
Crisma

C
r
ism

a
CRISMA ICMS Architecture
Document V2

Pascal Dihé, Martin Scholl, Sascha Schlobinski,
� orsten Hell and Steven Frysinger, CIS
Peter Kutschera, Manuel Warum and Denis Havlik, AIT
Arnaud DeGroof and Yannick Vandeloise, SPB
Oren Deri, NICE
Kalev Rannat, TTU
Jussi Yliaho, VTT
Ari Kosonen, INS
Martin Sommer, EADS
Wolf Engelbach, FRA

28.2.2014

This project has received funding from the European
Union’s Seventh Framework Programme for research,
technological development and demonstration under
grant agreement no 284552.

28.2.2014 | i

http://www.crismaproject.eu

The research leading to these results has received funding from the European Community's
Seventh Framework Programme FP7/2007-2013 under grant agreement no. 284552 "CRISMA“

Deliverable No. D32.2
Subproject No. 3 Subproject Title Integrated Crisis

Modelling System
Work package No. 32 Work package Title Crisis Modelling System

Architecture
Authors Pascal Dihé (CIS), Martin Scholl (CIS),

Sascha Schlobinski (CIS), Thorsten Hell
(CIS), Steven Frysinger (CIS), Peter
Kutschera (AIT), Manuel Warum (AIT), Denis
Havlik (AIT), Arnaud DeGroof (SPB), Yannick
Vandeloise (SPB), Oren Deri (NICE), Kalev
Rannat (TTU), Jussi Yliaho (VTT), Ari
Kosonen (INS), Martin Sommer (CASS), Wolf
Engelbach (FRA)

Status (F = Final; D = Draft) F
File Name CRISMA_D322_final.pdf
Dissemination level
(PU = Public; RE = Restricted; CO = Confidential)

PU

Contact Anna-Mari.Heikkila@vtt.fi
Crisma.Coordinator@vtt.fi

Project www.crismaproject.eu

Keywords CRISMA, Architecture, Framework, Concepts, Building Blocks,
Implementation

Deliverable leader Name: Pascal Dihé

Partner: CIS

Contact: pascal.dihe@cismet.de
Contractual Delivery
date to the EC

28.2.2014

Actual Delivery date to
the EC

28.2.2014

mailto:Anna-Mari.Heikkila@vtt.fi
mailto:Crisma.Coordinator@vtt.fi
http://www.crismaproject.eu/
mailto:pascal.dihe@cismet.de

28.2.2014 | ii

http://www.crismaproject.eu

Document Revision History

Version Date Who Comments
0.1 11.11.2013 Pascal Dihé Initial draft structure and description of

designated content
0.2 02.12.2013 Pascal Dihé Initial CIS Contributions
0.3 17.12.2013 Pascal Dihé Updated Partner Contributions
0.4 08.01.2014 Pascal Dihé Updated Mission chapter completed
0.4.1 13.01.2014 Sascha Schlobinski Conceptual Business Logic chapter

completed
0.5 14.01.2014 Pascal Dihé Concepts chapter completed
0.6 22.02.2014 Pascal Dihé Realisation and Implementation chapters

completed
0.7 24.01.2014 Pascal Dihé Annex A & B completed
0.8 07.02.2014 Pascal Dihé Final draft for pre-review
0.9 14.02.2014 Reiner Güttler Pre review
0.9.1 20.02.2014 Sascha Schlobinski SP-Leader Pre-Review
1.0 27.02.2014 Pascal Dihé Final Version and Updates after Review
1.0.1 27.02.2014 Sascha Schlobinski SP-Leader Review & approval
Final 28.2.2014 Coordinator SSA approved and styles corrected by

the Coordinator

Disclaimer

The content of the publication herein is the sole responsibility of the publishers and it
does not necessarily represent the views expressed by the European Commission or its
services.

While the information contained in the documents is believed to be accurate, the
authors(s) or any other participant in the CRISMA consortium make no warranty of any
kind with regard to this material including, but not limited to the implied warranties of
merchantability and fitness for a particular purpose.

Neither the CRISMA Consortium nor any of its members, their officers, employees or
agents shall be responsible or liable in negligence or otherwise howsoever in respect of
any inaccuracy or omission herein.

Without derogating from the generality of the foregoing neither the CRISMA Consortium
nor any of its members, their officers, employees or agents shall be liable for any direct
or indirect or consequential loss or damage caused by or arising from any information
advice or inaccuracy or omission herein.

28.2.2014 | iii

http://www.crismaproject.eu

Table of Contents

TABLE OF CONTENTS .. III

TABLE OF APPENDICES .. VII

LIST OF FIGURES .. VIII

GLOSSARY OF TERMS ... XIII

ACRONYMS AND TECHNICAL TERMS... XX

EXECUTIVE SUMMARY .. XXIV

1. INTRODUCTION ... 1

1.1. Purpose of this document ... 1

1.2. Intended audience .. 1

1.3. Structure of the document ... 1

1.4. Changes to this document .. 2

1.5. Relation to other deliverables.. 3

1.5.1. Relations of the architecture specification V1 .. 3

1.5.2. Relations of the architecture specification V2 .. 7

1.6. Relation to SP4 and SP5 .. 9

1.7. Architectural approach .. 10

1.7.1. Preliminary considerations... 11

1.7.2. Approach and methodology ... 13

1.7.3. Functional and implementation architecture .. 15

2. MISSION ... 17

2.1. Preliminary considerations .. 17

2.2. Architectural goals .. 22

2.3. Architectural properties ... 25

2.4. Architectural constraints .. 26

3. CONCEPTS ... 29

3.1. Conceptual business logic .. 29

3.1.1. Analysis viewpoint ... 29

3.1.2. Central concepts for crisis management simulation ... 30

3.1.3. Central concepts for crisis management simulation analysis 34

3.1.4. Simulation case graph ... 36

28.2.2014 | iv

http://www.crismaproject.eu

3.1.5. Relevance of the conceptual business logic .. 39

3.2. Reference architecture.. 40

3.3. CRISMA federations, applications and scenario orientation .. 41

3.4. Communication paradigms and spatial distribution ... 45

3.5. Middleware infrastructure .. 47

3.6. Modular control and communication information model .. 49

3.7. Federates and integrated components .. 51

3.8. CRISMA federates .. 52

3.9. CRISMA building blocks ... 53

3.10. The federation concept ... 53

3.10.1. Federated components and federated systems ... 53

3.10.2. Federated simulation models and federated simulations 54

3.10.3. Integrated components, simulation models and systems 54

3.10.4. CRISMA federations and applications ... 54

3.11. Separation of data and control and communication information flows 55

3.12. GUI integration approach .. 56

3.13. Data integration approach ... 71

3.14. Simulation model integration approach ... 73

3.15. Compatibility with legacy systems ... 76

3.16. Transferability ... 79

3.17. Training .. 81

3.18. Resource management ... 84

3.19. Relation to models for multi-sectoral consequences ... 88

3.19.1. Crisis management strategies and planned action .. 89

3.19.2. Economic impacts and consequences ... 90

3.19.3. Multi-criteria decision analyses .. 90

3.19.4. Cascade events and time-dependent vulnerability ... 91

3.20. Access control .. 92

3.21. Administration ... 92

4. REALISATION .. 94

4.1. Infrastructure building blocks .. 96

28.2.2014 | v

http://www.crismaproject.eu

4.1.1. Integrated crisis management middleware .. 96

4.1.2. Object of interest world state repository ... 97

4.1.3. Publish/subscribe context broker ... 97

4.2. Integration building blocks .. 97

4.2.1. Agent-oriented simulation models.. 98

4.2.2. Data integration ... 99

4.2.3. Indicators building block .. 99

4.2.4. Simulation model integration ... 99

4.3. User interaction building blocks .. 100

4.3.1. Cascade events configuration and interaction view 100

4.3.2. Economic impact calculation view ... 100

4.3.3. GIS widget ... 101

4.3.4. Integrated planning view .. 101

4.3.5. Multi-criteria analysis and decision support view ... 102

4.3.6. Object of interest management .. 102

4.3.7. Preparedness plan .. 103

4.3.8. Resource management tactical training ... 103

4.3.9. resource management training dispatch and monitor view 103

4.3.10. Resource management training indicators and statistics view 104

4.3.11. Resource management training simulation scenario setup view 104

4.3.12. Scenario analysis and comparison view .. 104

4.3.13. Simulation model interaction view.. 105

4.3.14. UI mashup platform ... 105

4.3.15. UI integration platform ... 105

4.3.16. World state view .. 106

4.4. Interoperability standards .. 106

4.4.1. Open geospatial consortium and opengis standards 107

4.4.2. W3C standards.. 111

4.4.3. Other standards... 112

5. IMPLEMENTATION ... 116

5.1. Software components ... 118

28.2.2014 | vi

http://www.crismaproject.eu

5.1.1. Infrastructure software components ... 122

5.1.2. Integration software components ... 123

5.1.3. User interaction software components ... 125

5.2. Core control and communication information model ... 133

5.2.1. Classes of the core control and communication information model................ 133

5.2.2. Relation to conceptual business logic .. 136

5.2.3. Technical realisation .. 137

5.2.4. Generic extension mechanisms ... 139

5.3. Application architecture template .. 143

5.4. Rules and guidelines... 145

5.4.1. Conventions .. 146

5.4.2. General rules for federates .. 146

5.4.3. Rules for building block implementations ... 148

5.4.4. Rules for information models ... 149

5.4.5. Rules for RESTful API specifications ... 151

5.4.6. Rules for user interface integration and development 155

5.4.7. Rules for JavaScript APIs .. 156

6. CONCLUSIONS .. 157

7. REFERENCES .. 159

APPENDIX (A) CORE CCIM FORMAL SPECIFICATION .. 163

APPENDIX (B) APPLICATION ARCHITECTURE TEMPLATE .. 174

28.2.2014 | vii

http://www.crismaproject.eu

Table of Appendices

APPENDIX (A) CORE CCIM FORMAL SPECIFICATION .. 163

BaseEntity ... 163

Categories ... 164

Classifications .. 165

DataDescriptors ... 165

DataItems .. 166

ExternalResource .. 167

GenericReference .. 167

IccFunctionDescriptors .. 167

InitialisationDescriptors .. 168

ManipulationDescriptors .. 169

RenderingDescriptors .. 169

SimulationDescriptors .. 170

Transitions ... 171

WorldStates ... 173

APPENDIX (B) APPLICATION ARCHITECTURE TEMPLATE .. 174

Initialisation and configuration information ... 175

World state data slot descriptions .. 177

ICC descriptions .. 183

Simulation model descriptions ... 187

Transition point descriptions .. 190

Simulation cases .. 195

General information ... 196

Initial world state definitions ... 196

Simulation case specification ... 197

28.2.2014 | viii

http://www.crismaproject.eu

List of Figures

Figure 1: Sources of architectural objectives, properties and constraints. 4

Figure 2: Functional Architecture of the CRISMA Framework. .. 5

Figure 3: Deliverables and work packages dependent on the outcome of D32.1............................. 5

Figure 4: Evaluation of the CRISMA Framework Architecture. .. 6

Figure 5: Relation of SP3 and SP5 deliverables. ... 6

Figure 6: Linking the first and the second SP3 development cycle. ... 7

Figure 7: Implementation Architecture of the CRISMA Framework.. 8

Figure 8: From Architecture to Software. ... 9

Figure 9: SP3 and SP4 Contributions to the CRISMA Framework... 9

Figure 10: Assembling Software Components of SP3, SP4 and SP5. ... 10

Figure 11: MCRI pyramid. ... 15

Figure 12: CRISMA Framework Architecture. ... 16

Figure 13: Quality Goals of the consolidated Crisis Management Goal Model. 21

Figure 14: Sources of Architectural Goals and Properties. .. 22

Figure 15: Simulation and Analysis Viewpoint. .. 29

Figure 16: Central Concepts for Crisis Management Simulation. .. 30

Figure 17: World State Transition, Basic Elements. .. 31

Figure 18: World State Transition, Details. .. 32

Figure 19: World State Transition, Alternatives and Path of analysis at a Transition Point. 33

Figure 20: Simulation Case, Transition Point and Path of Analysis. .. 34

Figure 21: Indicator, Indicator Vector, Indicator Space and Indicator Function. 35

Figure 22: Aggregation Steps for Crisis Management Simulation Analysis.................................... 36

Figure 23: Simulation Case Graph. ... 37

Figure 24: Simulated Crisis Management Scenario as Instance of Simulation Case. 38

Figure 25: Crisis Management Scenarios.. 39

Figure 26: Reference architecture. .. 40

Figure 27: CRISMA Architecture Relationships. .. 41

Figure 28: CRISMA Framework and applications. ... 42

Figure 29: CRISMA System as Federation of Federations. ... 43

Figure 30: CRISMA Applications. .. 44

28.2.2014 | ix

http://www.crismaproject.eu

Figure 31: Relation of a CRISMA Application to the CRISMA Framework. 45

Figure 32: Information Flows. .. 46

Figure 33: Examples of Middleware Infrastructure APIs. ... 48

Figure 34: Control and Communication Information Repositories. ... 49

Figure 35: Example of Modular CCIMs. .. 50

Figure 36: Terminology of the CRISMA Framework Architecture. ... 52

Figure 37: Relation between CRISMA Federation and CRISMA Application. 55

Figure 38: Separation of Data Flows (Example). ... 56

Figure 39: Composite UI Module Overview. .. 58

Figure 40: Initial Composite UI Modules Interaction Concept. ... 60

Figure 41: Improved Composite UI Modules Interaction Concept. ... 61

Figure 42: UI Integration Platform Basic Overview. ... 63

Figure 43: UI Mashup Platform Basic Overview. ... 64

Figure 44: Wrapping of Composite UI Modules into Mashable Composite UI Modules. 66

