
VoCol: An Agile Methodology and Environment
for Collaborative Vocabulary Development

Niklas Petersen1, Lavdim Halilaj1, Christoph Lange1, and Sören Auer1

University of Bonn & Fraunhofer IAIS, Germany
niklas.petersen@iais-extern.fraunhofer.de, halilaj@iai.uni-bonn.de,

math.semantic.web@gmail.com, auer@cs.uni-bonn.de

Abstract Vocabularies typically reflect a consensus among experts in a
certain application domain. They are thus implemented in collaboration
of domain experts and knowledge engineers. Particularly the presence of
domain experts with little technical background requires a low-threshold
vocabulary engineering methodology. This methodology should be im-
plementable without dependencies on complex software components, it
should provide collaborators with comprehensible feedback on syntax
and semantics errors in a tight loop, and it should give access to a human-
readable presentation of the vocabulary. Inspired by agile software and
content development methodologies, we define the VoCol methodology
to address these requirements. We implemented a prototype based on a
loose coupling of validation and documentation generation components
on top of a standard Git repository. All of these components, even the
repository engine, can be exchanged with little effort. By evaluating the
usefulness of error feedback of different tools in the realistic setting of an
emerging mobility vocabulary we prove, however, that our choice of the
crucial validation component is workable.

1 Introduction

Vocabulary creation is currently a major bottleneck for the wide realisation of
the Semantic Web vision. This is because vocabulary development requires a
significant investment, which is difficult to make by a single person or organisa-
tion. If we look at current vocabularies (e.g. LOV 1), we observe that they are
rather simplistic. For a total of 457 vocabularies listed in LOV, a straightfor-
ward query against the LOV SPARQL endpoint tells us that the average number
of classes for each vocabulary is 42 whereas the average number of properties
is 59. Omitting the four vocabularies with the highest number of classes and
properties, these figures decrease to 31 classes and 37 properties on average. We
also observe that a large number of crucial domains is not or only superficially
covered by existing vocabularies (cf. Table 1). One of the main reasons for the
lack of vocabularies is also the lack of adequate methodological and tool support
(cf. section 3). As a result, despite recent progress in vocabulary creation, for
1 http://lov.okfn.org

http://lov.okfn.org

Table 1: Identified gaps in the coverage of existing vocabularies
Domain Information Vocabulary support missing for . . .
Spatial data Maps map data including road networks, traffic signs
Education School Grades levels of achievement, and their scales, depend-

ing on the country
Calendar Holidays fixed or floating holidays in each country, dur-

ation, types (e.g. non-working days, religious
holidays, state holidays)

Labour market Professions qualifications, degrees, levels of experience; in
general, and specific to countries

Nutrition Cooking recipes ingredients and their properties (e.g. al-
lergenes), how to process them, possible sub-
stitutes

Do it yourself Building/
repairing guides

required tools and materials, steps, dangerous
warnings

Supply chain Logistics, Sup-
pliers, Products

contact information, product descriptions, pro-
duction/demand forecasts

example, with the schema.org initiative, there is a substantial lack of compre-
hensive and well designed vocabularies for representing information on the Web
of Data.

One possibility to tackle the vocabulary creation problem is to significantly
lower the barrier for vocabulary creation and collaboration. The VoCamp move-
ment2 addresses the social perspective of lowering the vocabulary creation bar-
rier at least when getting new vocabularies started. From the technical perspect-
ive, we argue that light-weight and agile means can be a key to providing better
methodological and tool support for vocabulary creation. Agile methodologies
(such as Scrum, Extreme Programming, etc.) have meanwhile gained wide accept-
ance in software development. Also light-weight content creation methodologies
(such as the Wiki Way [11]) are meanwhile widely used and drive some of the
largest content authoring platforms on the Web (e.g. Wikipedia). An example
where such techniques are already used in practice is the DBpedia Mappings
Wiki, which uses MediaWiki for authoring the multi-lingual DBpedia ontology.3
However, the DBpedia ontology creation process is tailored specifically for DB-
pedia and might not be that efficiently applicable in other settings.

