

22nd Workshop of the Aeroacoustics Specialists Committee of the CEAS Amsterdam, September, 6-7th

Single Event Noise Prediction at ONERA Application to aircraft powered by contra-rotating open rotors

I. Le Griffon and L. Sanders ONERA – The French Aerospace Lab

THE FRENCH AEROSPACE LAB

Introduction

Why do single event noise prediction ?

Thanks to an accurate noise prediction, one can

- Better identify noise reduction requirements (aircraft, helicopters, UAV, ...)
- Better assess the impact of noise reduction concepts developped by the scientific community
 - Certification configuration
 - Basis for studies on understanding noise annoyance

Today, an important objective is to assess the impact of disruptive technologies such as

- New aircraft architectures (Wing bodies, Box wing, ...)
- New engine technologies (CROR, DEP, BLI, ...)

Outline

Ground noise prediction with CARMEN

- The Acoustics module of IESTA platform
- Noise source modelling
- Installation effects
- Sound Propagation

Noise synthesis with FLAURA

- Structure
- Example

Application to aircraft powered by CRORs

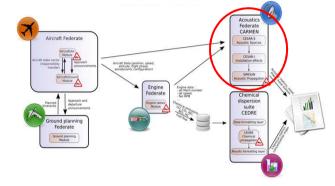
- CROR noise source modelling
- Ground prediction (noise levels & sound synthesis)

Ground noise prediction with CARMEN

CARMEN The Acoustics module of IESTA

IESTA - Infrastructure for Evaluating AirTransport Systems Platform to design and model innovative air transport systems

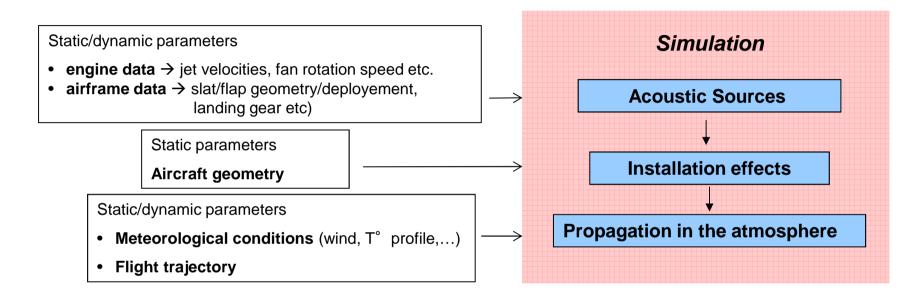
Environmental impact of the air trafic surounding airports

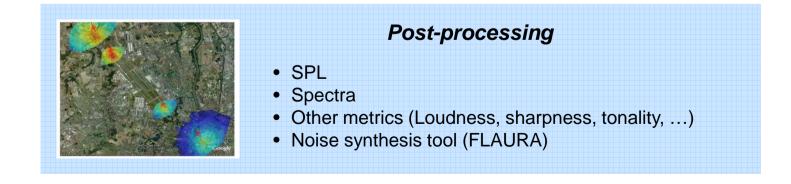

- Fuel consumption
- Chemical emissions
- Noise

Models implemented in the IESTA platform

- Aircraft
- Ground planning
- ➤ Engine
- Chemical dispersion
- Acoustics (CARMEN)

Objectives of CARMEN:


- To predict the acoustical impact of an aircraft
- To take into account new technologies and noise sources (shielding effects, contrarotative propellers, etc.)
- Simulations within a « reduced » CPU time
- To generate realistic simulations, as input for auralization + perception and annoyance studies



Simulation for each time step along the flight trajectory

CARMEN Noise source modelling

Propulsion noise + Airframe noise

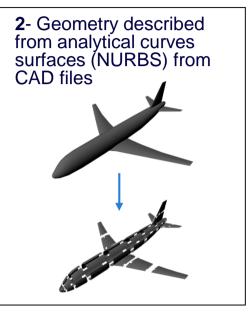
- Semi-empirical methods from literature
- Free far field, point source
- Comparison with experimental results for model improvement