Figure 45: UI Integration Terminology. .. 67

Figure 46: UI Integration Platform interacting with Composite UI Modules. 68

Figure 47: UI Integration and Interaction Possibilities. ... 69

Figure 48: Composite UI Modules Server-Side Business Logic. .. 70

Figure 49: Data Integration Approach. .. 72

Figure 50: WPS Process Chaining. ... 74

Figure 51: Model Chaining in CRISMA. ... 75

Figure 52: Federated Model Access Possibilities. ... 76

Figure 53: Levels of System Integration. ... 78

Figure 54: Compatibility with Legacy Systems (GUI Integration). .. 79

Figure 55: Reference Applications and Pilot Applications. ... 80

Figure 56: Development of Reference Applications. .. 81

Figure 57: Mapping Training to the World State Transition Concept.. 82

Figure 58: Relevant OOIs in Crisis Management. ... 84

Figure 59: OOI Types and Instances Relations. .. 85

Figure 60: Overview of generic OOI Types Class Hierarchy.. 85

Figure 61: Overview of OOI Instances Class Hierarchy. .. 86

28.2.2014 | x

http://www.crismaproject.eu

Figure 62: Supported OOI Geometry Types. ... 87

Figure 63: Architecture of a Resource Management Application (simplified). 88

Figure 64: Functional Building Blocks Overview. ... 94

Figure 65: Building Block Specifications in CRISMA Catalogue. ... 95

Figure 66: Infrastructure Building Blocks of the CRISMA Framework. ... 96

Figure 67: Integration Building Blocks of the CRISMA Framework. ... 98

Figure 68: User Interaction Building Blocks of the CRISMA Framework. 100

Figure 69: Distinct Parts of the CRISMA Framework Architecture. .. 116

Figure 70: Evolution of the Implementation Architecture. .. 117

Figure 71: Implementation Architecture. .. 118

Figure 72: Building Blocks and Software Components. ... 119

Figure 73: Evolution of Building Blocks and Software Components. ... 120

Figure 74: Infrastructure Software Components and related Building Blocks. 122

Figure 75: Integration Software Components and related Building Blocks................................... 123

Figure 76: User Interaction Software Components and related Building Blocks. 126

Figure 77: Core CCIM Classes and Relationships. ... 134

Figure 78: Scenario expressed with help of the Core CCIM. ... 136

Figure 79: Mapping the Core CCIM to the Conceptual Business Logic (detailed). 137

Figure 80: Core CCIM Database Model (excerpt). .. 138

Figure 81: Mapping UML Models to REST Models. ... 139

Figure 82: DataItems Instance JSON. ... 139

Figure 83: Core CCIM with extension points for Application CCIMs. ... 140

Figure 84: Extension by inheritance. ... 141

Figure 85: Extension Points of the Core CCIM. ... 142

Figure 86: Input to Application Architecture. .. 144

Figure 87: Examples for Federated Simulations. ... 147

Figure 88: Core CCIM Class Diagram with Relationships. .. 163

Figure 89: BaseEntity Class Diagram. ... 164

Figure 90: Categories Class Diagram with Relationships. ... 164

Figure 91: DataDescriptors Class Diagram. .. 166

Figure 92: DataItems Class Diagram. ... 167

28.2.2014 | xi

http://www.crismaproject.eu

Figure 93: IccFunctionDescriptors Class Diagram with Relationships. .. 168

Figure 94: InitialisationDescriptors Class Diagram. ... 169

Figure 95: ManipulationDescriptors Class Diagram. .. 169

Figure 96: RenderingDescriptorsClass Diagram. .. 170

Figure 97: SimulationDescriptors Class Diagram with Relationships. .. 171

Figure 98: Relationship between Elements of the Template. ... 174

Figure 99: Relationship between Data Slots, Simulation Models and ICC Elements (Example). . 176

Figure 100: Representation of World State Data Slot Descriptions in the Core CCIM. 177

Figure 101: Representation of World State Data Slots in the Core CCIM. 178

Figure 102: Representation of ICC Descriptions in the Core CCIM. .. 184

Figure 103: Representation of Simulation Model Descriptions in the Core CCIM. 188

Figure 104: Simulation Model I/O Flows (Example). .. 190

Figure 105: Representation of Transitions in the Core CCIM. ... 191

Figure 106: Transition Point Graph (Example). ... 192

Figure 107: Transition Point Graph (Pilot D). ... 193

Figure 108: Transition Point GUI Mockup.. 195

Figure 109: Simulation Case Graph (Example). .. 198

Figure 110: Example Scenarios. ... 198

28.2.2014 | xii

http://www.crismaproject.eu

List of Tables

Table 1: Improvements to the CRISMA Framework Architecture V2. .. 2

Table 2: Building Blocks and related Software Components. .. 120

Table 3: Specification of Base Entity Attributes. .. 164

Table 4: Specification of Categories Attributes. ... 164

Table 5: Specification of Classifications Attributes. ... 165

Table 6: Specification of DataDescriptors Attributes. ... 165

Table 7: Specification of DataItems Attributes. .. 166

Table 8: Specification of IccFunctionDescriptors Attributes. .. 167

Table 9: Specification of InitialisationDescriptors Attributes. .. 168

Table 10: Specification of ManipulationDescriptors Attributes. .. 169

Table 11: Specification of RenderingDescriptors Attributes. .. 169

Table 12: Specification of SimulationDescriptors Attributes. .. 170

Table 13: Specification of Transitions Attributes. ... 171

Table 14: Specification of World States Attributes. .. 173

Table 15: World State Data Slot Overview. ... 180

Table 16: World State Data Slot Description Table. .. 181

Table 17: ICC Elements Overview. ... 186

Table 18: ICC Element Description Table. .. 186

Table 19: Simulation Models Overview. .. 189

Table 20: Simulation Model Table. .. 189

Table 21: ICC Transition Points Overview. .. 194

Table 22: Transition Points Description Tables. .. 195

Table 23: World State Description Table. .. 196

Table 24: Simulation Case Description Table. ... 197

28.2.2014 | xiii

http://www.crismaproject.eu

Glossary of terms
Term Definition
Access control The ability to enforce a policy that identifies permissible actions on a

particular resource by a particular subject. (SANY-SA, 2009)
Agent A kind of "autonomous" and “active” OOI that does have control over its

behaviour, can act in the environment, perceive, and reason.
API An application programming interface (API) is a protocol intended to be

used as an interface by software components to communicate with each
other. See http://en.wikipedia.org/wiki/API

Application See CRISMA application
Architecture In computer science and engineering, computer architecture is the art that

specifies the relations and parts of a computer system. See
https://en.wikipedia.org/wiki/Computer_architecture

Attribute A characteristic of an entity (e.g. of an object in a model or the model
itself).

Authentication Concerns the identity of the participants in an exchange. Authentication
refers to the means by which one participant can be assured of the
identity of other participants. (SOA-RM, 2006)

Authorisation Concerns the legitimacy of the interaction. Authorisation refers to the
means by which an owner of a resource may be assured that the
information and actions that are exchanged are either explicitly or
implicitly approved. (SOA-RM, 2006)

Building block A Building Block is a CRISMA Federate that is provided as part of the
CRISMA Framework to build CRISMA Applications. Building Blocks are
generic, composable, adaptable as well as domain- and location-
independent and thus transferable to different crisis management
domains. There are three different types of Building Blocks: Infrastructure,
Integration and User Interaction Building Blocks. Not all Building Blocks
are mandatory in each CRISMA Application.

Crisis scenario A scenario describing a crisis as it has happened or could happen in real
life.

CRISMA application A CRISMA Application is an integrated crisis management simulation
system that is build according to the concepts of the CRISMA Framework
Architecture. It is composed of (customised) Building Blocks of the
CRISMA Framework and integrated or federated legacy components
(simulation models, applications, systems,).

CRISMA federate Any component that connects to the Middleware Infrastructure of the
CRISMA Framework and is able to exchange Control and Communication
Information with the Middleware Infrastructure. More specifically, a
CRISMA Federate has to be aware of the API of the ICMM.

CRISMA federation A number of CRISMA Federates that act together as a unit. A CRISMA
Federation is a subset of a CRISMA Application.

CRISMA framework A framework composed of ready-to-use Building Block and supporting
tools that can be connected together to form a CRISMA Application.

Criteria Criteria relate indicators to a qualitative assessment of the respective
crisis situation. Indicators and corresponding criteria are basis for
CRISMA decision support concept

Decision making Decision making can be regarded as the cognitive process resulting in the
selection of a course of action among several alternative scenarios. Every
decision making process produces a final choice. The output can be an
action or an opinion of choice. (Wikipedia, 2013)

28.2.2014 | xiv

http://www.crismaproject.eu

Term Definition
Decision point A point in time where the user wants to introduce a decision to compare

what will be the outcome of different options. In CRISMA, visualisation is
done on a time line to show where a decision has been met.

Decision support Decision Support Systems (DSS) make up a specific class of
computerized information systems that support business and
organizational decision-making activities. A properly designed DSS is an
interactive software-based system intended to help decision makers to
compile useful information from raw data, documents, personal
knowledge, and/or business models to identify and solve problems and
make decisions.

Decision tree A time line with branches showing options in each decision point. Not only
useful as visualisation of decisions but also for navigation to compare
different states at the same or different time stamps.

Evaluation Evaluation is “systematic investigation of the worth or merit of an object.”
(Frechtling 2011). Evaluation is a valuable source of information on how a
project is being implemented, specifically, what works and what should be
modified.

Evolution scenario A combination of several impact scenarios resulting from multiple
hazards/incidents.

Feature A "Feature" (ISO 19101, OGC 08-126) is "an abstraction of a real world
phenomenon". A feature is considered "geographic feature" if it is
associated with a location. According to OGC 08-126, the geographic
features are "fundamental unit of geospatial information".

Federate see CRISMA federate
Framework An information architecture that comprises, in terms of software design, a

reusable software template, or skeleton, from which key enabling and
supporting services can be selected, configured and integrated with
application code. See
http://www.opengeospatial.org/resources/?page=glossary
More specific see CRISMA framework

Functional
requirement

Defines a function of a software system or its component. A function is
described as a set of inputs, the behaviour, and outputs. See
https://en.wikipedia.org/wiki/Functional_requirements

Functional
specification

A functional specification is an implementation independent description of
a software components behaviour which means that operations are
specified on an abstract level not defining specific data types or schemas.
It is the basis for a Formal Specification.

Incident An occurrence, natural or human-caused, that requires a response to
protect life or property. Incidents can, for example, include major
disasters, emergencies, terrorist attacks, terrorist threats, civil unrest, wild
land and urban fires, floods, hazardous materials spills, nuclear accidents,
aircraft accidents, earthquakes, hurricanes, tornadoes, tropical storms,
tsunamis, war-related disasters, public health and medical emergencies,
and other occurrences requiring an emergency response (FEMA
Glossary, 2013).

Indicator A thing that indicates the state or level of something (Oxford dictionaries).
In CRISMA, indicators illustrate World State aspects that are
representative for scenarios. The indicators can either be represented by
a single existing value in the CRISMA World State or are aggregated by a
function of several values from the World State (e.g. average, minimum or
maximum values in a given region for a given time).

28.2.2014 | xv

http://www.crismaproject.eu

Term Definition
Information model An information model is a representation of concepts, relationships,

constraints, rules, and operations to specify data semantics for a chosen
domain of discourse. The advantage of using an information model is that
it can provide sharable, stable, and organized structure of information
requirements for the domain context. (Lee, 1999)

Infrastructure Infrastructure in a crisis management context covers for instance dikes,
hospitals, rescue bases and critical infrastructure (as water, power,
telecommunication networks) etc.

Integrated Crisis
Management
Middleware (ICMM)

The ICMM is a central Building Block in every CRISMA Application.
It connects Crisis Management Simulations with the Analysis and
Decision Support functionality of CRISMA by providing a central
repository for harmonized world state and indicator information. The
ICMM is fed by simulations providing the basic information to be
used for world state analysis and decision support Building Blocks.

Integrated component A component that takes part in an interaction of CRISMA Federates but is
not itself a CRISMA Federate. It is not CRISMA-aware and thus does not
interact with the CRISMA Middleware Infrastructure. An Integrated
Component may be a member of a CRISMA Application but not of a
CRISMA Federation.

Interface In the context of IT, a named set of operations that characterise the
behaviour of an entity. The aggregation of operations in an interface, and
the definition of the interface, shall be for the purpose of software re-
usability. The specification of an interface shall include a static portion that
includes definition of the operations. The specification of an interface shall
include a dynamic portion that includes any restrictions on the order of
invoking the operations. (ISO_19119, 2003)

Interoperability Capability to communicate, to execute programs, or to transfer data
among various functional units in a manner that requires the user to have
little or no knowledge of the unique characteristics of those units.
(ISO_19119, 2003)

Key performance
indicator

Key performance indicator (KPI) help to characterise and compare
alternative scenarios with respect to the crisis management measures
that have been done.

Mashup platform A component that allows to combine smaller components (widgets)
providing specific functionality into a complete graphical user interface
(GUI) to provide all the functionality needed

Meta-information Descriptive information about resources in the universe of discourse. Its
structure is given by a Meta-Information Model depending on a particular
purpose. Note: A resource by itself does not necessarily need Meta-
Information. The need for Meta-Information arises from additional tasks or
a particular purpose (like catalogue organisation), where many different
resources (services and data objects) must be handled by common
methods and therefore have to have/get common attributes and
descriptions (like a location or the classification of a book in a library).
(RM-OA, 2007)

Meta-information
model

Information-model for Meta-Information. See Meta-model and Meta-
information.

Meta-model A meta-model typically defines the language and processes from which to
form a (description) model. Meta-modelling is the modelling methodology
used in software engineering. See
https://en.wikipedia.org/wiki/Meta_model. In this IT context "model"
usually means "data model" or "information model" – a description of data
structures.