Few suitable solutions for developing vocabularies in collaboration of do-
main experts and knowledge engineers exist to date. None of them addresses
requirements of vocabulary development efforts involving distributed groups of
heterogeneous stakeholders (as detailed in section 2). Limitations include a high
cognitive overhead for domain experts, a lack of version control or project man-

2 http://vocamp.org/wiki/WhatIsVoCamp
3 http://mappings.dbpedia.org

http://vocamp.org/wiki/WhatIsVoCamp
http://mappings.dbpedia.org

agement support, limited support for the feature set of contemporary ontology
languages, or limited reusability of the ontology in automated workflows such as
validation or publication as linked data. For an in-depth discussion of existing
tools, see section 3.

In order to address the lack of vocabulary development support, we designed
VoCol, a low-threshold agile methodology for collaborative vocabulary devel-
opment. Inspired by agile software and content development methodologies, we
define the VoCol methodology to address these requirements. We implemented
a prototype based on a loose coupling of collaboration, authoring, project man-
agement, validation, documentation and visualization generation components
on top of a standard Git repository. All of these components, even the repos-
itory engine, can be exchanged with little effort to cater for specific use cases.
Through its continuous vocabulary component integration and verification func-
tions, VoCol can be seen as an analogon to continuous integration in software
engineering.

We successfully deployed and used VoCol in the MobiVoc4 initiative, which
aims at creating an open, standardised vocabulary5 for future-oriented mobility
solutions. MobiVoc is an initiative of the ITA, a trade association of information
technology providers for the automotive industry. Partners of MobiVoc include
automotive, IT and business consultancy companies, as well as research insti-
tutes. Developing the MobiVoc vocabulary involves members of these partner
organisations in the two main roles of domain experts and knowledge engineers.

The article is structured as follows: We identify requirements, which guided
the VoCol conception in section 2. We analyse and compare existing vocabulary
authoring environments in section 3. The principles, roles and techniques of
the methodology are outlined in section 4. We describe our implementation of
integrated tool support for all aspects of the VoCol methodology in section 5.
A preliminary evaluation is discussed in section 6 before we conclude with an
outlook on future work in section 7

2 Requirements

The creation of VoCol was triggered by the requirements of the MobiVoc con-
sortium. The aim of the consortium is to support the mobility of people through
the mobility of data by developing a comprehensive vocabulary for all aspects of
mobility ranging from map data, over points-of-interest to gas stations, electric
charging points and traffic management. The consortium comprises a number
of stakeholders (car manufacturers, researchers, IT companies, public adminis-
trations), which send representatives with different backgrounds to the working
groups. The following requirements for the MobiVoc collaborative vocabulary
development environment emerged from the bi-weekly phone conferences that
the MobiVoc partners have held since autumn 2014.
4 http://www.mobivoc.org/
5 We use “vocabulary” as a synonym for “lightweight ontology” and assume that
vocabularies are implemented in RDF Schema or a light profile of OWL.

http://www.mobivoc.org/

Low-threshold collaboration: The environment should impose a low threshold
on new collaborators, particularly on domain experts without knowledge of
the formal and technical details of ontology languages.

Web frontend: The environment should be accessible with a web browser, not
requiring the installation of any client-side tools. This contributes to keeping
the threshold low for non-technical users.

Validation: In particular, the environment should tolerate errors in syntax and
semantics, but it should detect them, report them in a comprehensible way
and make experienced knowledge engineers aware of them.

Documentation generation: After successful validation, a human-readable
documentation should be generated from the vocabulary, particularly suit-
able for inspection by domain experts.

Linked Open Data (LOD) publication: In parallel to the documentation,
a machine-comprehensible version of the vocabulary should be published as
RDF/XML linked open dataset.

Pluggable workflow: For all steps of the workflow (syntactic/semantic valid-
ation, generation of documentation or LOD, etc.) it should be possible to
plug the most suitable implementation into the overall environment.