CROR

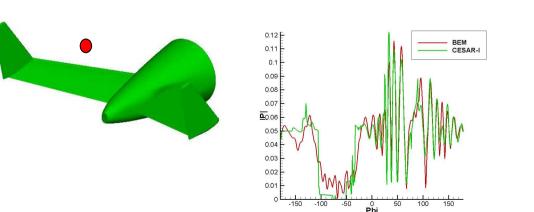
Landing Gear

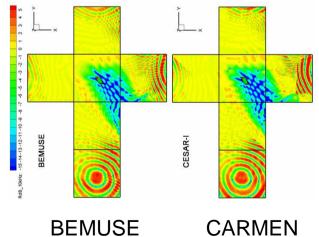
Rotors




ONERA THE FRENCH AEBOSFACE LAS

CARMEN Installation effects


Model based on the ray tracing technique


1- Direct + Reflected + Diffracted field from Uniform Theory of Diffraction Scattering by the edges (leading edge) and creeping waves (fuselage)

Comparison to Boundary Elements Method (BEMUSE code)

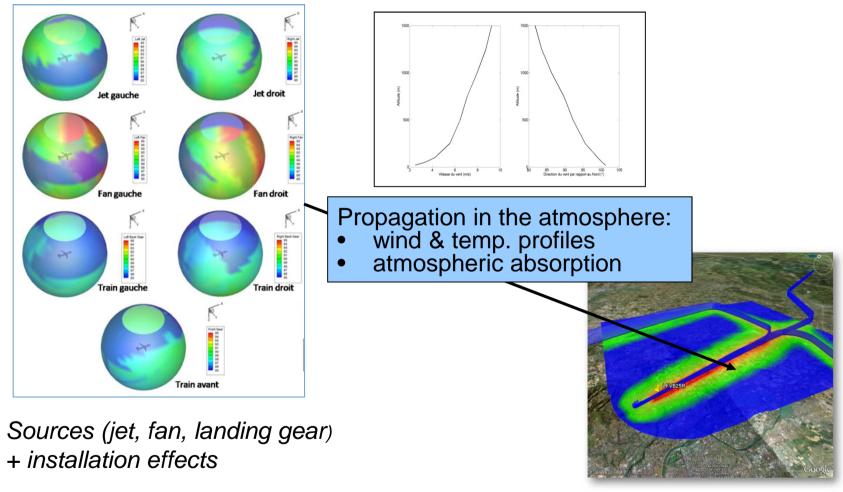
Objective:

Prediction of the noise on a sphere surrounding the aircraft including installation effects, to provide the input to the sound propagation in the atmosphere

How:

The directivity and spectra are calculated for every source on a sphere of 1m radius

₩


Input to installation effects module: position of the sources

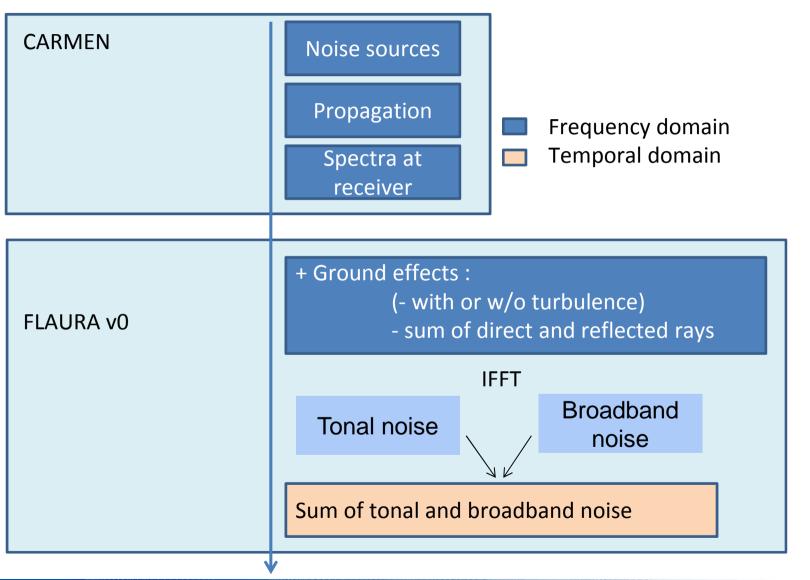
♦

Output of installation effects module: Sphere of 100m radius including at each gridpoint the information on: ray kind (direct, reflected, ...), ray path distance and first angles for each source location