28.2.2014 | xvi

http://www.crismaproject.eu

Term Definition
Meta-modelling Meta-modelling is the analysis, construction and development of the

frames, rules, constraints, models and theories applicable and useful for
the modelling in a predefined class of problems. See
https://en.wikipedia.org/wiki/Metadata_modeling

Model A model is a hypothetical simplified description of a complex entity or
process (Sterling & Taveter, 2009). A model can be considered as “an
abstract representation of a system or process” (Carson, 2005). A model
is a physical, mathematical, or otherwise logical representation of a
system, entity, phenomenon, or process that has been designed for a
specific purpose (NATO, 2010). Stachowiak (1973) describes a model
using three features: the mapping feature (reproduction of the original),
the reduction feature (abstraction of the original) and the pragmatic
feature (addressing a purpose for its user).

Multi-hazard
assessment

To determine the probability of occurrence of different hazards either
occurring at the same time or shortly following each other, because they
are dependent from one another or because they are caused by the same
triggering event or hazard, or merely threatening the same elements at
risk without chronological coincidence. (Commission staff working paper:
“Risk assessment and mapping guidelines for disaster management”,
European Commission, Brussels, December 2010)

Multi-risk assessment To determine the whole risk from several hazards, taking into account
possible hazards and vulnerability interactions (a multi-risk approach
entails a multi-hazard and multi-vulnerability perspective).
This would include the events:
1) occurring at the same time or shortly following each other, because
they are dependent on one another or because they are caused by the
same triggering event or hazard; this is mainly the case of cascading
events;
2) or threatening the same elements at risk (vulnerable/exposed
elements) without chronological coincidence (EU Matrix)

Non-functional
requirement

A requirement that specifies criteria that can be used to judge the
operation of a system, rather than specific behaviours. See
https://en.wikipedia.org/wiki/Non-functional_requirement

Object of interest Object of Interest (OOI) is used in CRISMA to designate objects that are
of interest to crisis management practitioners and therefore need to be
represented and handled by a CRISMA Application. More precisely, the
term is used for IT-representation of such objects within CRISMA. The
term was initially introduced as disambiguation of the word "resources".
However, the OOI can also represent objects which aren't considered
resources by crisis managers, such as hospitals, dams or residential
buildings. Since OOI instances always exist in a spatial and temporal
context, OOI can be considered a specialization of the "Feature" as
defined by ISO 19101 and OGC 08-126.

OOI see Object of Interest
Pilot A pilot within CRISMA manages the definition and implementation of a

CRISMA application and provides the data for a specific crisis scenario
and for a specific use case. This results in a demonstrator that is used
during a demonstration and for experimentation purposes in order to
validate the CRISMA software. CRISMA pilots (pilot sites) provide generic
experimentation frame and validations for testing, validate and promote
CRISMA system and provide necessary return of experience in order to
validate CRISMA in relevant wide range of crisis management situations
including multi-risk and domino effects.

28.2.2014 | xvii

http://www.crismaproject.eu

Term Definition
Point of interest A specific point location that someone may find useful or interesting (see

http://en.wikipedia.org/wiki/Point_of_interest). In CRISMA context, the
Point of Interest (POI) is a map object, usually visualized with a
marker/icon on the map. POI is an object with properties, like geographic
location, and/or some properties characterizing this object. The POI can
represent both passive (like buildings, bridges, etc.) and active objects
(e.g. agents as representatives of some physical or virtual entities) on the
map.

Preparedness The knowledge and capacities developed by governments, professional
response and recovery organizations, communities and individuals to
effectively anticipate, respond to, and recover from, the impacts of likely,
imminent or current hazard events or conditions.

Recovery The restoration, and improvement where appropriate, of facilities,
livelihoods and living conditions of disaster-affected communities,
including efforts to reduce disaster risk factors.

Reference
architecture

A reference architecture "is an architectural design pattern that indicates
how an abstract set of mechanisms and relationships realizes a
predetermined set of requirements. One or more reference architectures
may be derived from a common reference model, to address different
purposes/usages to which the Reference Model may be targeted." (SOA-
RM, 2006)

Reference scenario Reference scenarios are abstract crisis and response scenarios that help
to understand the relevant aspects of a typical scenario.

Requirement A singular documented physical and functional need that a CRISMA
Application should perform. It is a statement that identifies a necessary
attribute, capability, characteristic, or quality of a system for it to have
value and utility to a user. (Source:
http://en.wikipedia.org/wiki/Requirement)

Resource Crisis management context: Resources are deployed in the scope of
crisis management activities. Resources may include material (e.g.
sandbags, medical products, and oxygen tank), personnel (e.g. medical
officer, ambulance driver, and crisis manager), vehicles (e.g. fire trucks),
protection infrastructure and facilities (e.g. hospital, shelters), installations
(e.g. weirs).
IT-context: Resource is every possible data object as part of the common
CRISMA meta information model.

Resource
management

Crisis management context: Management and optimal deployment of
crisis management resources such as fire trucks, ambulances, personnel,
equipment etc. for crisis management.
IT-context: Management in terms of storage, creation, update and delete
of data objects in the context of IT implementation.

Response Immediate actions to save and sustain lives, protect property and the
environment, and meet basic human needs. Response also includes the
execution of plans and actions to support short-term recovery. (FEMA,
2010)

Risk analysis A systematic use of available information to determine how often specified
events may occur and the magnitude of their likely consequences.

Sample scenario Crisis and response scenario representing either real past events or
imaginary events specified in detail.

Scenario A description of a projected situation and the causes leading to it.
Scenarios are used to evaluate the outcomes of different courses of
actions in changing conditions.

Scenario description In the context of CRISMA it includes text, timeline and tables that describe
a crisis management scenario.

28.2.2014 | xviii

http://www.crismaproject.eu

Term Definition
Scenario evolution Sequential development of a scenario describing events as they could

evolve based on alternative assumptions.
Service In the context of IT, a service is a distinct part of the functionality that is

provided by an entity through interfaces. (ISO_19119, 2003)
Simulation A simulation is the manipulation of a model in such a way that it

represents the expected behaviour of an individual actor or an entire
system over time (NATO, 2010).

Simulation case A simulation case describes the user context, the objects of interests, the
simulation models and the user interactions that are relevant for the
modelling and simulation of a crisis management scenario with a CRISMA
application.

Simulation models
loose integration

Describes a low level of integration between two or more simulation
models, when a running simulation model is not aware of other running
simulation models. The output of one simulation model can be used as
the input for the next simulation model. This level of integration is required
when two simulation models are running in-parallel with no need to share
information during the run.

Simulation models
tight integration

Describes a high level of integration between two or more simulation
models at runtime. This level of integration is required when two
simulation models are running in-parallel and need to interact with each
other by sharing their intermediate output information during the run.

Simulation results Simulation results are the output values of a specific simulation run. They
provide the content of a specific scenario (series of World States).

Simulation run A simulation run is the parameterisation and initiation of a simulation case
that provides specific simulation results. A simulation run can happen with
or without user interaction.

Simulation tool A software that implements a model and allows simulation, no matter if it
provides an own user interface or operates integrated in a larger software.

Simulation view A CRISMA user interface that allows a CRISMA user to interact with a
simulation case in terms of changing simulation parameters, starting,
stopping and saving simulation runs.

Standard Denotes relevant technical standards on interoperability and federated
simulation.

System System is a set of entities connected together to make a complex whole
or perform a complex function (Sterling & Taveter, 2009).
System can also be defined as a complex of interacting components and
relationships among them that permit the identification of a boundary-
maintaining entity or process (Laszlo & Krippner, 1998).

Technical
requirements

Technical requirements define the functions or constraints needed by the
system to achieve a goal. They specify how a goal should be
accomplished by the system. Technical requirements can be separated
according to their characteristics into functional and non-functional
technical requirements. In CRISMA, technical requirements are created
based on user stories.

Tight simulation
integration

An approach towards coupling of several simulation models at a domain-
specific, conceptual, and semantic level. The standards DIS and HLA are
designed for such integrated simulations. An example would be a system
that integrates several vulnerability models of different infrastructures and
takes into account interrelationships between them at any time of a
simulation run.

Transition A transition is a relationship between two CRISMA World States. It can
originate either from a CRISMA simulation model run or from a manual
change by a CRISMA user.

28.2.2014 | xix

http://www.crismaproject.eu

Term Definition
Use case A list of steps, typically defining interactions between a user and a

system, to achieve a certain goal (Cockburn, 1999). A use case is
described as "a generalized description of a set of interactions between
the system and one or more actors, where an actor is either a user or
another system". (Cohn, 2004).

User requirements User requirements represent what goals in crisis management need to be
achieved by means of the system and what roles of stakeholders are
involved in that. In CRISMA user requirements are represented by crisis-
specific goal models and behavioural scenarios and the consolidated
crisis management goal model for the ICMS.

Widget A component providing a specialized user interface functionality. A
complete user interface consists of a number of widgets.

World State A CRISMA World State is a set of attributes and their values describing
the state of the world in a crisis management scenario.

Cascade events Cascade events describe a sequence of adverse events generated by a
single or different sources. For example an earthquake that causes
ground motion that triggers a landslide.

Cascade effects Cascade effects describe the effects (consequences) of cascade events
and thus allow evaluating indirect effects caused by the originating
incident.

CRISMA system In the perception of the architecture, the CRISMA System is the overall
project results consisting of all CRISMA Pilot Applications.

Application
architecture

An Application Architecture provides a specification of application-specific
Simulation Cases in accordance to the Integrated System Viewpoint of
the Conceptual Business Logic of the CRISMA Framework Architecture.

Transition Point A Transition Point represents the type of the Transition that can be
performed by the user at a certain defined point in a Simulation Case.

Transition matrix A matrix-like representation of the conditional probabilities P(IM2|IM1),
indicating the probability that a triggered event with intensity IM2 occurs
given the occurrence of a triggering event with intensity IM1.

Decision node Element of a decision tree which represents a decision (e.g., to assess
different possible mitigation actions) to be taken in a particular segment of
a decision tree.

Database of scenarios A collection of plausible scenarios of cascading effects.
Time dependent
vulnerability

Referring to physical vulnerability, time-dependent vulnerability is defined
as the vulnerability affected by deterioration of elements characteristics
due to ageing and/or damage.
In a broader sense, time dependent vulnerability generally indicates the
variation of vulnerability characteristics over time (in the understanding of
CRISMA, this e.g. also includes spatio-temporal patterns of exposure or
varying situation patterns during the process of evacuation).

ICMM Integrated Crisis Management Middleware BB (ICMM) is a generic
distributed resource-oriented Control and Communication Information
Management System. Thereby it is important to note, that the term
‘resource-oriented’ in the ICMM refers to the concept of generic resources
as used in the context of the Resource Oriented Architecture (ROA).

Path of analysis A Path of Analysis is a consecutive sequence of Transitions through a
Simulation Case Graph. A Path of Analysis that starts at the root of a
Simulation Case and ends at a leaf can be called a Simulated Crisis
Management Scenario.

Simulation Objective A Simulation Objective is a well-defined purpose of a Crisis Management
Simulation supporting specific planning, training or decision support
activities. The physical representation or the means to reach a simulation
objective is the Simulation Case.

28.2.2014 | xx

http://www.crismaproject.eu

Acronyms and technical terms
The table below lists technical terms and acronyms that are not part of the CRISMA
glossary but that are nevertheless needed to understand the content of this deliverable.

Term Definition
Application
Programming
Interface (API)

An application programming interface (API) specifies how some software
components should interact with each other.
See https://en.wikipedia.org/wiki/Application_programming_interface

Cascading Style
Sheets, Level 3
(CSS3)

Cascading Style Sheets (CSS) is a style sheet language used for
describing the presentation semantics (the look and formatting) of a
document written in a markup language. See
https://en.wikipedia.org/wiki/Cascading_Style_Sheets

Core Control and
Communication
Information Model
(CCIM)

The core meta-information model of a CRISMA Federation that provides a
formal specification of the Conceptual Business Logic of the CRISMA
Framework.

DIESIS The EU FP7 Project “Design of an Interoperable European Federated
Simulation Network for Critical Infrastructures”. See http://www.diesis-
project.eu

Distributed Interactive
Simulation (DIS)

An IEEE standard for conducting real-time platform-level war gaming
across multiple host computers and is used worldwide, especially by
military organizations but also by other agencies. See
https://en.wikipedia.org/wiki/Distributed_Interactive_Simulation

Data Distribution
Services (DDS)

The Data Distribution Service for Real-Time Systems (DDS) is an Object
Management Group (OMG) Publish/Subscribe (P/S) standard.
See http://omg.org/

Decision Support
System (DSS)

A software system supporting a decision maker by providing information
relevant for his decisions.

