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ABSTRACT

In his 1859 paper, Bernhard Riemann used the integral equation f f(x)x " "dx todevelop an
0

explicit formula for estimating the number of prime numbers less than a given quantity. It is the
purpose of this present work to explore some of the properties of this equation.



Consider the integral equation given below
(1) F(s) = ff(x)xis*ldx
0

Formula (1) is the the integral of f(x) times x °' for x = 0 to c and the resulting function is a
function of s, say F(s) (or the transform of f(x)) . It must be assume that f(x) is such that the integral

exists (it has finite value).

Example 1 Apply formula (1) to obtain the transform of f(x) = e™.

Solution. Substitute e™*to (1)

F(s) = [e*x*'dx = T'(-s) R(s) <0 ,sine [(s) = [e*xdx, R(s)>0 ,
0 0

where T'(S) isthe gamma function and 9R(s) is the real part of the complex quantity s.

Unit Step Function (Heaviside Function)

The unit step function or Heaviside function p(x — a) is 0 for x < g, has a jump size 1 at x = a (where
it is usually consider as undefined), and is 1 for x > a, in a formula:

u(x—a) = |0 ifx<a a=0.
1 if x>a

The transform of p(x — a) is

F(s) = fxis*l‘u(x—a)dx = fxinx = _)s( ;
0 a a

here the integration begins at x = a (>0) because p(x — a) is 0 for x < a. Hence

F(s) = & (a>0 and s>0).




Example 2: The Riemann Zeta Function is given by

E(s) = 1°+2°+3%+ .. = D.n* = Z% R(s)>1 ,

obtain the transform of Y, u(x—n), n=1,234,.. .
n=1

F(S):f[AU(X_1)+‘M(X—2)+M(X—3)+ Lx T = =X PR S P S
0 S h S |2 S I3
= 1(14_275_'_375_'_475_'_ lZl: ) R(s)>1.
S san

0,

Example 3: Obtain the transform of (x) = D, u(x—p) , where p is a prime number, p = 2, 3, 5, 7,
p

11, ...

F(s) = f > ulx—p)x~'d f w(x=2)+u(x=3)+ u(x=5)+u(x=7)+ ... x " 'dx
0 0

00

ﬂ(s):%(2_$+ 3°45 °+7 °+...) = %Z p*’ R(s)>1.

p

Dirac’s Delta Function

Consider the function

fx—a) = 1/ 7 if asxs=a+t
0 otherwise.
Its integral is
I = ffr(x—a)dx = f %dx = 1.
0 a

We let now let T becomes smaller and smaller and take the limit as T— 0 (r > 0). This limit is denoted
by 6(x — a), that is,

d(x—a) = lim f,(x—a).

70



and obtain

d(x—a) =

o if x=a and fé(x—a)dx =1
0 otherwise 0

6(x — a) is called the Dirac delta function or the unit impulse function. For a continuous function f(x)
one uses the sifting property of §(x — a),

f(x)o(x—a)dx = f(a).

o3

To obtain the transform of §(x — a), we write

and take the transform

F(s) = ffr(x—a)xfﬂdx = i[ais—(‘a+ r)fsl = a°———9  g>0 and R(s)>0.
) s TS

Take the limit as 7— 0. By I’Hopital’s rule, the quotient on the right has the limit 1/a. Hence, the right
side has the limit a®*". The transform of §(x — a) define by this limit is

F(s)= a>0.

© 3
>
2
|
Q
>
d

AN
Q.
>
[
S,

Example 4 Obtain the transform of Y. (x—n) .

n=1

F(s)=

© ~——38

{ié(x—n)}x51dx:§n<s+l) = £(s+1), R(s)>0.

n=1



The Riemann Transform

Many common functions like sinx, cosx, Inx, etc., when applied to formula (1) don’t have
finite values. But if the lower limit for (1) starts at x = 1, then there are suitable functions such that the
integral in (1) exist.

If f(x) is a function defined for all x>1 , its Riemann transform is the integral of f(x) times

—s—1

X for x =1 to oo. It is a function of s, say F(s), and is denoted by R(f) ; thus

o0

@ F(s)=R(f)=] f (x)x* " dx.