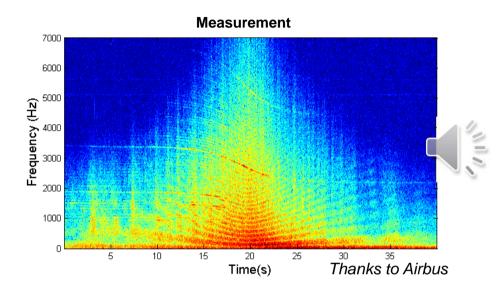
Coupling with source directivity and spectra

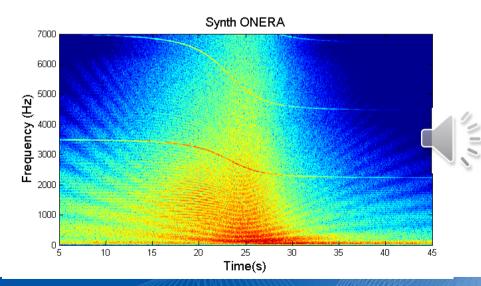
CARMEN Coupling (source + installation) with sound propagation

SPL footprint, 3 approach trajectories



Noise synthesis with FLAURA




FLAURA Structure – Coupling

FLAURA Example : Mid range aircraft take-off

Mid range aircraft take-off measured at microphone below flight path

- Aircraft trajectory and engine ratio known
- o Landing gear not deployed
- o Only engine noise prediction
- o Ground resistivity at 60 000 rayls/m
- o Microphone height at 1,2 m

Analysis

- Buzz Saw Noise overprediction
- BSN frequency distribution:
 - \rightarrow equal for synthesis
 - \rightarrow seemingly random in measured data
- Missing temporal modulation

Application to aircraft powered by CROR

Scope of the CROR application

Given that...

- ... the CROR tonal noise is expected to be the most annoying noise
- ... and is dominating the take-off conditions
- → As a first step in this work, we focus on the CROR tonal noise & takeoff conditions

Objective:

to assess the capabilities of predicting CROR ground noise with simulations based on semi-empiric models in the perspective of sound synthesis

Stakes:

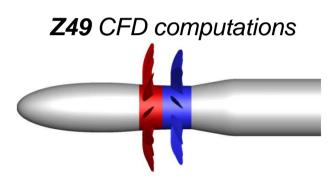
- Development of an accurate but general enough CROR noise modeling
- Illustration of the CROR noise particularity for noise perception

The CROR noise source The CROR tonal noise model

Model built for **a quick noise prediction** based on global characteristics of the CROR such as blade number, propeller diameter, thrust, ... (no blade design)

 \rightarrow can also be included in an <u>aircraft design tool</u>

Basis of the tonal noise model


- Derived from the propeller noise theory
- Assuming for each of the two propellers
 - ✓ no spatially fixed perturbations (e.g. pylon)
 - \checkmark nor flow incidence
 - \checkmark Same rotation speed
- Extension to contra-rotating propellers by including the mutual interaction between the rotors
- A generic blade load model based on ONERA's CFD experience is included
- Additional assumptions (neglecting rotor-rotor distance in far-field, ...)

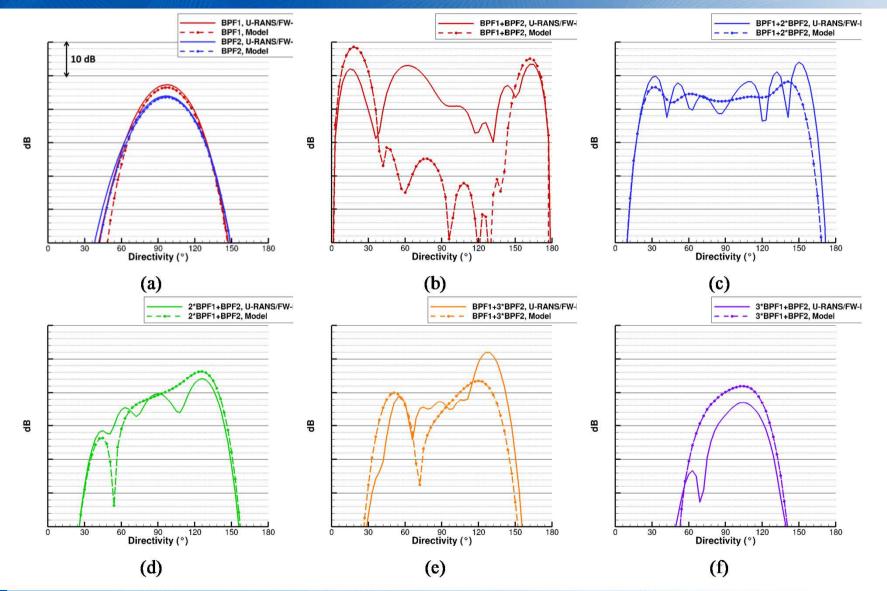
The CROR noise source The CROR tonal noise model