Possibility to use rich clients: Using the web frontend required above should
not be the only possibility to collaborate. Experienced knowledge engineers
should have the possibility to apply powerful client-side tools (e.g. offering
advanced visualisation, validation, reuse from other vocabularies, or natural
language technology) to the vocabulary sources without having to use an
import/export mechanism and running the risk of working on an outdated
version.

Version control: As the MobiVoc vocabulary is still emerging, and being de-
signed in an agile process with a flat hierarchy open to new team members,
it should be easy to see when and why design decisions were taken, and to
revert old revisions.

Few technical dependencies: Setting up a running environment should re-
quire little effort.

3 Related Work

To keep our review of related work focused to the MobiVoc requirements intro-
duced above, we only consider environments primarily dedicated to collaborative
editing of vocabularies or ontologies. For example, we neither consider environ-
ments for authoring taxonomies or thesauri, nor document annotation envir-
onments with the possibility to export an ontology (such as certain semantic
wikis).

WebProtégé [13] provides a collaborative web frontend for a subset of the
functionality of the Protégé OWL editor6. The aim of WebProtégé, to lower the
threshold for ontology development and to provide a collaboration environment,
is similar to ours. Yet, the proposed web interface still requires a background
6 http://protege.stanford.edu/

http://protege.stanford.edu/

Table 2: Comparison of related systems
Requirement WebProtégé Neologism DBpediaa VOCREF
Syntax validation n/ab n/ab – –
Semantic validation – – – –
Usable with browser only + + + +
Combinable w/ client-side tools + + – +
Documentation generation – + + –
Linked Data publication – + + –
Version control + – + +
a DBpedia Mappings Wiki
b GUI prevents introduction of syntax errors

in knowledge modeling for any interested individual. While customization is
possible in form of plugins, very few exist compared its desktop version.

Neologism [2] is a vocabulary publishing platform, with a focus on ease of
use and compatibility with Linked Data principles. Neologism focuses more on
vocabulary publishing and less on collaboration. For example, versioning and
multiple users are not supported.

The DBpedia Mappings Wiki7 uses MediaWiki for creating and curating a
multilingual, multidomain ontology. The Mappings Wiki uses MediaWiki infobox
templates for describing ontology classes. The ontology meanwhile covers 125
languages, 685 classes and 61,459 properties. created by dozens of collaborators.

VOCREF (Vocabulary and Ontology Characteristics Related to Evaluation
of Fitness), a project of the hackathon at the 2014 Ontology Summit, is a vocab-
ulary that was created in a collaborative process in a GitHub repository.8 The
collaborators, all of whom were technically skilled knowledge engineers, decided
to use the OWL 2 Functional-style Syntax for their source files because it allows
for writing exactly one ontology axiom per source line, which makes it well suited
for version control. During the implementation, the collaborators committed 85
revisions and created 39 issues. These are the only observations relevant for us;
the rest of the final report on VOCREF focuses on the vocabulary itself [14].

4 Methodology

Inspired by the portrayal of agile methodologies in [1], we developed our own
version (Figure 1) for the different elements which are part of a collaborative
vocabulary development environment to gain a better understanding.

The requirements collected in section 2 imply that we need to support two
different tasks. First, we want to empower people with little technical expertise
7 http://mappings.dbpedia.org
8 See http://ontolog.cim3.net/cgi-bin/wiki.pl?OntologySummit2014_

Hackathon_OntologicalCatalogue for the project.

http://mappings.dbpedia.org
http://ontolog.cim3.net/cgi-bin/wiki.pl?OntologySummit2014_Hackathon_OntologicalCatalogue
http://ontolog.cim3.net/cgi-bin/wiki.pl?OntologySummit2014_Hackathon_OntologicalCatalogue