1

The given function f(x) in (2) is called the inverse transform of F(s) and is denoted by R”(F); that is,

f(x) = R7(F).

Example 5 Let f(x)=1 . Find F(s).

Solution. From (2) we obtain by integration

1 47

R(f):R(l):]jx_s_ldx:—;x L

= (s>0).

1

Example 6 Let f(x)=x" , whereais a constant. Find F(s).

Solution. From (2),

= — (s—a>0).

THEOREM 1 Linearity of the Riemann Transform

The Riemann transform is a linear operation; that is, for any functions f(x) and g(x) whose transforms
exist and any constants a and b the transform of af(x) + bg(x) exists, and

Riaf (x)+bg(x)} = aF(s) + bG(s).




Example 7 Find the transforms of cosh (alnx) and sinh (alnx).

Solution. Since cosh(alnx)Z%(x” + x ‘) and sinh(alnx)Z%(x“ — x ), we obtain from

Example 6 and Theorem 1,

_1 a —ayy = 1)1 1 |__s
R{cosh(alnx)} = 2(R(x) + R(x77) = o\s—a s+al sSS—a
) _1 o oy 11 1 a
R[smh(alnx)}— 2(R(X) R(X >) " 2ls—a s+al s—d

Example 8 Let f(x)=x"" , where i is the imaginary operator (i = —1) . Find F(s).
Solution. From Example 6
R( xai) — 1 — 1 S+ ail S o

. . .: 2 2+i
S —ai S—al s+ ai s“+a

2 2°
S +a

Example 9 Cosine and Sine

Derive the formulas

R{COS(OCIDX)}: 25 and R{Sil’l(O{h’lX)}: 2a

2 2
St+a S+a

Solution. From Example 8 and Theorem 1

ai

x“" = cos(alnx) + isin(alnx)

R(x“) = R(cos(alnx)) + iR(sin(alnx)) , thus

R{cos(alnx)} = ZS > and  R{sin(alnx)} = 5%
s+a sta




THEOREM 2 s-Shifting Theorem

If f(x) has the transform F(s) (where s > k for some k), then x° f(x) has the transform F(s — a)

(where s —a > k). In formulas,

or, if we take the inverse on both sides

PROOF We obtain F(s — a) by replacing s with s — a in the integral in (1), so that

Fls=a) = [ flxlax =[x xflxle = RICT))

1

Example 10 From Example 9 and the s-Shifting theorem one can obtain the Riemann
transform for

R{x‘cos(alnx)} = ——— and R{x‘sin(alnx)} = —%— .

Existence and Uniqueness of Riemann Transforms

A function f(x) has a Riemann transform if it does not grow too fast, say, if for all x > 1 and some
constants M and k it satisfies

3) If(x) < Mx".

THEOREM 3 Existence Theorem for Riemann Transforms

If f(x) is defined and piecewise continuous on every finite interval on x > 1 and satisfies (3) for all
x > 1 and some constants M and k, then the Riemann transform R(f) exists for all s > k.




PROOF Since f(x) is piecewise continuous, x *f(x) is integrable over any finite interval on the
X-axis,

< f|f(x)|x7de < | Mxx*dx = slk
4 _

— g

Uniqueness. If the Riemann transform of a given function exists, it is uniquely determined and if two
continuous functions have the same transform, they are completely identical.

Transforms of Derivatives and Integrals

THEOREM 4 Riemann Transform of Derivatives

The transforms of the first and second derivatives of f(x) satisfy
) R(f') = (s+1)F(s+1) — f(1)

) R(f') = (s+2)(s+1)F (s+2) — (s+1)f(1) —f'(1)

Formula (4) holds if f(x) is continuous for all x > 1 and satisfies (3) and f’(x) is piecewise continuous on every finite
interval for x > 1. Formula (5) holds if f and f’ are continuous for all x > 1 and satisfy (3) and f" is piecewise continuous
on every finite interval for x > 1.

