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Background and motivation

UHBR engines on next generation aircraft - Address increasingly stringent
aviation regulations for pollution and noise impact
— Enhanced propulsion efficiency and lower noise emissions
— Integration challenges and special designs required

*  Four different NOVA (Nextgen Onera Versatile Aircraft) aircraft geometries
investigated at Onera with focus on engine integration options*
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Background and motivation

* Boundary Layer Ingestion (BLI) configuration benefits
— Mass and drag penalty reduction
— Jet and wake losses reduction
 Many implications have to be addressed before deriving the associated
benefits: effects of inlet flow distortion on engine efficiency, operability,
aeromechanics and aeroacoustics
* Research goals:
— To perform the first CFD/CAA simulation of a full aircraft+BLI fan stage system
— To address BLI installation effects on fan noise for a NOVA BLI-like configuration

— Potential fuel burn reduction

o]
TUDelft



Outline

Numerical method

]
TUDelft



Numerical method

SIMULIA PowerFLOW solver*:

— Lattice-Boltzmann method for subsonic/supersonic flows
« Solves the fully explicit, transient and compressible LBE
« Sliding mesh (LRF) for rotating geometries
* Hybrid solver: D3Q39 model inside LRF, D3Q19 model outside LRF

— LBM-VLES turbulence model
« Large-eddies are resolved (“coherent” statistically anisotropic eddies)
- Small eddies (statistically universal) are modeled with an extended RNG k-& model
« Swirl term used to switch from modeled to resolved eddies

— Extended turbulent wall model to account for favorable/adverse pressure gradients

Hybrid D3Q39 Model
Ma,,,~2.0

*Nie et al., “A Lattice-Boltzmann/Finite-Difference Hybrid Simulation of Transonic Flow*, AIAA 2009-139
Gonzalez-Martino et al., “Fan Tonal and Broadband Noise Simulations at Transonic Operating Conditions Using Lattice-Boltzmann Methods“, AIAA 2018-3919
van der Velden et al., Jet Noise Prediction: Validation and Physical Insight”, AIAA 2018-3617
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Fan stage geometry

* Modified version of “Low-Noise” NASA/SDT*

— Original geometry fully scaled to match NOVA fan diameter (2.15 m)
— Original nacelle axial length increased to match NOVA BLI intake-fan distance (2.35 m)

Tip clearance = 1.94 mm

OGV (26 stator swept vanes)

o Fan (22 blades)
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Fan stage integration into NOVA fuselage

- Engine integration on NOVA lifting fuselage (courtesy of ONERA)
— BLl engine
— 40% buried intake ONERA s-duct

C—p—

— Intake-Fan distance = 2.35 m design costraints i ﬁ
- Titangle=1° —— —

— Toe angle = 2.5°
l ~ Fuselage length=38.3 m - Semi-span = 19.05m

S-duct desigh ™™
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Simulated cases

* |solated NASA/SDT with modified
nacelle

Installed NASA/SDT with modified
nacelle into NOVA fuselage geometry

Mach Mach Tip Pressure Temperature AoA Glide angle Tilt angle Toe angle

025  1.0038 ISA at 1000 ft

4° 6° 1° 2.5°
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Computational setup

- Symmetry plane (at fuselage centerline) Grid Fan Tip Cell
*  FWH permeable approach for far-field noise

- 16 Variable Resolution (VR) regions (medium
grid resolution)
— VRI16: tip gap
— VR15: leading/trailing edges of fan/OGV and nacelle lip
— VR14: fan/OGV
— VR13: bypass channel, nacelle and s-duct walls
— VR12: FWH permeable surface

— VR11-VRO: fuselage offsets and boxes up to domain |
boundaries

#Cells  CPUh (10 revs)

Resolution Size (mm)
Medium* 0.355 611 M 56000

Local Reference Frame

LRF

« Fan geometry rotated through LRF

TU De I ft *Gonzalez-Martino et al., “Fan Tonal and Broadband Noise Simulations at Transonic Operating Conditions Using Lattice-
Boltzmann Methods”, AIAA 2018-3919
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Flow Installation effects

* Instatanoeus flow on a plane normal to the fuselage
— Higher flow acceleration at intake lip
— Adverse pressure gradient induced flow separation on intake wall
— Adverse pressure gradient induced flow separation on s-duct surface
— Different fan wake/OGYV interaction

1) | |
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Flow Installation effects

* Mean flow on a plane upstream the fan Fan blade azimuth
— Strong flow distortion and non-uniformity /
— Flow acceleration in bolgde inboard regions o
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Fan blade sectional air-loads

Negative Cx as the u / velocity

~

meaning of thrust U =

- Phase-locked c,U? at three fan blade span-wise locations e e
— Inboard: low-frequency unsteadiness - mean flow distortion
— Outboard: high-frequency unsteadiness and lower mean value - turbulence ingestion
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Far-field noise directivity - Arc O°

«  PSD on 10 m radius arc centered around the fan center

BLI engine

Isolated engine
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Far-field noise directivity - Arc 45°

«  PSD on 10 m radius arc centered around the fan center
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Far-field noise directivity - Arc 90°

«  PSD on 10 m radius arc centered around the fan center

BLI engine

Isolated engine
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Far-field noise — Mic at 20°/Arc 45°

- PSD for directivity angle of 20° on Arc at 45°
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Far-field noise — Mic at 90°/Arc 45°

- PSD for directivity angle of 90° on Arc at 45°

Mic at 90 deg - Arc 45 deg

130

';1 [

T L

m

5 L

a L

e Sg: — BLI engine |
40l — Isolated engine J
30 0.5 1 2
25 T T

N

I

o

)

o

w

=™

.
- —— BLI - Installed
_25 L L 1

0.5 1 2
BPF Harmonic [-]

%
TUDelft

Directivity Map - Arc 45 deg

gPF Harmonic [-]

9
Directivity Angle [deg]

® Arc45°

25
20
15
10

<)
APSD [dB/Hz]

-10

26



Far-field noise — Mic at 160°/Arc 45°

- PSD for directivity angle of 160° on Arc at 45°
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Band-pass filtered pressure around BPF1

* CFD computed pressure waves around BPF1

Isolated engine: low/high pressure areas extending upstream from each fan blade and co-rotating
with fan propagate mainly upstream in the sideline direction

BLI engine: highly irregular pressure waves pattern propagating mainly upstream in the axial
direction and downstream in the sideline direction
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Takeoff flight path

PNL on-the-ground -

100

* Perceived Noise Level vs time during a takeoff fight path .,
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Conclusions and future outlooks

LBM solver Simulia PowerFLOW used to address fan noise implications of
NOVA BLI engine configuration
« Aerodynamic installation effects:

— Flow distortion and non-uniformity - low-frequency air-loads variation
— Separation on intake and s-duct walls = high-frequency air-loads variation

* Aeroacoustic installation effects:

— Increase of noise sources intensity, but different propagation behavior
Isolated engine: noise radiated mainly upstream in the sideline direction
BLI engine: noise radiated mainly upstream in the axial direction and downstream in the sideline direction

* As future outlooks:
— Analysis of boundary layer/fan interaction mechanisms
— Analysis of fan wake/OGV interaction mechanisms
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