Tools

Process

Open participation

Regular reviews

People

Knowledge Engineer

Domain expert

Researcher

Models

Vocabularies

Use case oriented

Data models

Domain specific
language

Paradigms

Figure 1: Elements which interact in an collaborative vocabulary environment
based on [1, 8]

to contribute their domain knowledge into the vocabulary and second, to have an
environment which automatically validates these contributions and either return
some feedback or a new version of the vocabulary. Indeed, the former is similar
to what the wiki way [11] content creation methodology (underlying wikis) aims
to achieve and the latter goal of automatic feedback and verification is similar to
what software development methodologies (such as Scrum [3]) tackle. This dis-
covery motivated us to take these methodologies as a basis for the creation of the
VoCol methodology. Therefore, we propose a methodology that borrows the fol-
lowing principles from the wiki way (W; cited from [12]) and agile programming
(A; cited from [3]):

1. Easy and quick editing (W) for a low entry barrier: Contributors can
edit the vocabulary by using a plain-vanilla web browser without the need
of installing specific vocabulary editors.
(a) Openness (W) Any interested user may edit or use the vocabulary

without any restrictions. In keeping with the motto: ‘make bad edits
easy to correct, rather than hard to make’9

(b) Usage of a markup language (W) Choose the simplest markup lan-
guage for creating a vocabulary to facilitate non-technical users to par-
ticipate in the development.

(c) Close, daily cooperation between business people and developers
(A) Domain experts and developers work on the same vocabulary ver-
sion.

(d) Simplicity – the art of maximising the amount of work not done
– is essential (A) Focus on actual errors of the original source files

9 http://meta.wikimedia.org/wiki/The_wiki_way

http://meta.wikimedia.org/wiki/The_wiki_way

2. Regular adaption to changing circumstances (A) Modules of the
vocabulary can be adapted flexibly. Also, components of the collaboration
environment can be replaced by other components better suited to the task
at hand.

(a) Version control (W) Changes on the vocabulary are being tracked
using a version control system.

(b) Welcome changing requirements, even late in development (A)
(affects both vocabulary and technical architecture)

(c) Projects are built around motivated individuals, who should
be trusted (A) By having a flat hierarchy, there are no restrictions on
editing the vocabulary for any individual.

(d) Self organised teams (A) (affects technical architecture)
3. Customer satisfaction by rapid delivery of useful software (A) Auto-

matic publication of every new valid vocabulary version.

(a) Focus on collaborative product (W) As in [7], we consider the de-
velopment of a vocabulary as an ongoing process instead of a one-time
activity.

(b) Working software is the principal measure of progress (A) Every
new valid vocabulary version is published automatically and can there-
fore be used by any individual.

(c) Continuous attention to technical excellence and good design
(A) After every change, the new version is being evaluated with feedback
in case errors are introduced by the editor.

Figure 2 shows the generic architecture of any system that implements the
VoCol methodology; algorithm 1 “zooms” into the details of the part of the
process that any VoCol implementation should automate.

In section 2 we have pointed out limitations of existing visual IDEs. As we
believe that some of these limitations are inherent, e.g. that the choice of under-
lying language determines the cognitive overhead, and as we would like to enable
the use of alternative rich client tools, whose combination with import/export
from an IDE leads to synchronisation issues in a collaborative setting. There-
fore, VoCol does not require developing yet another visual environment but is
designed to be implemented using a plain text representation of the vocabulary,
which is managed by a mature version repository engine. Indeed contemporary
version control systems can only reliably handle editing conflicts in plain text
formats.

From the point of view of the related approaches introduced in section 3,
we thus took inspiration from the VOCREF collaborative effort but emphasise
domain experts as a target audience. Further reasons against using the concrete
systems Neologism or WebProtégé for implementing the VoCol methodology are
that Neologism is no longer actively maintained, and that WebProtégé is not yet
sufficiently extensible by plugins (e.g. for vocabulary validation or publication).
Its development is still in progress, and its developers advise ‘not to develop

edit

edit

Valid?
1. Syntax

2. Semantics

Vocabulary
source(s)

Publish
vocabulary

yes

Generate
error

report

no

Docu-
mentation

LOD

read
Domain expert

Knowledge engineer

Error
reportreview

Service

General public

read

use

Repository
with History

time

m
o

d
u

le
s

Figure 2: System architecture implementing the VoCol methodology

against it just yet’10. Finally, the MediaWiki-based approach of curating the
DBpedia Mappings ontology is suitable only for users familiar with MediaWiki.