Enterprise Service
Bus (ESB)

A software architecture model used for designing and implementing the
interaction and communication between mutually interacting software
applications in service-oriented architecture (SOA). See
https://en.wikipedia.org/wiki/Enterprise_service_bus

Event-driven
architecture (EDA)

A software architecture pattern promoting the production, detection,
consumption of, and reaction to events. See
https://en.wikipedia.org/wiki/Event-driven_architecture

Extensible Markup
Language (XML)

A markup language that defines a set of rules for encoding documents in
a format that is both human-readable and machine-readable. See (XML,
2010)

FI-WARE Future internet core platform. Delivers a novel service infrastructure,
building upon elements (called Generic Enablers) which offer reusable
and commonly shared functions making it easier to develop Future
Internet Applications in multiple sectors. (FI-WARE, 2011)

File Transfer Protocol
(FTP)

File Transfer Protocol (FTP) is a standard network protocol used to
transfer files from one host to another host over a TCP-based network,
such as the Internet. See https://en.wikipedia.org/wiki/FTP

GeoServer GeoServer is an open source software server written in Java that allows
users to share and edit geospatial data. See http://geoserver.org

Geography Markup
Language (GML)

The Geography Markup Language (GML) is the XML grammar defined by
the Open Geospatial Consortium (OGC) to express geographical
features. See https://en.wikipedia.org/wiki/Geography_Markup_Language

https://en.wikipedia.org/wiki/Application_programming_interface
https://en.wikipedia.org/wiki/Cascading_Style_Sheets
http://www.diesis-project.eu/
http://www.diesis-project.eu/
https://en.wikipedia.org/wiki/Distributed_Interactive_Simulation
http://omg.org/
https://en.wikipedia.org/wiki/Enterprise_service_bus
https://en.wikipedia.org/wiki/Event-driven_architecture
https://en.wikipedia.org/wiki/FTP
http://geoserver.org/
https://en.wikipedia.org/wiki/Geography_Markup_Language

28.2.2014 | xxi

http://www.crismaproject.eu

Term Definition
High-level architecture
(HLA)

A general purpose architecture for distributed computer simulation
systems. HLA is an open international standard developed by the
Simulation Interoperability Standards Organization (SISO) and published
by IEEE. See https://en.wikipedia.org/wiki/High-
level_architecture_%28simulation%29

Hypertext Transfer
Protocol (HTTP)

A standard protocol for data transport in the world wide web (WWW). See
(RFC_1945, 1996) and (RFC_2616, 1999)

Integrated Modelling,
Mapping, and
Simulation (IMMS)

A framework for planning exercises. See SUMMIT.

JavaScript (JS) JavaScript is an interpreted computer programming language. As part of
web browsers, implementations allow client-side scripts to interact with
the user, control the browser, communicate asynchronously, and alter the
document content that is displayed. See
https://en.wikipedia.org/wiki/JavaScript

Local Area Network
(LAN)

A computer network within one organisation unit, usually within one
company or building.

Mission, Concepts,
Realisation and
Implementation
(MCRI)

The Mission, Concepts, Realisation and Implementation schema used to
structure the CRISMA Framework Architecture into four architectural
layers that build on each other.

Model as a Service
(MaaS)

An external provider offers IT infrastructure providing a model ready to
use.

Network Common
Data Format
(NetCDF)

NetCDF is a set of software libraries and self-describing, machine-
independent data formats that support the creation, access, and sharing
of array-oriented scientific data.
See http://www.unidata.ucar.edu/software/netcdf/

OAuth An open standard for authorization. OAuth provides a method for clients
to access server resources on behalf of an end-user (OAuth, 2012)

Object Management
Group (OMG)

An international, open membership, not-for-profit computer industry
standards consortium. See http://www.omg.org/

Observations and
Measurements (O&M)

One of the OGC standards. Specifies an XML implementation for the
OGC and ISO Observations and Measurements conceptual model. See
(O&M, 2011).

Open Geospatial
Consortium (OGC)

The Open Geospatial Consortium (OGC) is an international industry
consortium of 480 companies, government agencies and universities
participating in a consensus process to develop publicly available
interface standards. OGC® Standards support interoperable solutions
that "geo-enable" the Web, wireless and location-based services and
mainstream IT. The standards empower technology developers to make
complex spatial information and services accessible and useful with all
kinds of applications. (OGC, 2013)

OpenId A standard for user identification. See chapter 4.4 Interoperability
standards

Open Modelling
Interface (Open-MI)

A standard defines a set of interfaces that allowing time-dependent
models to exchange data at run-time. See
https://en.wikipedia.org/wiki/OpenMI_Standard

Remote procedure
call (RPC)

A concept describing the access to computer program procedures located
not in the own program but anywhere in a computer network, completely
hiding complexity .There are many different realisations of this concept..
See (RPC, 2013)

Representational
State Transfer (REST)

A style of software architecture for distributed systems such as the World
Wide Web. REST has emerged as a predominant web service design
model. See (REST, 2013)

https://en.wikipedia.org/wiki/High-level_architecture_%28simulation%29
https://en.wikipedia.org/wiki/High-level_architecture_%28simulation%29
https://en.wikipedia.org/wiki/JavaScript
http://www.unidata.ucar.edu/software/netcdf/
http://www.omg.org/
https://en.wikipedia.org/wiki/OpenMI_Standard
https://en.wikipedia.org/wiki/REST

28.2.2014 | xxii

http://www.crismaproject.eu

Term Definition
RiskScape A framework for multi-risk modelling. Website at www.riscscape.org.nz

not available (2013-03-06)
Run-Time
Infrastructure (RTI)

A service Bus providing HLA services. See High-level Architecture (HLA)
and Enterprise Service Bus (ESB).

Sensor Model
Language (SensorML)

One of the OGC standards. Specifies models and XML encoding of
sensor descriptions. See (SensorML, 2007)

Sensor Observation
Service (SOS)

One of the OGC standards. Specifies a service interface and data
encoding methods for sensor data access. See (SOS, 2012

Sensor Planning
Service (SPS)

One of the OGC standards. Specifies service interface and data
encodings to control sensors, where sensor is a very wide concept
ranging from simple things like a thermometer to earth observation
satellites and also, including simulation models. See (SPS, 2011).

Sensor Web
Enablement (SWE)

A suite of standards developed by Open Geospatial Consortium (OGC)
describing basic data and service models used in other OGC standards.
See (SWEdata, 2011) and (SWEservice, 2011)

Service Oriented
Architecture (SOA)

A style of software architecture for designing and developing software in
the form of interoperable services. See
https://en.wikipedia.org/wiki/Service-oriented_architecture

SOAP (Simple Object
Access Protocol)

A protocol specification for exchanging structured information in the
implementation of Web Services in computer networks. See
https://en.wikipedia.org/wiki/SOAP

Software as a Service
(Saas)

An external provider offers IT infrastructure and software ready to use.

Standard Unified
Modelling, Mapping &
Integration Toolkit
(SUMMIT)

A modelling & simulation software environment that enables to
seamlessly access integrated suites of modelling tools & data sources.
See https://dhs-summit.us

Test and Training
Enabling Architecture
(TENA)

Architecture designed to promote integrated testing and simulation-based
acquisition. See https://www.tena-sda.org

The Open Group
Architecture
Framework
(TOGAF®)

A framework for enterprise architectures which provides a comprehensive
approach for designing, planning, implementing, and governing an
enterprise information architecture. See
https://en.wikipedia.org/wiki/TOGAF

Unified Modelling
Language (UML)

A standardized general-purpose modelling language. Defines different
diagram types and a data exchange format. Many tools are available;
some even allow generation of e.g. program code from the diagrams. See
(UML, 2013)

Web Coverage
Service (WCS)

One of the OGC standards. Can be compared to WMS, but delivers
actual data instead of pictures of the data. So in contrast to WMS the data
can be used for further processing. See (WCS, 2010).

Web Distributed
Authoring and
Versioning (WebDAV)

Web Distributed Authoring and Versioning (WebDAV) is an extension of
the Hypertext Transfer Protocol (HTTP) that facilitates collaboration
between users in editing and managing documents and files stored on
World Wide Web servers.
See https://en.wikipedia.org/wiki/WebDAV

WebKit WebKit is an open source web browser engine. See
http://www.webkit.org/

Web Map Service
(WMS)

One of the OGC standards. Defines request parameters and output
formats for the delivery of Maps as pictures. See (WMS, 2006).

Web Processing
Service (WPS)

One of the OGC standards. Used to control processes, e.g. simulation
model runs. Defines rules for parameters, input and output data requests.
See (WPS, 2007)

http://www.riscscape.org.nz/
https://en.wikipedia.org/wiki/Service-oriented_architecture
https://en.wikipedia.org/wiki/SOAP
https://dhs-summit.us/
https://www.tena-sda.org/
https://en.wikipedia.org/wiki/TOGAF
https://en.wikipedia.org/wiki/WebDAV
http://www.webkit.org/

28.2.2014 | xxiii

http://www.crismaproject.eu

Term Definition
Wirecloud Wirecloud is a web mashup platform to integrate heterogeneous data,

application logic, and UI components (widgets/gadgets) sourced from the
Web. See http://conwet.fi.upm.es/wirecloud/

http://conwet.fi.upm.es/wirecloud/

28.2.2014 | xxiv

http://www.crismaproject.eu

Executive Summary
The document at hand is a revision of the initial version of the architecture specification of
the CRISMA Framework (D32.1, 2013) and the addresses updates and aspects not
considered in V1. This document is a deliverable of Sub-Project 3 (Integrated Crisis
Modelling System) corresponding to WP32 (Crisis Modelling System Architecture),
reporting on the results of the work performed in the context of the tasks Task 3.2.2 “ICMS
Functional Architecture Update” (m20–m23) and Task 3.2.4 “ICMS Implementation
Architecture Update” (m21–m24).

The main objective of this document is to provide an exhaustive specification of the
architecture of the CRISMA Framework. Thereby it outlines the implementation
independent Functional Architecture, describing the general aspects of the CRISMA
Framework as well as the Implementation Architecture, specifying a software framework
which constitutes a concrete realisation of the Functional Architecture.

In particular, the architecture specification includes the definition of the architectural
concepts in relation to project objectives and user requirements as well as the specification
of Functional Building Blocks of the CRISMA Framework. In addition, the document
discusses the relevant standards used for implementation of the framework, introduces the
concepts of the Implementation Architecture and presents a template for defining the pilot-
specific Application Architectures as well as a specification of an information model
supporting interoperability and integration aspects and a set of rules and guidelines for the
implementation of Building Blocks.

The first architecture specification (D32.1, 2013) took into account the explicit user
requirements expressed in D23.1 (2013), research issues and technical requirements
identified in D31.1 (2012) as well as the requirements inherent to CRISMA goals, and
expressed in the DoW (2013) and D11.1 (2012). The resulting Functional Architecture has
set the stage for the first round of technical developments at the level of SP3 (D34.1,
D35.1), as well as at the level of SP4 (primarily the D42.1, D43.1 and D44.1) and SP5
(D51.x). Prioritization, elaboration of the Building Block specifications and implementation
thereof continued in the scope of D34.1. Soundness of the proposed architectural
concepts has been re-evaluated in the scope of D31.2, taking into account the feedback
from external experts expressed in D23.2, as well as the findings of D41.2 on interface
specification, and the pilot specifications.

The second version of the architecture specification has been largely influenced by the
work performed in WP34 “Implementation” and the early validation of the framework
performed in SP5.The focus of the second of version of CRISMA Framework Architecture
has been laid on the specification of the Implementation Architecture which has been
carried out jointly in T3.2.3 and T3.4.1.

The main achievements of this document are: (1) the clarification of the main architectural
concepts answering the various CRISMA requirements (chapter 3); (2) the definition of the
Functional Architecture and Building Blocks realising these concepts (chapter 4); and (3)
the specification of the Implementation Architecture as basis for the implementation of the
CRISMA Framework and the development of individual CRISMA Applications of the pilots
(chapter 5) in cooperation with teams working on SP3, SP4 and SP5.

28.2.2014 | 1

http://www.crismaproject.eu

1. Introduction

1.1. Purpose of this document

The goal of this document is to specify the CRISMA Framework Architecture both on
functional and implementation level. In particular, this includes the definition of the
architectural concepts, Functional Building Blocks and their interactions. In addition, the
document also discusses the relevant standards and introduces the concepts of the
Implementation Architecture which deals with the implementation of Building Blocks as
Software Components and the development of individual CRISMA Applications with help
of the CRISMA Framework.

CRISMA developments are positioned in a conflicting field linking the expectations and
state of the art software systems used by crisis management practitioners and regional
planners on the one side, technological requirements and inherent limitations of the
Simulation Models on the other, and environmental and geospatial ICT dictating the
standardized access services and information models for large portion of the data used in
crisis management. In this setup, building an architecture from scratch, without taking into
account existing infrastructure, legacy systems, services, data and standards is not
feasible.

Four major challenges in developing the CRISMA Functional Architecture are thus posed
by: (1) the need to leverage the legacy and often conflicting ICT systems outside of
CRISMA control; (2) to define a coherent set of functions answering implicit and explicit
requirements of our (potential) users and existing infrastructure; (3) to maximize the re-use
of legacy software within CRISMA while identifying the gaps; and (4) to maximize the
usability of the CRISMA result in stand-alone setups as well as in setups where CRISMA
components are used as add-ons to existing software.

1.2. Intended audience

The target readers of this document are the CRISMA developers in SP3 and SP4, the
technical partners in charge of the software integration in WP5.x (Pilots) as well as
individuals interested in the CRISMA project.

1.3. Structure of the document

The structure of the document and the relationships between the different chapters and
annexes is as follows:

Chapter 1 (this chapter) introduces the document.

Chapter 2 defines the “mission” of the CRISMA Framework Architecture including
its purpose and scope in terms of architectural goals, properties and constraints
which have been derived from the project objectives and pilot expectations
documented in (DoW, 2013) and (D11.1, 2012), the research issues and technical
requirements identified in (D31.1, 2012) and (D31.2, 2013), and the detailed user
requirements expressed in (D23.1, 2013).

Chapter 3 elaborates the architectural concepts describing various aspects of the
CRISMA architecture resulting from the mission defined in chapter 2.

28.2.2014 | 2

http://www.crismaproject.eu

Chapter 4 introduces the functional Building Blocks and gives an overview about
standards relevant for CRISMA interoperability.

Chapter 5 provides a mapping of the functional Building Blocks defined in chapter 4
to Software Components, specifies a unified information model for CRISMA,
introduces a template for the specification of Application Architectures and defines
rules and guidelines for the development of Building Blocks and CRISMA
Applications.

Chapter 6 provides the conclusions and outlook on follow-up activities.

Chapter 7 lists the references to literature used in preparation of this deliverable.

Annex documents provide a formal specification of the core information model of
the CRISMA Framework and the complete Application Architecture Template.