 \rightarrow Finally, the CROR tonal noise model inputs are *thrust*, *efficiency*, *rotating and axial speeds*, *blades number*, *radius and height* for each propeller.

→ Comparison to CFD/CAA results (Falissard et al. AIAA 2017-3869)

Parameter	Value
Front Rotor Blades, B ₁	11
Rear Rotor Blades, B ₂	9
Front Rotor Tip Radius, R _t [m]	2.134
Hub-to-Tip Ratio, R _h /R _t	0.35
Rear Rotor Cropping	10%
Rotor-Rotor Axial Spacing, x/D	0.22

AI-PX7 open-rotor characteristics


Z49 is the existing 1/5th scale model

Tests in ONERA's S1MA transonic wind tunnel

The CROR noise source Tonal noise comparison with a CROR geometry

The CROR broadband noise characteristics

- Generally less annoying in the propeller noise perception, in particular at take-off In the current case, we take into account
 - ✓ Rotor-alone noise
 - ✓ Rotor-rotor noise (in absence of pylon, only wake/rotor interaction)

The CROR broadband noise model

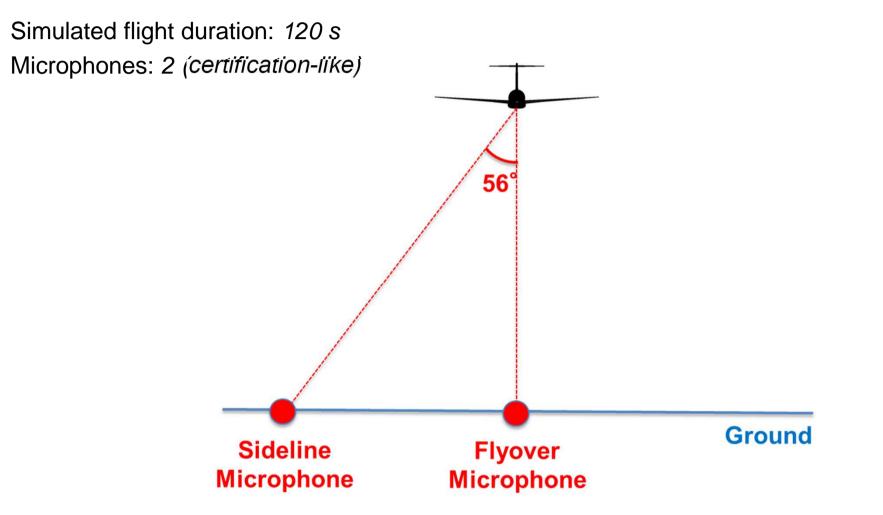
- Based on empiric laws inferred from Blandeau's results (Blandeau's work is based on airfoil noise theory derived from Sear's and Amiet's works)
- LI4 o Logarithmic law as function of frequency and directivity law in function of the polar angle
- Maximum SPL adapted to the tonal noise according to an empiric ratio deduced from experimental tendancies

LI4 .. as function of ... Legriffon Ingrid; 16/08/2018

Ground noise levels prediction *Rudimentary flight case*

Rudimentary test-case for the present ground noise assessment

Assumptions


- □ 1 engine [instead of 2]
- □ No installation effect
- □ Restricted to propeller noise

Simplifications

- □ Straight flight path at constant altitude
- No wind nor temperature gradient (only atmospheric absorption in the sound propagation)