Data: Vocabulary repository
Result: Validation and possible publication of the new vocabulary ;
if new vocabulary revision exists then

if new vocabulary revision validates then
publish new human-friendly documentation ;
publish new machine-comprehensible LOD ;

else
if errors have not been reported already then

report errors to the revision author ;
end

end
end
Algorithm 1: Validation and possible publication of a new vocabulary

10 http://protegewiki.stanford.edu/index.php?title=
WebProtegeDevelopersGuide&oldid=12158

http://protegewiki.stanford.edu/index.php?title=WebProtegeDevelopersGuide&oldid=12158
http://protegewiki.stanford.edu/index.php?title=WebProtegeDevelopersGuide&oldid=12158

Table 3: Component choices
Components Implementation
Vocabulary repository Git repository
Vocabulary authoring GitHub/GitLab UIa, ordinary text editor
Vocabulary validation rapperb

Documentation schemaorg publication enginec

LOD Apache (with static RDF/XML files)
Error report generation GitHub/GitLab issues
Visualisation WebVOWL
a https://github.com/, https://about.gitlab.com/
b http://librdf.org/raptor/rapper.html
c https://github.com/schemaorg/schemaorg

Roles. VoCol supports heterogeneous groups of stakeholders with various roles:

Domain experts have in-depth knowledge of the domain targeted by the vocab-
ulary, but lack expertise in modeling and knowledge representation.

Knowledge engineers support the knowledge representation and modeling
functions, ensure the adherence to standards and best-practices and ensure
consistency of the vocabulary on a conceptual level.

Application developers are building software applications involving user in-
terface components or data adhering to the vocabulary.

Researchers support the vocabulary development from a research perspective.

5 Implementation

For our concrete implementation of the architecture introduced above, we chose
a set of state-of-the-art components and put them together using scripts and
lightweight translators. In this section, we present and justify our choice of com-
ponents. We build on standard technology such as the Git version control system
for the repository, and tools from libraries such as the Redland RDF Libraries
for validation. Table 3 provides an overview about all technologies we used.
However, each component is exchangeable, and exchanging one component by
another one that is better suited for a specific use case, merely requires small
adaptations of the “glue”, i.e. the scripts.

Vocabulary Language and Representation First of all, we have to choose
a suitable vocabulary language. We primarily aim at enabling domain experts to
conceptualise a domain, whereas a full logical formalisation, e.g. in OWL, would
be left to knowledge engineers. Therefore, we consider RDF Schema suitable,
as it is a lightweight language for describing vocabulary terms, including classes
and properties, with little theoretical overhead.

https://github.com/
https://about.gitlab.com/
http://librdf.org/raptor/rapper.html
https://github.com/schemaorg/schemaorg

Turtle [4], the most widely used plain text serialisation of RDF (and RDF
Schema), has been designed for easy readability and writability by human users.11

We argue that, given suitable feedback from validation tools, domain experts can
be quickly trained to read and write a subset of Turtle with little effort. Our
experience in MobiVoc showed that domain experts were able to read and write
Turtle after just around 30 minutes of training. We recommend editing Turtle
with a text editor rather than a visual IDE, because visual editors tend to change
the structure of the source document on saving or exporting it. Such changes
increase the risk of editing conflicts and make it harder for other collaborators
to retrace the evolution of a vocabulary file over its history of revisions.

Repository Engine and Host Given the requirement to provide a low-threshold
access to the repository, we recommend prioritising the availability of a web
frontend over the underlying version control system. With GitLab (for self-
installation) and GitHub (hosted, i.e. even less effort to set up) being widely
in use12, Git becomes a preferred repository engine for implementing the VoCol
methodology.

These web frontends for Git particularly enable users who do not want or
do not know how to install or how to use a Git client to contribute by editing
files in the repository from the browser. Besides giving access to the files in
the repository and their revision history, these frontends furthermore facilitate
project management (by offering an issue tracker and the possibility to assign
users to teams), and expose most of their functionality via a web service API so
that it can be controlled programmatically.