1.4. Changes to this document

The major achievements and results of the second version of the CRISMA Framework
Architecture in relation to the chapters and sections of this document that have been
updated and introduced are listed in the following table:

Table 1: Improvements to the CRISMA Framework Architecture V2.

Updates and improvements Sections affected
Description of relation to other deliverables and SP2, SP4 and SP4
updated.

1.5, 1.6

Mission of the CRISMA Framework Architecture updated with the latest
findings of the 2nd technical requirements specification document (D32.2,
2013), especially regarding non-functional requirements.

2, 2.2

General small updates and improvements to all sections of this chapter.
Sections with major updates are listed in the following.

3

Extension of the Conceptual Business Logic and the associated
terminology, refinement of concepts of Crisis Management Simulation
Scenario Analysis, consideration of recent SP2 and SP4 work related to
Indicators, Criteria, Cascade Events and Time-Dependent Vulnerability,
introduction of the concept of Transition Points and numerous other
improvements.

3.1

Update according to the latest improvements to the Integrated Crisis
Management Middleware in WP34.

3.5

Update according to the latest improvements to the Core Control and
Communication Information Model in WP34 and WP32.

3.6

Terminology updated according to the extensions introduced in D34.1
(D34.1, 2013).

3.7

Complete refinement of the GUI Integration Approach under special
consideration of aspects regarding integration and compatibility with legacy
systems.

3.12

Improvement of the Data Integration Approach regarding the integration of
legacy data sources which are not compatible to (OGC) standards.

3.13

Improvement and extension of the Simulation Model Integration Approach
and description of the support for Cascade Events.

3.14

28.2.2014 | 3

http://www.crismaproject.eu

Updates and improvements Sections affected
New section to highlight the aspects of compatibility and integration with
legacy systems including a summary of the integration concepts pursued
by the architecture.

3.15

New section to highlight the aspects of transferability of the CRISMA
Framework and its Building Bocks as envisioned by the architectural
concepts described in this document.

3.16

Alignment of the Training Concepts to the updated Conceptual Business
Logic.

3.17

Refinement and update of the Resource Management Concepts to reflect
the latest improvements to the Resource Management related Building
Blocks and the integration effort of WP35.

3.18

Alignment to improved SP4 concepts of Cascade Events and Time-
Dependent Vulnerability (Transition Matrix).

3.19

Description of the Access Control Concept and its relation to Building
Blocks updated.

3.20

Introduced administration as a general system concept. 3.21
Update of all Building Block descriptions according to the latest changes
and improvements made in WP32, WP34 and W35, respectively, and
provided references to the CRISMA Catalogue.

4.1, 4.1.1, 4.1.2 and
4.1.3

List of interoperability standards and their intended usage within the
CRISMA Framework updated.

4.4

Specification of the Implementation Architecture of the CRISMA Framework
completed.

5

Description of all Software Components that have been selected, adapted
or developed in WP34 for the realisation of CRISMA Framework Building
Blocks.

5.1

New specification of the Core Control Information Model of the CRISMA
Framework Architecture.

5.2

New specification of the Application Architecture Template as basis for the
development of individual CRISMA Applications.

5.3

Introduction of Rules and Guidelines for the development of Building Blocks
and CRISMA Applications.

5.4

New appendices for the complete technical specification of the Application
Architecture Template and the Core CCIM.

APPENDIX (A) and
APPENDIX (B)

1.5. Relation to other deliverables

This section explains the relationship of the CRISMA Framework Architecture represented
by the Architecture specification document at hand and the deliverable D32.2,
respectively, to other deliverables of the CRISMA Project. Since this document is largely
based on the first version of the Architecture specification (D32.1, 2012), the relations of
the former D32.1 deliverable are included in the next section.

1.5.1. Relations of the architecture specification V1

As shown in the Figure 1, the first Architecture specification (D32.1, 2013) took into
account the explicit user requirements expressed in D23.1 “(User) Requirements and Use

28.2.2014 | 4

http://www.crismaproject.eu

Cases” (D23.1, 2013), research issues and technical requirements identified in D31.1
“Technology, Concepts & Technical Requirements Report V1“(D31.1, 2012) as well as the
requirements inherent to CRISMA goals, and expressed in the DoW (DoW, 2013) and
D11.1 “Consolidation Report” (D11.1, 2012).

D23.1
Requirements
and Use Cases

D31.1
Technology,
Concepts
&Technical
Requirements

D11.1
Consolidation
Report

DoW
Description of
Work

Project
Objectives

Pilot
Expectations

User
Requirements

Technical
Requirements

Architectural
Objectives
Properties
Constraints

D32.1
ICMS
Architecture
Document V1

Figure 1: Sources of architectural objectives, properties and constraints.

The examination of aforementioned results of various CRISMA work packages resulted in
a clear and precise definition of the mission (chapter 2) of the CRISMA Framework
Architecture. The definition of the mission enabled the architecture team of WP32 to
develop and formulate the core concepts of the CRISMA Framework Architecture (chapter
3) and thus to establish a sound basis for their realisation (chapter 4). Mission, Concepts
and Realisation together form the Functional Architecture (Figure 1), the major outcome of
the CRISMA deliverable D32.1 “ICMS Functional Architecture Document V1”.

28.2.2014 | 5

http://www.crismaproject.eu

Figure 2: Functional Architecture of the CRISMA Framework.

As illustrated in Figure 3, the Functional Architecture set the stage for the first round of
technical developments at the level of SP3 (D34.1 “ICMS Building Blocks V1”, D35.1
“ICMS Framework V1”), as well as at the level of SP4 (mainly D41.2, D42.1, D43.1 and
D44.1).

D4x.x
Models and
Tools V1

D4x.x
Models and
Tools V1

CRISMA
Framework

V2

CRISMA
Building Blocks

V2

Models
and Tools

V2

D5x.1
Pilot
Demonstrator

D35.2
ICMS
Framework
V2

D34.2
ICMS
Building
Blocks V2

D32.2
ICMS
Architecture
Document
V2

Specification Implementation + Reports

Figure 3: Deliverables and work packages dependent on the outcome of D32.1.

The prioritization and elaboration of the Building Block specifications and their
implementation continued in the scope of D34.1 “ICMS Building Blocks V1”.

28.2.2014 | 6

http://www.crismaproject.eu

The soundness of the proposed architectural concepts established has be re-evaluated in
the scope of D31.2 “Technology, Concepts &Technical Requirements Report V2”, taking
into account the feedback from external experts expressed in D23.2 “External
recommendations to the CRISMA Use Cases”, as well as the findings of D41.2 "(Model)
Interface specification" and the pilot specifications (D51.2 “Pilot User Guide” and D51.1
"Site Status"). The workflow evaluating the first iteration of the CRISMA Framework
Architecture is illustrated in Figure 4 below.

D32.1
ICMS
Functional
Architecture
Document V1

D32.2
ICMS
Architecture
Document V2

D31.2
Technology,
Concepts
&Technical
Requirements
Report V2

D23.2
External
recommen-
dations to the
CRISMA Use
Cases

D41.2
(Model)
Interface
Specification

Evaluation

Figure 4: Evaluation of the CRISMA Framework Architecture.

As shown in Figure 5, D51.2 referenced concepts established during the preparation of
D32.1. In particular, the concept of an Application Architecture was considered in this first
deliverable of SP5.

D32.1
ICMS
Architecture
Document V1

D51.1
Site Status

D51.2
Pilot User
Guide

M20M15

D32.2
ICMS
Architecture
Document V2

M24M14

Figure 5: Relation of SP3 and SP5 deliverables.

D51.2 has given a user-oriented overview of major functionalities and datasets which are
used in the five pilots. These pilot descriptions together with the template for the
specification of Application Architectures (section 5.3) serve as basis for the development
of pilot-specific CRISMA Applications with help of the CRISMA Framework provided by
SP3 and SP4.

28.2.2014 | 7

http://www.crismaproject.eu

1.5.2. Relations of the architecture specification V2

The second version of the Architecture specification has been largely influenced by the
work performed in implementation workpackes WP34 “Implementation” and the early
validation of the framework performed in SP5 “CRISMA Pilots”. Figure 6 gives an overview
on CRISMA deliverables that provided major input to D32.2 “ICMS Architecture Document
V2”.

D51.1
(Model)
Interface
Specification

D51.1
(Model)
Interface
Specification

D31.2
Technology,
Concepts
&Technical
Requirements

D31.1
Technology,
Concepts
&Technical
Requirements

User
Requirements

Update
D31.2
Technology,
Concepts
&Technical
Requirements

D32.1
ICMS
Architecture
Document

D23.1
Requirements
and Use Cases

Requirements
Consolidation

D34.1
ICMS
Building
Blocks V1

D31.2
Technology,
Concepts
&Technical
Requirements

D32.1
ICMS
Architecture
Document

D21.1
Technology
Inventory

D23.2
External
Recommen-
dations

D51.1
Site Status

D51.1
(Model)
Interface
Specification

D44.1
Model for
decision-
making
Assessment

Software Components
Implementation

D32.2
ICMS
Architecture
Document
V2

Implementation
Architecture Building Blocks Update Concepts

Update

D25.1
Updated
Requirements,
Scenarios,
Criteria

Building Blocks and
Concepts Update

Figure 6: Linking the first and the second SP3 development cycle.

The second technical requirements specification (D31.2, 2013) and valuable
recommendations by external experts (D23.2, 2013) provided consolidated functional,
non-functional and technological requirements that led, among others, to a major
improvement of Functional Building Blocks (chapter 4), an exhaustive definition of
technical rules and guidelines (section 5.4) as well as a refinement and more detailed
definition of the overall mission of the CRISMA Framework (chapter 2).

As already mentioned, the focus of the second architecture specification has been laid on
the Implementation Architecture (Figure 7). The design of the Implementation Architecture
was carried out jointly in T3.2.3 “ICMS Implementation Architecture V2” and T3.4.1 “ICMS
Building Block Implementation V1. Thus, the Software Components (section 5.1) reported
in this deliverable are based on the results of D34.1 “ICMS Building Blocks V1” (D34.1,
2013).

Further input for updating Building Blocks and Software Components was contributed by
the report on pilot site status (D51.1, 2013) which provided an exhaustive description of

28.2.2014 | 8

http://www.crismaproject.eu

the usage of Building Block by CRISMA Applications that are being developed for the
different Pilots.

Figure 7: Implementation Architecture of the CRISMA Framework.

Update and refinement of architectural concepts (chapter 3) took also results from SP2
and SP4 into account. Particularly mentionable is D44.1 “Model for decision-making
assessment, Economic Impacts and consequences, and simulation” (D44.1, 2013) and the
related deliverables addressing Cascade Events D42.1 “Cascade Effects on Crisis-
Dependent Space-Time Scales“ (D42.1, 2013) and Time-Dependent Vulnerability D43.1
“Time-Dependent Vulnerability for Systems at Risk” (D43.1, 2013).

D25.1 “Updated technology inventory, requirements, scenarios, criteria and key
performance indicators” (D25.1, 2014) which was produced in parallel to D32.2 benefitted
from the newly specified Implementation Architecture and the respective Pilot Application
Architectures produced in SP5, thereby performing a considerable update of reference
scenarios which are of major importance for integration of the CRISMA Framework in
D35.1 “ICMS Framework V1” (D35.1, 2014).

Consequently, D32.2 established the link between SP2 “Scenarios, Requirements and
Criteria for Crisis Management Modelling”, SP3 “Integrated Crisis Modelling System” and
SP4 “Models for Multi-Sectoral Consequences” and thus laid the foundations for the
development of a software framework to build custom Crisis Management Simulation
Applications (CRISMA Applications) in SP5 “Experimentation and Testing”.

A major step towards the CRISMA Software Framework has been taken by Task 3.5.1
“Framework & Model Integration V1. As shown in Figure 10, the implementation of the
CRISMA Framework will be continued in Task 3.4.2 “ICMS Building Block Implementation
V2” and Task 3.5.2 “Framework & Model Integration V2” which rely on the results of this
deliverable.

28.2.2014 | 9

http://www.crismaproject.eu

D32.1
ICMS
Architecture
Document V1

D34.1
ICMS
Building
Blocks V1

M20 M24M14

D32.2
ICMS
Architecture
Document V2

D34.2
ICMS
Building
Blocks V2

S
of

tw
ar

e
C

an
di

da
te

s

M34
S

of
tw

ar
e

C
om

po
ne

nt
s

D35.1
ICMS
Framework
Document V2

D35.2
ICMS
Framework
Document V2

M36

S
of

tw
ar

e
C

om
po

ne
nt

s
Im

pl
em

en
ta

tio
ns

Integrated
Framework

Update of Mission and Concepts

Update of Realisation and Implementation

Update of Implementations

Figure 8: From Architecture to Software.

1.6. Relation to SP4 and SP5

While the previous section provided a description of relationships on the level of distinct
deliverables and tasks, the goal of this section is to give a more general picture on the
relation of SP3 to SP4 and SP5 under consideration of central concepts of the of CRISMA
Framework Architecture. This general relationship of the work performed in SP3 to the
results and objectives of SP4 “Models for Multi-Sectoral Consequences” and SP5
“Experimentation and Testing” is depicted in Figure 5 and Figure 9 below.

SP3
Infrastructure

Building Blocks

SP3
Integration
Building Blocks

SP3
User Interaction
Building Blocks

MI DI

GUI
SP4
Simulation
Models

Figure 9: SP3 and SP4 Contributions to the CRISMA Framework.

28.2.2014 | 10

http://www.crismaproject.eu

As shown in Figure 5 SP3 provides three types of Building Blocks that cover the
infrastructure, integration and user interaction aspects of the CRISMA Framework. Crisis
management specific aspects are contributed by SP4 in form of Simulation Models (Time-
Dependent Vulnerability, Cascade Effects, Economic Impact and Decision Support). While
SP4 delivers Simulation Models as services in accordance to the Simulation Model
Integration (MI) and Data Integration (DI) concepts and Building Blocks of the CRISMA
Framework Architecture it does not provide new graphical user interfaces (GUI) for model
configuration or model results visualization. Providing user interfaces for the Simulation
Models of SP4 which can be seamlessly integrated into a CRISMA Application is therefore
the job of SP3 which develops the respective User Interaction Building Blocks.