PROOF Using integration by parts on formula (4)

o]

fr(x)xdx = [f(x)x°7'|7 + (s+1)ff(x)x_s_2dx = —f(1) + (s+1)F(s+1).

1

R(f) =

= C—8

The proof of (5) now follows by applying integration by parts twice on it, that is

00

Fr)x e = [F (0T + (%)) Fx

1

R(f") =

——

0

= —f'(1) + (s+1)| f(x)x 77 + (s+2)ff(x)x75*3dx

1

= (1) = (s+1)f(1) + (s42)(s+1)F(s+2).



Repeatedly using integration by parts as in the proof of (5) and using induction, we obtain the
following Theorem.

THEOREM 5 Riemann Transform of the Derivative f* of Any Order

Letf,f’, ..., f"’l) be continuous for all x> 1 and satisfy (2). Furthermore, let f* be piecewise continuous on every
finite interval for x > 1. Then the transform of f satisfies

R(f<”)) = (s+n)(s+n—1)--«(s+1)F(s+n) — (s+n—1)(s+n—2)---f(1) —

(s#n=2)(s+n=3)--f'(1) — = f" V(1)

Example 11 Let f(x) = x. Then f(1) = 1, f'(x) = 2x, f(1) = 2, f’(x) = 2. Obtain

R{f}, R{f’}, and R{f’}.

Solution. R{f} = F(s) = F(s+l) = F(s+2) = % Hence, by formulas (4)
and (5),

R(F) = (s+1)= = 1= —2= and R(f") = (s+2)(s%1)5 = (s+1) = 2 = 2.

THEOREM 6 Riemann Transform of Integrals

Let F(s) denote the transform of a function f(x) which is piecewise continuous for x> 1 and satisfies
formula (3). Then, fors > 0,s >k, and x > 1,

X

ff(r)dt

1

= Lp(e-1), s If(r)dr _ Rl[lp(s—n].

(6) R
s

PROOF Let the integral in (6) be g(x) then g’(x) = f(x). Since g(1) =0 (the integral from 1 to 1 is zero),

R{f(x)} = R{g'(x)} = (s+1)G(s+1) — g(1) = (s+1)G(s+1) = F(s),
replace sbys—1, ([s—1]+ 1)G([s—1]+1) = F(s—1) = sG(s) = F(s—1).

Division by s and interchange of the left and right side gives the first formula in (6), from which the
second follows.




Example 12 Let f(x) = x. Obtain the transform of g(x) = _[ rdt = G(s).
1

Solution. F(s) = R{x| = 1 F(s—1) = 5%2, then G(s) =

- 5
S_

Differentiation and Integration of Transforms

Differentiation of Transforms

Given a function f(x), the derivative F’(s) = dF/ds of the transform F(s) = R(f) can be obtained by
differentiating F(s) under the integral sign with respect to s. Thus, if

F(s) =

»ﬂf—;8

f(x)x* 'dx, then F'(s) = —Tlnx f(x)x*dx.

Consequently, if R(f) = F(s), then
Rilnxf(x)] = =F'(s) and R '[F'(s)}] = —Inxf(x),

where the second formula is obtained by applying on both sides of the first formula. In this way,
differentiation of a function corresponds to the multiplication of the function by -Inx.

Example 13 Obtain the transform of Inxsin(alnx) and Inxcos(alnx)

Solution.
. 2as
R{lnxsm(alnx)} = s J -I(-ZO!Z = (52 N 052)2
dl s (s+a’)—2s° s'—a’
R{l 1 = — - = :
[Inxcos(aInx)} ds| 20 o T (&2 + )




Integration of Transform

Given a function f(x), and the limit of f(x)/Inx, as x approaches 1 from the right, exists, then for s > k,

flo,

In

0

R - [Flo)do  hence R_l[]:.F(a)do]:M.

Inx

N

In this way, integration of the transform of a function f{(x) corresponds to the division of f(x) by Inx.
From the definition it follows that

T — Tl —o—1 _ T T -0 dx
{F(a)da = f !x f(x)dx|do = {f(x) {x do|=.