Triggering the Validation and Publication Implementing algorithm 1, first
of all, requires detecting new revisions of the repository, or, in Git terminology,
responding to pushes to the central repository server and inspecting their com-
mits. On a self-hosted Git server, one can set up hooks, i.e. scripts that the
server calls when certain actions, such as pushes, occur.13 In GitHub-hosted
repositories, the Webhooks API14 gives limited access to this functionality.

We chose to use GitHub and set up a Git client, implemented using the
PyGithub API15 and running on a server under our control, which communicates
in regular time intervals with the repository server and collects, if there are
any, the latest commits. It checks whether these commits affected vocabulary
source files and collects the most recent version of each affected file, as well as
all users who have contributed to the file in any of the commits in the time
interval. The reason for this is that, if user Alice introduces an error into a file
and Bob introduces another one, it is hard to implement an automated decision
11 The specification of the N3 superset of Turtle explicitly states the design goal “to

be as readable, natural, and symmetrical as possible” [5]
12 largest code host on the planet according to https://github.com/features/
13 http://git-scm.com/book/en/v2/Customizing-Git-Git-Hooks
14 https://developer.github.com/v3/repos/hooks/
15 http://jacquev6.net/PyGithub/

https://github.com/features/
http://git-scm.com/book/en/v2/Customizing-Git-Git-Hooks
https://developer.github.com/v3/repos/hooks/
http://jacquev6.net/PyGithub/

procedure that would check whether or not Bob’s edit fixed Alice’s error. Our
implementation prefers false positives over false negatives and therefore notifies
all users that could in principle be concerned, relying on the collaborators to
use the project management functionality of the issue tracker to sort out the
responsibility for fixing errors.

Validation and Error Reporting Each file affected by a recent commit is
validated. In principle, any validator with a command-line interface is suitable.
Thanks to command-line HTTP clients such as wget or curl, this includes valid-
ators with a web service interface. The syntax of a vocabulary can, in principle,
be validated by any RDF parser; for the command line there are, e.g., rdfcat
from the Jena library, or rapper from the Redland RDF libraries. With Jena’s
eyeball there is also a command-line semantics validator, which can, e.g., check
for “likely cardinality violations” and “individuals having consistent types”.16 As
vocabularies are just a special case of linked datasets, one can finally employ data
quality assessment tools, such as our own Luzzu [9], which has a web service in-
terface. Quality metrics implemented in Luzzu that are relevant to vocabularies
include a check for the existence of human-readable labels or comments. The wide
availability of command-line validators and also converters for different RDF seri-
alisations opens up the VoCol methodology for other vocabulary languages. If,
e.g., the additional expressivity of OWL is desired, the OWLTools17 command
line interface to the OWL API, provides validation and supports human-friendly
serialisations such as the OWL Manchester Syntax [10].

The main prerequisite for employing a certain validator in a VoCol imple-
mentation is that precise information about errors can be extracted from its
output. Such information typically includes filename, line number and the type
of error. For validation error, our repository client first checks whether a report
exists already, by comparing these fields. If not, it generates a new report.

Our implementation creates GitHub issues whose title contains the error
message. The body of the issue includes a link to the file in the version of the
most recent commit (highlighting the affected line), links to earlier commits in
the current validation round that affected the same file, and it names the last
contributors who edited the file, plus the members of the “knowledge engineers”
team. GitHub supports collaboration by not only supporting one user to be the
assignee of an issue, but also sending notifications to all users addressed with
the @user syntax.

Publication for Humans and Machines After successful validation, we pub-
lish the vocabulary in human and machine friendly ways.