Ground noise levels prediction Rudimentary flight case

Ground noise levels prediction Convergence study

Convergence study to ensure the accuracy of the results

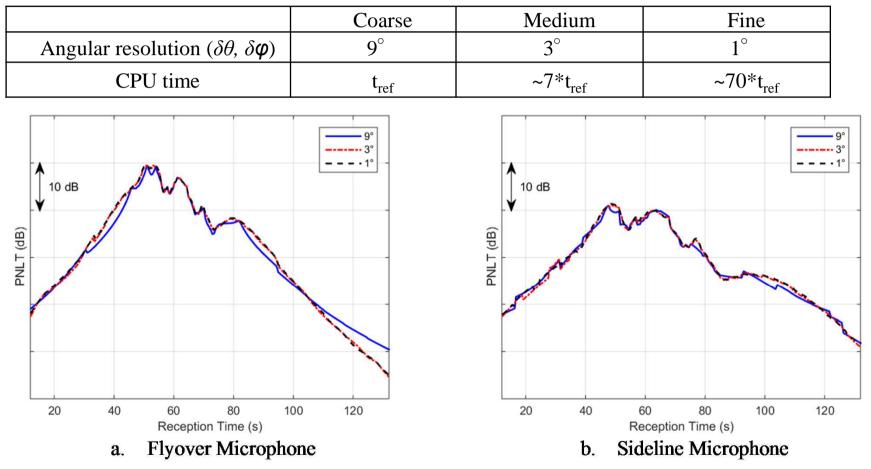
(in the same manner asCFD)

Time and space discretizations in CARMEN:

□ Time step of the flight path

EPNdB calculation based on ground noise levels collected every 0.5 s

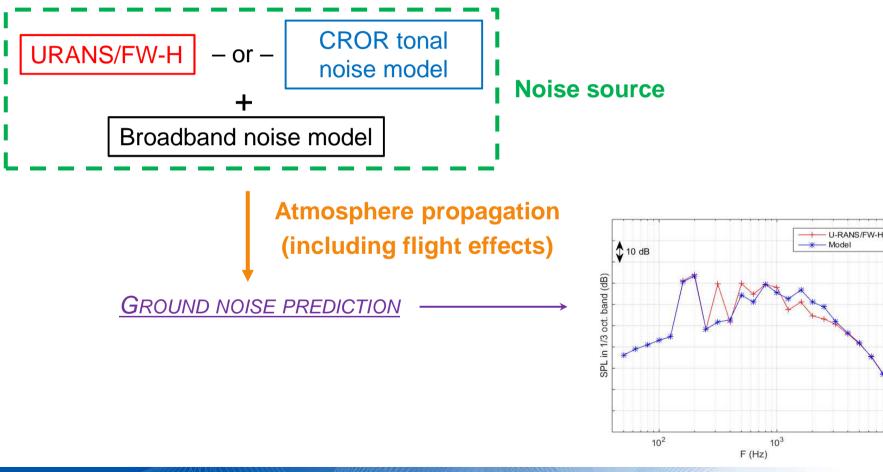
 $\blacktriangleright \Delta t = 0.5 s$ is adapted


(no significant interpolation error due to retarded time are expected on ground)

- Directivity spheres of the sources and directivity sphere attached to the aircraft for atmospheric propagation, i.e. angular discretizations of the noise source and sound propagation
 - These two angular discretizations are defined equal in CARMEN
 - Each discretization is defined according to $\Delta \theta = \Delta \varphi = constant$
 - > A convergence study based on this angular discretization is relevant
 - One expects that the convergence depends on the directivities of the noise sources, *i.e. the convergence depends on the simulation case*.

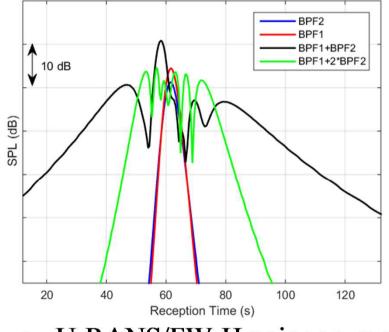
Ground noise levels prediction Convergence study

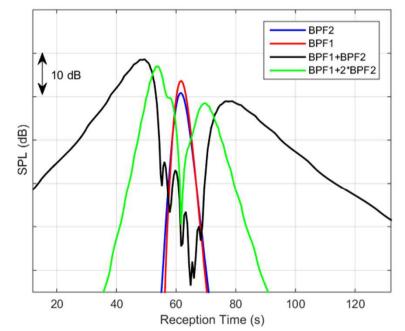
Convergence study to ensure the accuracy of the results