In SP5, Building Blocks of SP3 and Simulation Models of SP4 are assembled together with
pilot specific Simulation Models and Software Components to build distinct CRISMA
Applications (Figure 9) – one for each pilot.

SP3
Infrastructure BB

SP3
Infrastructure

BB

SP3
User Interaction

BB

SP5
Software

Component

SP5
Simulation

Model

SP4
Simulation

Model

SP4
Simulation

Model

SP3
Integration

BB

Figure 10: Assembling Software Components of SP3, SP4 and SP5.

1.7. Architectural approach

In the context of the CRISMA project a sound architectural approach for the design and
implementation of the CRISMA Framework has been developed. An architectural
approach defines a methodology and process of how an architecture is designed. Rather
than designing and specifying the architecture itself it describes the architectural
objectives, the applied concepts, their realisation and also to a certain extent their

28.2.2014 | 11

http://www.crismaproject.eu

implementation. The approach presented in this document is based on long-term
experience in architecture design, procedures and concepts established in architectures of
comparable systems. Thereby, several important aspects have been considered and a
thorough assessment of the available options and their implications has been performed.

1.7.1. Preliminary considerations

In detail, the following initial steps towards the definition of a suitable architectural
approach for the CRISMA Framework Architecture have been undertaken:

1. Recapitulation of different architectural reference models and frameworks,
standards, architectures and projects which seem relevant for the CRISMA
Framework Architecture.

2. Considerations of crucial issues that have a severe impact on the architectural
process and the resulting CRISMA Framework.

3. Discussion and decision on fundamental design decisions on basis of the
previously discussed considerations and the definition and selection of an
overall architectural approach.

4. Selection and/or definition of formal procedures, rules and guidelines for the
specification and description of components, information models.

At first, a considerable number of projects, architectures and simulation-specific standards
that provide interesting architectural concepts which have strong relevance for the
CRISMA Framework Architecture and the CRISMA project in general have been
assessed. Among the most relevant projects, architectures and standards partially
recommended in D21.1 “Technology Inventory for Crisis Management Tools & Models“
(D21.1, 2012) and D31.1 “Technology, Concepts &Technical Requirements Report V1“
(D31.1, 2012) were:

IEEE HLA - High Level Architecture (IEEE, 2010) and HLA Evolved (IEEE,
2011)
Open-MI - Open Modelling Interface Standard (Moore, 2010)
TENA - Test and Training Enabling Architecture (Powell, 2012)
DIESIS - Design of an Interoperable European Federated Simulation network for
critical InfraStructures (Beyer, 2010)
IMMS/SUMMIT - Integrated Modelling, Mapping, and Simulation / Standard
Unified Modelling and Mapping Integration Toolkit (Plantenga, 2010)
RiskScape - Framework for multi-risk modelling (Schmidt, 2011)
OGC SWE – Open Geospatial Consortium Sensor Web Enablement
OMS - Object Modelling System (David, 2010)
RM-ODP - Reference Model of Open Distributed Processing (ISO/IEC (1998))
RM-OA - Reference Model for the ORCHESTRA Architecture (RM-OA, 2007)
SANY-SA - Specification of the Sensor Service Architecture V3 (SANY-SA,
2009)
TOGAF - The Open Group Architecture Framework (TOGAF, 2011)
OASIS SOA-RM – Service Oriented Architecture Reference Model (SOA-RM,
2006)

Second, based on the assessment of the aforementioned projects, the following important
topics and questions to be answered before designing the architecture have been
identified:

28.2.2014 | 12

http://www.crismaproject.eu

1. Architectural Goals
What are the principal goals and objectives of the CRISMA Framework
Architecture and the CRISMA Framework? What are the most important ones?

2. Architectural Properties
What are the Architectural (non-functional) Requirements of the CRISMA
Framework Functional Architecture? How, at which layer or Building Block are
they considered and realised?

3. Architectural Reference Models and Frameworks
Do we have to follow an Architectural Reference Model or Framework when
specifying CRISMA Framework Architecture? To which degree and level of
detail shall the CRISMA Framework Architecture follow the selected Reference
Model(s) and Frameworks(s)?

4. Architectural Style
What is the general architectural style of the CRISMA Framework Architecture?

5. Overall System Design
What is the overall System Design? Will there be one central Simulation /
Management / Training / etc. GUI that covers all aspects of CRISMA?

6. Supported Crisis Management Phases
What are the Crisis Management Phases directly supported by the CRISMA
Framework Architecture (by the overall architectural design and/or supporting
services and tools)?

7. Distribution Scope and Communication Network
What is the scope of distribution of the CRISMA Framework Architecture and
what are the communication networks to be supported? Is there a difference at
different layers (tiers) of the architecture?

8. Communication Models
What communication model shall be supported by the CRISMA Framework
Architecture at which level?

9. Communication Infrastructure
What is the general communication infrastructure of the CRISMA Framework
Architecture, are there different infrastructures at different layers of the
architecture?

10.(Model) Runtime Infrastructure
What type of Runtime Infrastructure (RTI) shall be provided by the CRISMA
Framework Architecture? Do we support the dynamic composition of workflows?

11.Levels of Interoperability
What levels of interoperability should be supported by the CRISMA Framework
Architecture? How and at which layer or Building Blocks is a certain level
supported? What is the level of interoperability between different CRISMA
Federations (Applications)?

12.Information Model Approach
What is the information model approach to be pursued in the CRISMA
Framework Architecture? Will there be a global information model and/or a
meta-model that defines modelling rules and commonalities?

13.Overall GUI Approach
What is the overall GUI development approach of the CRISMA Framework
Architecture?

14.Overall Integration Approach
What is the primary overall integration approach (Data Integration, Application
Integration and/or GUI Integration) of the CRISMA Framework Architecture?

28.2.2014 | 13

http://www.crismaproject.eu

15.Simulation Model Integration Approach
What is the Simulation Model Integration approach that should be followed by
the CRISMA Framework Architecture? How and at what layer or Building Blocks
is a specific level supported?

16.Data Integration Approach
Does the CRISMA Framework Architecture support the integration of
heterogeneous data sources and if so how? What are the Building Blocks and
Tools that support the integration of data sources?

17.Application Integration Approach
What is the CRISMA Framework Architecture’s approach towards the integration
of legacy applications?

18.GUI Integration Approach
What is the general strategy for GUI integration of the CRISMA Framework
Architecture? Does the CRISMA Framework Architecture also support the
integration of autonomous legacy GUIs and if so how? What are the Building
Blocks and Tools that support the integration of GUIs?

The topics and the different approaches concepts and options to choose from have been
thoroughly elaborated, analysed and compared. Finally, architectural design decisions
have been taken collaboratively. The complete set of design decision along with a
rationale referring to project objectives is given in Appendix A of the initial Architecture
specification (D32.1, 2013) and the document on the updated technology inventory,
requirements, scenarios, criteria and key performance indicators (D25.1, 2014),
respectively.

The larger part of the above topics is further considered in conceptual description of the
CRISMA Framework Architecture (chapter 3). The first four topics Architectural Goals,
Architectural Properties (non-functional requirements), Architectural Reference Models
and Frameworks and Architectural Style mainly define the architectural design approach
as such and the overall mission of the CRISMA Framework Architecture (Chapter 2).

1.7.2. Approach and methodology

The architectural design approach and the chosen methodology take several concepts
from the previously assessed projects, architectures and simulation-specific standards into
account while they do not directly adopt a certain architecture or reference model.
Although the CRISMA Framework Architecture can be considered a reference architecture
as explained in more detail in section 3.2 it does not strictly follow a specific architectural
reference model like RM-ODP, RM-OA, SOA-RM or TOGAF. Specifying architectures in
such a formal and strict manner may lead to a clear and structured design. However, the
considerable effort needed to produce formal specifications and follow extensive meta-
models and rules does not per see guarantee interoperability between Integrated Systems.
Nevertheless, we adopt certain common concepts that are helpful for a structured
architectural design process. Those concepts are:

 We apply the four-layered MCRI scheme introduced in the DIESES project
(Rome, 2009) to structure the specification of the CRISMA Framework
Architecture.

 We identify and describe the overall goals of the architecture and its main
properties and constraints in chapter 2.

 We develop and explain the key concepts of the architecture in chapter 3 in
relation to its goals.

28.2.2014 | 14

http://www.crismaproject.eu

 We separate the architecture into an implementation dependent (Implementation
Architecture and Application Architectures) and an implementation independent
(Functional Architecture) part as in chapters 4 and 5 in relation to concepts
introduced in the Reference Model for the ORCHESTRA Architecture (RM-OA,
2007).

 We specify the architecture as a framework that provides the tools, Building
Blocks and guidelines to create a concrete Application Architecture.

 We provide templates for
 the abstract description of functional Building Blocks,
 the selection of software candidates for the realisation of functional Building

Blocks, and
 the (draft) specification of Application Architectures

 We adopt the concept of Service Platform from SOA-RM (SOA-RM, 2006) that
specifies basic properties of a SOA like message format, schema language, etc.
and apply it to the specification of the Implementation Architecture.

 We identify Functional Building Blocks and apply a stepwise hierarchical and
functional decomposition into a set of components (e.g. tools, services) with
their interfaces and interaction patterns.

 We identify software candidates for the implementation of the Functional
Building Blocks and provide a mapping to the Functional Building Blocks.

 We select and define methodologies and rules for data, model and application
integration and select, define or specify the respective tools and standards.

The Architecture specification is structured along four main viewpoints according to the
MCRI pyramid (see Figure 11) which stands for mission, concepts, realisation and
implementation. The mission viewpoint (chapter 2) defines the primary goals of the
CRISMA Framework and documents how the architectural goals, properties and
constraints have been derived from project objectives and user requirements. The
concepts viewpoint (chapter 3) defines the key concepts that are applied to realise the
goals. They encompass general architectural concepts like reference architecture, Building
Blocks, Federations, several integration concepts and user oriented concepts for resource
management, training and so on. The realisation viewpoint (chapter 4) addresses the
realisation of the concepts by a set of functional Building Blocks and their interaction
patterns. Functional Building Blocks provide an abstract description of the general
functionalities to be provided by the CRISMA Framework. A further decomposition of
functional Building Blocks into concrete Software Components is performed in the
implementation part (chapter 5) of the architecture.

28.2.2014 | 15

http://www.crismaproject.eu

Figure 11: MCRI pyramid.

1.7.3. Functional and implementation architecture

As explained in more detail in sections 2.2 and 3.2 the overall architecture of the CRISMA
Framework consists of an implementation independent part which we call Functional
Architecture complemented by an Implementation Architecture. Using the words of the
MRCI pyramid (Figure 11) the Functional Architecture covers the mission, concepts and
realisation viewpoints while the Implementation Architecture addresses the implementation
viewpoint. Implementation independence in the context of the Functional Architecture does
not mean that the Architecture specification will be independent of technologies and
standards. In contrary, the selection of appropriate technologies and standards is integral
part of the concepts and realisation viewpoints. Moreover, the realisation viewpoint
describes on abstract level how and by what Functional Building Block the expected
functionality of the overall CRISMA System is realised rather than how and by which
specific Software Component as this is the purpose of the Implementation Architecture
which can be considered a realisation of the Functional Architecture.

28.2.2014 | 16

http://www.crismaproject.eu

D32.2
ICMS
Architecture
Document V2

CRISMA Framework Architecture

Functional Architecture

Vocabulary

Implementation Architecture

Concepts Functional
Building Blocks

Interaction
Patterns

Rules and
Guidelines

Application
Architecture

Template

Application
Architecture 1

Application
Architecture …

Application
Architecture n

Infom.
Model

Ext.
Comp.

Sim..
Model

Infom.
Model

Ext.
Comp.

Sim.
Model

Infom.
Model

Ext.
Comp.

Sim.
Model

D32.1
ICMS Functional
Architecture
Document V1

Tools

Core Control and
Communication

Information Model

Software
Components

SP5

M

C

R

I

CRISMA Application Architectures

Figure 12: CRISMA Framework Architecture.

As shown in Figure 12 the first version of the Architecture specification (D32.1, 2013)
focused on the Functional Architecture, whereby some general aspects of the
Implementation Architecture were already addressed. The complete picture is given in the
current version of the Architecture specification by augmenting it with the complete
Implementation Architecture (chapter 5). Thereby, it is important to highlight that the
Implementation Architecture is a domain independent transferable specification which is
the basis for the implementation of the CRISMA Framework (WP34 “ICMS Framework
Building Block Implementation” and WP35 “ICMS Framework Integration”)

An additional architectural concept that is shown in Figure 12 is the concept of the
Application Architecture. An Application Architecture is a specialisation of the common
Implementation Architecture and describes the architecture of a concrete CRISMA
Application (e.g. a pilot application), thus adding domain and location context. Among
others, it specifies the extensions of the core information models, what Software
Components are used in the context of the application, what models, data and systems
need to be integrated, which types of World State Transitions are performed by the
application and so on. Anticipating the concept of Federations introduced in section 3.3 we
can already state that an Application Architecture is the architecture of a CRISMA
Federation.

28.2.2014 | 17

http://www.crismaproject.eu

2. Mission
This chapter defines the general mission of the CRISMA Framework Architecture including
its purpose and scope. As shown in Figure 1, this mission is expressed in terms of
architectural goals, properties and constraints which have been derived from the project
objectives and pilot expectations, research issues and technical- and user requirements.
Thereby, this chapter addresses primarily common architectural concerns rather than
concrete system functionalities. Detailed functionalities of the CRISMA Framework are
described by means of Functional Building Blocks that are specified in chapter 4 –
Realisation.