We first merge all Turtle source modules into a single file. From this file,
we generate an HTML+RDFa representation as required, using the schemaorg
documentation generator. The schemaorg documentation generator serves the
16 https://jena.apache.org/documentation/tools/eyeball-manual.html
17 https://owltools.googlecode.com/

https://jena.apache.org/documentation/tools/eyeball-manual.html
https://owltools.googlecode.com/

human-readable HTML documentation generated from this input from a local
web server, from which we download all pages into static HTML files. We also
generate a single-file RDF/XML version of the vocabulary. We publish the res-
ulting HTML and RDF/XML files using a web server configuration that makes
them available under the URIs of the respective vocabulary terms and performs
content negotiation between HTML and RDF/XML according to the best prac-
tices for publishing vocabularies [6].

For visualization purposes we use WebVOWL, a web application tool for the
user-oriented visualization of ontologies which implements the Visual Notation
for OWL Ontologies (VOWL) by providing graphical depictions for elements of
the OWL Web Ontology Language 18.

Deployment We deployed our software as a VirtualBox virtual machine im-
age, which can be installed with little effort. Using Vagrant, a tool for building
and managing virtualised development environments19, we make the process of
setting up this image reproducable and document it at the same time. All im-
plementation is available from the VoCol repository at https://github.com/
mobivoc/vocol/.

6 Evaluation

Evaluating methodologies and tools for knowledge engineering is inherently diffi-
cult. A thorough evaluation can only be performed by using the methodology and
collaboration environment in a variety of different projects over a long period
of time and assessing usage results, performing user interviews as well as as-
sessing the quality of the collaboration and resulting vocabularies. The VoCol
methodology and collaboration environment was developed as a result of the
requirements of the MobiVoc consortium. It was meanwhile used by this con-
sortium over a period of several months, but without sufficient duration and
intensity for supporting a comprehensive, empirical study. Nevertheless and in
the spirit of a conference publication sharing timely research results, we wanted
to already share the VoCol idea with the community.

In the following we first present a methodology for choosing the right com-
ponents to integrate in an implementation of the VoCol methodology, and then
share the results of applying this evaluation methodology to the central com-
ponent that implements vocabulary validation.

To make sure that a component of a VoCol implementation is fit for its pur-
pose, it has to be evaluated against the key principles of the VoCol methodology
(cf. section 2). The overall suitability of a component for collaborating on a
vocabulary can only reliably be assessed on a sufficiently large revision history,
rather than just on the most recent version. In practice this requires checking out
from the repository all relevant revisions (i.e. those that affected the vocabulary
18 http://vowl.visualdataweb.org/webvowl.html
19 https://www.vagrantup.com/

https://github.com/mobivoc/vocol/
https://github.com/mobivoc/vocol/
http://vowl.visualdataweb.org/webvowl.html
https://www.vagrantup.com/

(a) VoCol collaboration environment on GitHub (source and issue views).

(b) Schema.org style documentation of classes and properties.

(c) Vocabulary Visualisation using WebVOWL.

Figure 3: Interfaces to the VoCol environment

0 5 10 15 20 25 30 35 40
0

1

2

3

4

Revisions

#
of

er
ro
rs

re
po

rt
ed

rapper rdfcat

Figure 4: Number of errors reported by rapper and rdfcat

source), applying the component in question to these sources, and assessing the
usefulness of the component’s output.

In the concrete case of a syntax validator the central quality criterion is
the precision and comprehensibility of its error messages. Also, as we are not
validating errors inside an IDE, but only when a user pushes possibly several
commits at once, we are interested in detecting more than one syntax error at a
time, i.e. we are interested in a parser that tolerates minor errors and continues
processing the input. Concretely, we aimed at measuring whether rdfcat or rapper
is better suited for this job by determining the number of errors they reported
in a single run. Figure 4 shows the result of this comparison, clearly indicating
that rapper is better suited for use in a VoCol implementation. Note that there is
still further space for improvement, as in many revisions the source files actually
contained a much larger number of errors.

7 Conclusions & Future Work

In this paper we presented our approach to facilitate the collaborative develop-
ment of vocabularies by combining and integrating a number technologies. We
devised the VoCol methodology, presented a tool architecture supporting the
methodology, showcased an implementation integrating various components and
demonstrated the viability of the approach with the vocabulary developed by the
MobiVoc initiative. We hope that with VoCol we can contribute to solving one
of the most pressing obstacles for a wider, industrial use of semantic technolo-
gies. In particular, the agile and collaborative nature of VoCol, which facilitates
the engagement of various stakeholders from different organizations and with
different skill levels has the potential to dramatically improve the efficiency and
effectiveness of vocabulary development initiatives.