Simulation using the CROR model

Ground noise levels prediction *Ground noise predictions from CARMEN simulations*

Comparison of the ground noise prediction according to

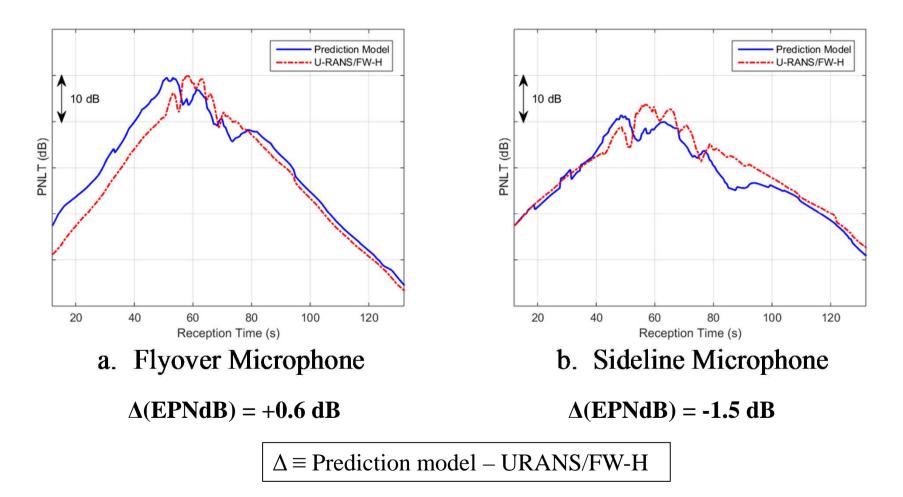

- ➢ either URANS/FW-H input as a noise source
- either the CROR tonal noise model


10⁴

Ground noise levels Ground noise predictions from CARMEN simulations

First tones contribution on the flyover microphone

a. U-RANS/FW-H noise source



b. CROR noise prediction model

Ground noise levels *Ground noise predictions from CARMEN simulations*

Ground noise levels

Ground noise synthesis

Sound Synthesis on the Flyover microphone

CROR tonal noise model URANS/FW-H

- → Significant discrepancy in terms of heard sound when the aircraft is approaching
- → Tonal noise is dominating, the synthesis model should be improved for more realistic rendering

Conclusion – CROR application

Objectives

Results

- This work is <u>a first attempt to provide a CROR noise model</u>
 - *i.* based on global propeller characteristics, *i.e.* without any blade geometry as input and
 - ii. accurate enough for community noise annoyance assessment
- This challenging task is partially reached
 - The model has been built according to the first requirement
 - But the accuracy of the tonal noise model is to be improved.
 - significant discrepancies for few tones (currently investigated), contrary to the close agreement of most of the predicted tones.

A few tones can have a significant impact on the ground noise prediction & their accurate prediction is then crucial

The sound synthesis requires high accuracy of the tonal noise prediction

A complete chain going from aircraft and engine data to a synthezised sound on the ground was developed

- □ The noise prediction tool is operative for most existing classic aircraft
- New configurations require on-going adaptation of the prediction noise tool
 - $\checkmark\,$ New noise models adapted to new technologies
 - New aircraft architectures can increase the installation effect role so that its calculation accuracy is crucial
 - \rightarrow Far-field noise source models vs. Near-field interaction
 - \rightarrow Point source assumption...
 - \rightarrow acceptable CPU time cost

Perspectives:

- □ Compare different computational methods for the installation effects module
- Improve the noise synthesis tool for more realism (including temporal variations at the source, amplitude and phase modulation due to turbulence)
- □ Needs of noise synthesis highlight the required accuracy of noise prediction

Acknowledgements

- This CROR applicative work has been achieved in collaboration with several ONERA colleagues: *Fabrice Falissard, Alain Chelius* and *Sylvette Canard-Caruana*
- The author also thanks *Airbus* for the sharing of its AI-PX7 blade design and the mid range aircraft measurement data.
- A part of this research has received funding from the *European Union's H2020 Programme* for the Clean Sky 2 Joint Technology Initiative under Grant Agreement CS2-LPA-GAM-2016-2017-01.

Thank you for your attention