2.1. Preliminary considerations

At first, we give a brief overview on numerous objectives and requirements collected from
different sources before we assess the consequences for the architectural design process
described in section 1.7 and provide an exhaustive description of the overall mission of the
architecture.

According to the DoW (DoW, 2013) and D63.1 "Report on market analysis" (D63.1, 2013)
the primary objectives of the Integrated Crisis Management System (ICMS) to be
developed by the CRISMA project are:

 To model possible multi-sectoral crisis scenarios and assess the
consequences of an incident,

 to simulate possible impacts resulting from alternative actions,
 to support strategic decisions on capabilities, related investments, reserves

and inventories,
 to optimize the deployment of resources dedicated to crisis response in-line

with the evolvement of a crisis, and
 to improve action plans for the preparedness and response phases of the

crisis management

Although these objectives already provide a comprehensive overview on the mission of the
ICMS and the CRISMA project a as whole, they don’t define the general architectural
design of the perceived system. Nevertheless, they serve as a good starting point towards
the identification of more detailed system functionalities which was performed during the
three workshops in the first four months of the CRISMA project. The results of those
workshops are documented in D11.1 “Consolidation Report” (D11.1, 2012). The most
valuable outcome of this report regarding the architectural design process are the pilots’
general targets and expected outputs related to CRISMA objectives as well as several
critical challenges that can be considered an initial set of non-functional requirements for
the architecture.

While the majority of those pilot expectations refer to system functionalities and thus are
considered user requirements which have been further developed as goal models,
behavioural scenarios and use cases in D23.1 “(User) Requirements and Use Cases“
(D23.1, 2013) the expectations relevant for the architecture in general are:

 The CRISMA System should also support field training, with real deployment of
people and resources and thus provide ”mixed reality” applications allowing
”real” and ”virtual” field workers to seamlessly interact (life, virtual and
constructive).

28.2.2014 | 18

http://www.crismaproject.eu

 The CRISMA System should be adaptable to the requirements of different
categories of end users, with different operating modules related to Crisis
Management activities (e.g. planning, training, capacity and resource allocation,
real time operational management, cost benefit analyses, etc.).

 The CRISMA System needs both an unsecured feature that is accessible
through the web, and a secured component.

 The CRISMA System needs to be able to combine data generated by
different risk assessment models, such as an earthquake causing a chemical
leak with toxic plume dispersion and fire.

 The CRISMA System should function as a standalone as well as distributed
system.

 The CRISMA System should support the transfer of scenarios, assumptions
and experiences from one region to another using an abstraction level
named Reference Scenarios.

 The CRISMA System might also support real time communication with field
workers (emergency capacities).

 The CRISMA System should support the co-existence of generic models with
high uncertainties and models which are fine-tuned to a specific spatiotemporal
area.

From those expectations we can already derive some architectural goals like the objective
to provide a middleware for real-time information exchange and key architectural
properties like extensibility, flexibility and interoperability.

Even though not yet focused on the provision of a Framework for building Crisis
Management Simulation systems, D11.1 “Consolidation Report” (D11.1, 2012) gives a
brief outlook on the architecture and its primary objectives. Together with the general
project objectives of the DoW (DoW, 2013) and the objectives of several other crisis
management projects and systems assessed in D21.1 “Technology Inventory for Crisis
Management Tools & Models“ (D21.1, 2012) those initial architectural objectives were
further detailed in D31.1 “Technology, Concepts & Technical Requirements Report V1“
(D31.1, 2012) and can be summarised as follows:

Technically, the architecture should be flexible enough to:

 Support interaction with existing decision support and crisis management
systems,

 allow for de-centralised development and management, and easy integration
of new features,

 assure timely information flow to decision makers and relief forces,
 allow for dynamic exchange of services providing the real time data (e.g.

from sensors used in real crisis situations) with services providing
faked/modelled data (used in planning and for the training purpose),

 provide data models and services required for crisis management applications
that are capable of integrating the existing legacy systems (data, models)
used in crisis management today,

 be compatible with on-going developments in the field of environmental
monitoring and environmental information management (e.g. SISE, INSPIRE,
GMES),

 assure controlled and secure access to all data and services (authentication,
authorisation, data consistency),

28.2.2014 | 19

http://www.crismaproject.eu

 provide a service infrastructure as a basis for the harmonized, standardized
and user friendly integration of new and existing Simulation Models,

 support the integration of sensors as well as data sources of various types,
 take into account electricity and communication infrastructure failures at the

level of the architecture (in case someone wants to adapt the CRISMA
Framework for crisis management and mitigation). However, we can safely
assume that these issues do not occur in the planning and training phases
(reliability requirement),

 support views depending on the organization and the user's operative role
(user management requirement),

 support the communication with existing IT tools for crisis management to
address decision making alternatives, perform what-if scenarios, update
system information with real time data, derive quantitative and qualitative
data from existing models and introduce new features to existing simulation
tools if required,

 consider mechanisms for near-real-time exchange of the information about field
workers and other features of interest in the real world, as well as those in the
virtual world (mixing life, virtual and constructive elements),

 exhibit the right level of genericity to be able to support the very different pilot
applications as well as applications beyond in the crisis management context.

In addition to those objectives which help us to formulate the primary architectural goals
we consider also some of the research issues and common problems defining and
implementing simulation systems identified in D31.1 “Technology, Concepts &Technical
Requirements Report V1“ (D31.1, 2012):

Composability and interoperability of crisis management models and
simulations coupled for some particular use
Reliability of communication infrastructure
Adaptability and scalability of environmental models

 Granularity of models
Scalability of the ICMS system

 Problems with hybrid models
 Location intelligence of tools and models

Uncertainty issues
 Concerns about integrating GIS

Evolution of crisis scenarios
 Conceptual modelling and crisis management technologies

High-level interoperability
 Appropriate level of interoperability

Reuse of existing models and simulations
Data issues
Adjustability of environmental models

Most of those issues relate mainly to Simulation Model integration and Simulation Model
interoperability; a major topic of the CRISMA project which has to be addressed by the
CRISMA Framework Architecture in by a dedicated subproject: SP4 “Models for Multi-
Sectoral Consequences”.

Furthermore, D21.1 “Technology Inventory for Crisis Management Tools & Models“
(D21.1, 2012) poses a valuable source of user requirements which serve mainly as source

28.2.2014 | 20

http://www.crismaproject.eu

of functional requirements for the Functional Building Blocks (section 4).Nevertheless, we
can extract also some requirements which are highly relevant for the architecture design
itself:

 The system should use common European standards (e.g. OGC compliant)
so that impact/damage models running in remote servers can exchange data
with CRISMA.

 The system should be able to develop impact scenarios from external tools
(like hazard models – e.g. ALOHA – Areal Locations of Hazardous Atmospheres
for plume dispersal).

 The system should be able to combine data generated by different risk
assessment models (e.g. an earthquake cause a chemical leak with toxic plume
dispersal and fire).

 The system should provide a "none secured" feature that is accessible through
the web, and a secured component accessible using login and password
parameters (or more advanced security systems).

 The system should allow to integrate local maps and realistic connection times
on the transport network (e.g. between hospitals and places of accidents).

 The system should constantly keep track of the search and rescue operations.

Another valuable source of non-functional requirements and architectural properties,
respectively, which are relevant for the CRISMA Framework Architecture, is the SP2
deliverable D23.1 “Requirements and Use Cases” (D23.1, 2013). The consolidated crisis
management goal models therein define besides the behavioural (functional) aspects of
the overall CRISMA System (the entirety of all individual crisis management applications
provided by the CRISMA project) also so called quality goals (shown in Figure 13). The
quality goals shown in Figure 13 have been translated into architectural properties (section
2.3). Further architectural properties could be derived from the user requirements
specification tables (APPENDIX C of D23.1).

28.2.2014 | 21

http://www.crismaproject.eu

Figure 13: Quality Goals of the consolidated Crisis Management Goal Model.

Last but not least, a thorough assessment of related research projects and comparable
simulation management systems like SUMMIT (Plantenga, 2010), DIESIS (Beyer, 2010),
TENA (Powell, 2012), HLA (IEEE, 2010) and others severed as input for the formulation of
the architectural goals and the identification of important architectural properties.

Figure 14 gives an overview on the main sources of architectural goals and properties.
Since the extraction and processing of those non-functional requirements of the CRISMA
Framework Architecture is mainly the result of “Task 3.1.2: ICMS Technical Requirements”
they are also documented in condensed form in D31.2 “Technology, Concepts &Technical
Requirements Report V2” (D31.2, 2013).

28.2.2014 | 22

http://www.crismaproject.eu

D63.1
Report on
Market
Analysis

D11.1
Consolidation
Report

D23.1
Requirements
and Use Cases

DoW
Desription of
Work

D21.1
Technology
Inventory

D31.2
Technology,
Concepts
&Technical
Requirements
V2

DIESIS
SUMMIT
TENA
HLA
...

Mission

Figure 14: Sources of Architectural Goals and Properties.

2.2. Architectural goals

From the previous discussions we can conclude that the main challenge of the CRISMA
Framework Architecture lies within the broad field of system integration. This
encompasses model integration, data integration, application integration as well as GUI
integration. Thus we can formulate one key objective of the CRISMA Framework
Architecture as

The CRISMA Framework Architecture has to support integration with existing
systems, existing tools, existing models and existing data sources at multiple
levels of interoperability.

Unlike in other projects we have assessed the systems, models, tools and data sources to
be integrated are not yet known. This means, that the architecture must be flexible enough

28.2.2014 | 23

http://www.crismaproject.eu

to support integration at many levels. Therefore, also the usual integration approach to
agree on one common (global) data model and one set of common interfaces is not
feasible for the CRISMA Framework Architecture. Furthermore, the five different pilots will
each rely partially on different existing models, tools, etc. Thus, another major conclusion
is that there won’t be one CRISMA System as initially perceived by the idea of a single
ICMS. Instead, a framework has to be provided which allows building a CRISIS
Management Application around and/or on top of legacy systems. Conceptually, this
architectural objective can be formulated as

The CRISMA Framework has the characteristics of a reference architecture
framework, that is, a template and framework to build concrete Application
Architectures of the crisis management domain.

As a consequence and as already anticipated by the work plan (DoW, 2013) the CRISMA
Framework Architecture is split into an implementation independent and an
implementation dependent part. While the Functional Architecture is concerned with the
general concepts, relationships and Functional Building Blocks within the crisis
management domain covered by the CRISMA project the Implementation Architecture
provides a concrete selection of Software Components and information models. From this
point of view, we can formulate the following goals for the Functional and the
Implementation architecture:

The Functional Architecture has to establish a common vocabulary which
describes the core concepts and the relationships between the elements of
the architecture.

Such a vocabulary defines scope and context of the different architectural elements and
thus enables architects and developers to gain a common and harmonised view on the
architecture. In the Architecture specification at hand the vocabulary is represented by the
glossary as well as the by the concepts described in chapter 3.

The Functional Architecture has to define a methodology for describing a
CRISMA Federation in terms of a set of interacting Building Blocks. It has to
provide the respective tools as well as the functional specification of the
Building Blocks.

The Building Blocks are the core elements of the architecture and encapsulate the
functionality that is provided by the CRISMA Framework. Besides the Functional Building
Blocks the architecture has also to provide templates for their description as well as an
explanation of their interactions and their relation to other architectural elements like
Federates (see section 3.8) and Integrated Components and systems (see section
3.10.3).

The Functional Architecture has to ensure composability and reusability of
Building Blocks especially in the context of integrating them with legacy
systems.

An important aspect of the architecture is that not only existing Software Components or
complete legacy systems may be wrapped into CRISMA Building Blocks or CRISMA-
aware components (see section 3.7) but also the Building Blocks provided by the CRISMA
Framework should provide the possibility to be integrated into legacy systems. Thus,
composability and reusability are key requirements to be fulfilled by Building Blocks.

28.2.2014 | 24

http://www.crismaproject.eu

Furthermore, the architecture has to employ suitable methods to ensure that those
requirements can be met by Software Components implementing the Functional Building
Blocks.

The Functional Architecture has to select consistent standards and
specifications for the exchange of data and Control and Communication
Information between Federates and Integrated Components.

Formal standards, data formats and agreements are one of the main concepts to enforce
interoperability between different systems and components. The architecture has to pre-
select and define such standards.

The Functional Architecture has to define a common communication protocol
as well as a common language used for communication between all
Federates.

Although the CRISMA Framework has to support many different components and systems
of which each may use its own standards and formats and communication protocol, one
common denominator has to be found which leverages a unified integration.

The Functional Architecture has to define a common infrastructure and a
middleware for (meta-) information exchange and integration of
heterogeneous data, models and systems.

On basis of the common communication protocol and language a Middleware
Infrastructure has to be specified which connects all internal (E.g. Building Blocks) and
external (e.g. Integrated Systems) components of a CRISMA Federation.

The Functional Architecture has to define an open API for the Middleware
Infrastructure.

Well defined service interfaces toward the Middleware Infrastructure realised as open and
easy to use APIs have to be provided by the architecture in order to leverage the
development and integration of Software Components.

The Functional Architecture has to define the concepts for the specification
of modular information models for Control and Communication Information
exchanged with the Middleware Infrastructure.

While different CRISMA Applications may rely on different (Control and Communication)
information models, there is the need for a minimal common information model that
specifies the shared concepts on the level of the CRISMA Framework. The architecture
has to establish concepts that allow the definition of modular and application specific
extensions of the global information model.

A global data model approach when applied to the whole set of CRISMA Applications is
unfeasible since existing data has to be transformed to comply with the global model.
Instead a minimum global CCIM has to be designed by the Implementation Architecture
which can be extended by application-specific CCIMs.