Integration of x ¢ with respect to o gives x °/(-In x). Hence the integral over o on the right equals
x */In x. Therefore,

T T - f(x) f(x)
F(o)do = Tl-—dx = R|——= >k).
{ (0)do {X Inx Inx (5>k)
2 s+ a’
Example 14: Find the inverse transform of In 1+O‘—2 = In >
s s
Solution. Denote the given transform by F(s). Its derivative is
. d 2s 2s
F'(s) = $[ln(sz+a2)— 11‘152] = I

Taking the inverse transform, we obtain

R'F'(s) = R 2752 — %] = 2cos(alnx)—2 = —Inxf(x).

2
S +o

Hence the inverse f(x) of F(s) is

f(x) = %(1 _ cos(alnx)).



Alternatively, if we let

2s 2 then g(x) = RG]} = 2[1—cos(alnx)].

G(S) = 2+l s

From this and using the integral of transform we get,

2 2
S +o
2
S

Rfl

In Inx _ Inx

_ RI[TG(s)dS] =9 2 e,

The Riemann Transform and the Laplace Transform

The Laplace transform is the integral of f(y) times e from y = 0 to o where f(y) is defined for all y > 0.
It is denoted by L{f},

(7) Lif} = [ f(y)e™dy.
0
The Riemann transform is given below

8 RIf} = | f(x)x " "dx.

— g

Replace x = ¢’ ( or y = Inx) in formula (8) and since x = 1 to o, y = 0 (In1) to oo (In).

fly)e™dy,

= C—]

Flx)x " ldx = J?f(ey)e-sy-ydw) -

o 38

which is formula (7).

The Bilateral Laplace Transform
Formula (7) is usually called the Unilateral Laplace transform since the integral is evaluated from

0 to oo. The integral below is known as the Bilateral Laplace transform because the integral is taken
from -oo to oo,

©) Bif} = [ f(y)e ™ dy.



Now, consider the integral equation
(10) [ f(x) x> tax,
0
Replace x = ¢’ ( or y =Inx) in formula (4) and since x = 0 to o, y = -00 to oo, thus

0

f(x)e ®dx = _‘[Of(ey)efysfyd(ey) =

o big
g8

fly)e ¥dy,

which is (9).

Riemann Transform: General Formulas

Formula Name
F(s)=R{f(x)}= ‘T‘ Fx)x "dx Definition of Transform
f(x) =R '(F(s)) Inverse Transform
Riaf (x)+bg(x)} = aR{f(x)} + bR{g(x)] Linearity

R{X'f(x)} = F(s—a _Shifting Th
R'(F(s—a)} = x"f(x)

R(f') = (s+1)F(s+1) — f(1) Differentiation of Function

R(f") = (s+2)(s+1)F(s+2) — (s+1)f(1) —f'(1)

R [ f(r)dz| = 1p (s—1), Integration of Function
1
R{lnxf(x)} = —F'(s) Differentiation of Transform
f(x)] _ 7
R In x - f Flo)do Integration of Transform




Table: Some Riemann Transforms

f(x) F(s) = R{f(x)}
1 1 1
s
2 X 1
s—1
3 x° 1
s—a
4 x“! 1
s—ai
5 cos( arInx) s
s'+a’
6 sin(oInx) %
s°+a
7 cosh(alnx) s
ss—a
8 sinh(aln x) a
s’ —a’
9 x"cos( arInx) s—b
(s—=bf+a’
10 X’sin(alnx) (s—b§£+a2
11 5(){—(1) a—(s+1)
12 2. 8(x—n) 2 51+1 = §(s+1)
n=1 n=1MN
13 2. 3(x=p) 2 p
p p
14 u(x—a) a’
s
" > ulx-n) 151 _ £l
n=1 Sn:1 n S
16 2. ulx—p) 13
p Sp
17 2 sS+ a
1nx[1 cos(aInx)] In .




18 1 . arctan-%
Esm(aln x) s
19 2, R
lnx[l cosh(alnx)] In >
20 1 b s — a
Inx (X X) In s _ b
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