% confidence band), Uconv = 10−5

Monte Carlo method with 15 random samples for ε ∈ [1, 3]

Airfoil scattering calculated with in-house convective 2D BEM code

Progressive update of TS
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A simple 2D shielding exercise

The problem

Target: ∆SEL at a monitoring point located 2 chords
underneath a NACA 0012 foil

Design variable: position of the source along the chord, xs at
0.1 chord above the foil

Parameter: Mach number Ms of the uniform stream

ξ =

{
xs
Ms

}

U. Iemma et al. Metamodels for engine noise shielding



A simple 2D shielding exercise

Same procedure: the TS is updated when Umax ≤ 0.001

Uf̂ (ξ) = q(0.975, ξ)− q(0.025, ξ) (95% confidence band), Uconv = 10−5

Monte Carlo method with 15 random samples for ε ∈ [1, 3]

. . .
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Current activity

Tailored RBF kernel (oscillating, decaying, complex . . . )

Selection of appropriate stochastic parameters

High–dimensional training spaces

Adaptive strategies for dynamic update
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Concluding remarks

The work is a preliminary analysis of modern meta–modelling
techniques applied to aeroacoustic problems

the general approach adopting RBF with standard
polyharmonic kernels appears to be promising

the potentiality of tailored RBF kernels deserves a careful
investigation to be completely disclosed
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Concluding remarks

The work is a preliminary analysis of modern meta–modelling
techniques applied to aeroacoustic problems

the general approach adopting RBF with standard
polyharmonic kernels appears to be promising

the potentiality of tailored RBF kernels deserves a careful
investigation to be completely disclosed

Thank you !
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