Based on the experiences with the MobiVoc vocabulary development initiat-
ive, we plan to start vocabulary development activities in other domains such as
for example manufacturing supply chains. We plan to automatize and simplify

further steps of the vocabulary development. For example, the integration and
use of visual editors is an interesting direction of further work. Once VoCol is
used in a variety of vocabulary development initiatives by a large number of
users, we aim to perform a comprehensive empirical study regarding the effi-
ciency end effectiveness of vocabulary development in the light of various factors
such as vocabulary/community size.

References

1. Auer, S. RapidOWL – A Methodology for Enabling Social Semantic Col-
laboration. In: Semantic Web Engineering in the Knowledge Society. Ed. by
J. Cardoso, M. D. Lytras. Idea Group, 2009.

2. Basca, C. et al. Neologism: Easy Vocabulary Publishing. In: Scripting and
Development for the Semantic Web (SFSW). CEUR-WS 368. Aachen, 2008.

3. Beck, K. et al. Manifesto for agile software development. 2001. http://
agilemanifesto.org/ (visited on 2015-01-15).

4. Beckett, D. et al. RDF 1.1 Turtle. Terse RDF Triple Language. Recommend-
ation. W3C, 2014. http://www.w3.org/TR/turtle/.

5. Berners-Lee, T., Connolly, D. Notation3 (N3): A readable RDF syntax. Team
Submission. W3C, 2011. http://www.w3.org/TeamSubmission/n3/.

6. Berrueta, D., Phipps, J. Best Practice Recipes for Publishing RDF Vocab-
ularies. Tech. rep. W3C, 2008. http://www.w3.org/TR/2008/NOTE-swbp-
vocab-pub-20080828/.

7. Braun, S. et al. Ontology Maturing: a Collaborative Web 2.0 Approach to
Ontology Engineering. In: CKC Workshop at WWW2007. CEUR-WS 273.
2007.

8. Cockburn, A. Selecting a project’s methodology. In: IEEE software 17(4)
(2000).

9. Debattista, J. et al. LUZZU – A Framework for Linked Data Quality As-
sessment. arXiv: 1412.3750 [cs.DB].

10. Horridge, M., Patel-Schneider, P. F. OWL 2Web Ontology Language: Manchester
Syntax. Tech. rep. W3C, 2009.

11. Leuf, B., Cunningham, W. The Wiki Way: Collaboration and Sharing on
the Internet. Addison-Wesley, 2001.

12. Moskaliuk, J. Konstruktion und Kommunikation von Wissen mit Wikis.
German. In: Theorie und Praxis (2008).

13. Tudorache, T. et al. WebProtégé: A collaborative ontology editor and know-
ledge acquisition tool for the Web. In: Semantic Web 4(1) (2013).

14. Vizedom, A. Ontology-Vocabulary Characteristics Relevant to Suitability for
Semantic Web & Big Data applications. In: Ontology Summit Symposium.
2014. http://ontolog.cim3.net/cgi-bin/wiki.pl?OntologySummit2014_
Symposium#nid4CUL.

http://agilemanifesto.org/
http://agilemanifesto.org/
http://www.w3.org/TR/turtle/
http://www.w3.org/TeamSubmission/n3/
http://www.w3.org/TR/2008/NOTE-swbp-vocab-pub-20080828/
http://www.w3.org/TR/2008/NOTE-swbp-vocab-pub-20080828/
http://arxiv.org/abs/1412.3750
http://ontolog.cim3.net/cgi-bin/wiki.pl?OntologySummit2014_Symposium#nid4CUL
http://ontolog.cim3.net/cgi-bin/wiki.pl?OntologySummit2014_Symposium#nid4CUL

	VoCol: An Agile Methodology and Environment for Collaborative Vocabulary Development