The Implementation Architecture has to define common, minimal, generic and
modular Control and Communication Information Models (Core CCIM) that
can be extended by each individual Application Architecture.

28.2.2014 | 25

http://www.crismaproject.eu

One of the main goals of the Implementation Architecture is to identify and assess
Software Components that are suitable for the implementation of the Functional Building
Blocks. Thereby, a strong focus lies on extensibility and reusability of those Software
Components to be adapted to CRISMA needs.

The Implementation Architecture has to select and/or specify a set of
composable and reusable Software Components that can be utilized to
implement the Functional Building Blocks.

Besides those architectural goals listed above there are also other more specific
architectural requirements which we consider rather high level functional requirements
than general architectural goals. Among those high level functional requirements are e.g.
requirements to provide an event data management system, to provide repositories for
storing different types of information entities, to provide management tools for
administration and integration, and many more. Those high level functional requirements
are further decomposed in the specification of the respective Building Blocks (section 4).

2.3. Architectural properties

High-Level architectural requirements sometimes also referred to as architectural
properties or architectural principles (RM-OA, 2007), (SANY-SA, 2009) are non-functional
requirements with high relevance for the architectural design process and the resulting
architecture. Some of those requirements are specific to CRISMA and the Crisis
Management Domain while others are common non-functional requirements of distributed
integration architectures. The non-functional requirements influence the overall
architectural design while the functional requirements drive the specification and
development of Building Blocks.

The architectural properties of the CRISMA Framework Architecture and their relevance
and applicability are explained in the following:

Clean and structured system design
The CRISMA Framework Architecture shall be based upon well adopted and commonly
used architectural design principles. The architecture has to provide tools and templates
that support the structured specification and documentation of individual Application
Architectures.

Use of concepts and standards
The architecture shall make use of proven concepts and standards in order to decrease
dependency on vendor-specific solutions and help ensure the openness of the CRISMA
Framework and support the evolutionary development process of the architecture.

Interoperability
The architecture shall employ mechanisms and guidelines to enforce interoperability
between independently developed internal (CRISMA Federates) and external (Integrated
Components) of a CRISMA Application.

Loosely coupled components
The Building Blocks involved in the CRISMA Framework shall be loosely coupled, where
loose coupling implies the use of mediation to permit existing components to be
interconnected without changes.

28.2.2014 | 26

http://www.crismaproject.eu

Extensibility and flexibility
The CRISMA Framework Architecture shall not be a “closed” system with a fixed set of
functionalities. It must be possible to easily integrate new Simulation Models, Building
Blocks or other types of components with additional functionality into the CRISMA
Framework or an Application.

Security and confidentiality
The CRISMA Framework Architecture shall be designed to allow state of the art security
mechanisms to be incorporated. These mechanisms shall include user management
(authentication, authorisation), as well as control of access to data, services and tools.

The CRISMA Framework Architecture shall also consider mechanisms to restrict sharing
of confidential information across organisational boundaries, e.g. to support CRISMA
Applications that cannot rely on the transmission of sensitive or confidential information
over unsecured public networks like the internet.

Performance and scalability
The CRISMA Framework Architecture shall be able to take scalability and availability
issues (throughput, response time) into account, e.g. to handle various levels of
operational load and external conditions.

Reliability, dependability, robustness and safety
The CRISMA Framework Architecture shall support the development of CRISMA
Applications that are resilient to security threats or breakdowns.

Ubiquity of access
The CRISMA Framework Architecture shall support mechanisms to realise ubiquitous
access to its functionalities, which is access regardless of location or device. Functionality
might be limited because of technical reasons (bandwidth, screen size) or security
considerations. While the architecture shall enable remote access it has to be considered
what functionality is actually needed and if a specialized user interface is required (e.g.
mobile phones used for training).

Supportability, adaptability and maintainability
Since every pilot and later every user will have special needs there won’t be one CRISMA
System just to install but each CRISMA Application will need adaption to user’s needs. So
the CRISMA architecture shall enable easy adaption and maintaining to enable support of
many different Applications with reasonable efforts.

User-friendliness and usability
The architecture shall provide mechanisms and guidelines that leverage the development
of user-friendly graphical user interfaces that are adaptable to the workflows and needs of
different types of users.

2.4. Architectural constraints

As already observed in D31.1 “Technology, Concepts &Technical Requirements Report
V1“ (D31.1, 2012), user requirements for developing the CRISMA Framework cannot be
unconditionally met because of availability and suitability of appropriate modelling and
simulation tools and technologies. This applies also to the CRISMA Framework
Architecture in general. Therefore, a good compromise between the architectural goals
and properties and the feasibility and applicability of different architectural approaches and

28.2.2014 | 27

http://www.crismaproject.eu

their influence on the implementation possibilities had to be reached. This is reflected in
the descriptions of the major concepts (chapter 3) as well as in the description of the
functional Building Blocks (chapter 4) of the architecture. Furthermore, it is documented in
a set of architectural design decisions (D32.1, 2013) which provide also a rationale
regarding architectural goals and constraints.

Focus on preparation phase
The CRISMA Framework is based upon a robust and generic architecture that supports
the development of Crisis Management Applications capable of modelling and simulating
all phases of a real crisis. The CRISMA Framework will therefore provide Building Blocks
to support the simulation of actions related to all crisis management phases. Although the
architecture has been designed having properties like reliability, fault tolerance and
dependability in mind, the consideration of crisis-induced issues like power outages and
breakdown of communication infrastructure are beyond the scope of the project.

Restricted automatic GUI creation
While most of the GUIs exposed by the Building Blocks can either be automatically
generated and adapted to the use cases and information models of an individual CRISMA
Application, the CRISMA Framework does not provide generic GUIs for the configuration
of arbitrary complex models nor is it feasible to develop specific GUIs for the configuration
of models having very complex input files. This issue is further discussed in section 3.12.

Implementation effort for Simulation Model integration
The CRISMA Framework Architecture has been designed to make integration of disparate
Simulation Models services and data as easy as possible. However, this high level of
adaptability and genericity of the CRISMA Framework implies some additional effort when
building an individual CRISMA Application. Integration of Simulation Models and
transformation of I/O data e.g. has to happen at the level of model wrappers or data
adapters which have to be developed as part of the implementation of a CRISMA
Application.

No formal meta model
Although the CRISMA Framework Architecture is considered a reference architecture, it
does neither define nor follow a specific meta model like RM-OA (RM-OA, 2007) or TENA
(Powell, 2012).

The practical applicability of a formal meta model approach, especially when model driven
automatic code generation is involved highly depends on a strict adherence to a formal
methodology. This may not only conflict with the employment of rapid prototyping methods
applied in CRISMA project but also pose substantial specification overhead.

No global information model
When integrating existing components and data (thus existing information models) it is
problematic to develop one global information model that encompasses all pre-existing
information models. While it might be possible to define a global information model for a
single CRISMA Application Architecture, developing a global information model for a family
of Federations (e.g. one global information model for all possible CRISMA Application
Architectures) is not feasible.

No adaptation to legacy systems
When it comes to the integration of CRISMA functionality into legacy systems and
Software Components it depends on those systems and components whether they can

28.2.2014 | 28

http://www.crismaproject.eu

incorporate services and tools based on open standards provided by the CRISMA
Framework. That means an external system that wants to interact with CRISMA Building
Blocks has to adhere to the interfaces and integration concepts supported by the CRISMA
Application and the CRISMA Framework. Since CRISMA Building Blocks have to be
transferable and domain independent they are not indented to be adapted to legacy
systems.

28.2.2014 | 29

http://www.crismaproject.eu

3. Concepts
This chapter describes the general concepts of the CRISMA Framework Architecture.
Those concepts are realised by or applied to one or more Building Blocks (chapter 4).

3.1. Conceptual business logic

In CRISMA the role of the Conceptual Business Logic is to describe the key concepts of
Crisis Management Simulation, the analysis of simulation results and decision support.
The logic represents an analysis viewpoint meaning: rather than looking at the “real”
evolvement of a crisis the logic focuses on the Path of Analysis of a Crisis Management
Simulation that offers well defined possibilities to interfere and modify a simulation
(Transition Points, see section 3.1.4).

3.1.1. Analysis viewpoint

In CRISMA we focus on Crisis Management Simulations that support specific planning,
training or decision support objectives (Simulation Objectives). For this we need to
consider (only) the aspects of the crisis relevant for the respective analysis represented
through the concepts of the business logic. As a consequence the analysis viewpoint
defines the granularity (e.g. temporal, spatial) of the view on results of a simulation. E.g. if
we want to train decision makers regarding specific evacuation strategies, the specific
phases from the viewpoint of the analysis of a simulation of a possible evacuation set the
“pulse” (i.e. the number of World States) of how we “look” on simulation results. In general
the number of World States that are interesting from an analysis point of view is much
lower than the number of World States that are part of an actual simulation (e.g. states of
objects moving on a map).

Impact Simulation Mitigation Simulation

Crisis Management
during an evolving crisis

Simulated
Crisis Management

e.g. in-situ operations

Configure
Impact Simulation

Entry of Event

Inspect
Simulation Results

D
ec

is
io

n

Configure
Mitigation
Simulation

Inspect
Simulation

Results

End of Event

e.g. continuous damage assessment

Figure 15: Simulation and Analysis Viewpoint.

Figure 15 visualizes the difference between the Simulation Viewpoint (Crisis Management
during an evolving crisis) and the Analysis Viewpoint (Simulated Crisis Management).

While the Simulation Viewpoint has a higher number of World States, the Analysis
Viewpoint focuses only on those World States relevant in the context of the respective
Simulation Objective.

28.2.2014 | 30

http://www.crismaproject.eu

3.1.2. Central concepts for crisis management simulation

Figure 16 gives an overview on the central concepts for Crisis Management Simulation
explained in the following subsections.

Figure 16: Central Concepts for Crisis Management Simulation.

3.1.2.1. World state space and world state elements

The basis for our considerations is the space of parameters describing a Simulated World
(World State Space) in a crisis management context. A snapshot of the Simulated World
is called World State and consists of all data related to a specific Crisis Management
Simulation. In other words World States represent a situation or snapshot in the context of
a simulated crisis management activity. World States can be either changed directly by the
user or indirectly by the use of Simulation Models driven by a change in Simulation
Control Parameters. Conceptually, any change of a World State produces another World
State.

28.2.2014 | 31

http://www.crismaproject.eu

World States consist of three groups of elements:

 Data,
 Simulation Control Parameters,
 Indicators.

3.1.2.2. World state transition and world state completeness

A change from one World State to another is called World State Transition. The World
State Transition maintains the structure of the World State and does neither change the
dimension of the Simulated World nor the type of elements that constitute the World State
(Homomorphism).

…

Vulnerability Classes

:

Situation Maps

Objects of Interest

Weather Data

...

Simulation
Control

Parameter

Simulation

World State

Manipulation

Vulnerability Classes

:

Situation Maps

Objects of Interest

Weather Data

...

Simulation
Control

Parameter

World State'

create

Indicators Indicators

Indicator
Function

Simulationi

Simulationi+1

calculate

trigger

perform

kl

Hazard Exposure

Mitigation Resource
Management

f

M

M

Transition

Figure 17: World State Transition, Basic Elements.

As shown in Figure 17 and Figure 18, a Transition is either induced by a Manipulation of
existing World State Data or by the execution of a Simulation having the respective World
State as input. The Simulation is parameterized through a set of Simulation Control
Parameters that are also considered part of the World State as they might contain
information required to evaluate a World State. The actual input data for each Simulation
consist of a subset of the elements of the World State. In contrast, each Simulation
produces a full World State to assure comparability of World States. To be able to produce
a complete World State as output of a Transition, World State Data not affected by the
simulation needs to be added or referenced.

28.2.2014 | 32

http://www.crismaproject.eu

Criteria and Costs

World
State

Simulation
Model Control

Parameter

Criteria and Costs

World
State

Simulation
Model Control

Parameter

Criteria and Costs

World
State

Simulation
Model Control

Parameter

Criteria and Costs

World
State

Simulation
Model Control

Parameter

Indicators

Data

Simulation
Control

Parameter

M

User Interfaces
and Business Logic

User Interfaces
and Business Logic

Simulation Models

Functions
and Algorithms

f(x)

World State

Figure 18: World State Transition, Details.

3.1.2.3. Indicators and indicator functions

The creation of a new World State triggers the production of corresponding Indicators
serving as common denominator between World States and a Crisis Management
Simulation Analysis (e.g. Economic Impact Analysis).

From the point-of-view of the analysis of often complex simulation results, Indicators are
essential elements of a World State. However, on concept level they are not produced by
a Simulation but rather through the use of a specific Indicator Function that is the same
for all Transitions in a specific Simulation Case. The execution of an Indicator Function is
triggered immediately after the Transition has produced the result World State Data. Only
after Indicators have been added to World State Data and Simulation Control Parameters
a new and complete World State is obtained.

3.1.2.4. Simulation objective, simulation case, transition point, alternatives and path of
analysis

A Simulation Objective is a well-defined purpose of a Crisis Management Simulation
supporting specific planning, training or decision support activities. The physical
representation or the means to reach a simulation objective is the Simulation Case. A

28.2.2014 | 33

http://www.crismaproject.eu

Simulation Case defines a graph of possible Transitions on a World State Space for a
specific Simulation Objective.

Criteria and Costs

World
State

Simulation
Model Control

Parameter

Criteria and Costs

World
State

Simulation
Model Control

Parameter

Criteria and Costs

World
State

Simulation
Model Control

Parameter

Criteria and Costs

World
State

Simulation
Model Control

Parameter

Indicators

Data

Simulation
Control

Parameter

Criteria and Costs

World
State

Simulation
Model Control

Parameter

Criteria and Costs

World
State

Simulation
Model Control

Parameter

Criteria and Costs

World
State

Simulation
Model Control

Parameter

Criteria and Costs

World
State

Simulation
Model Control

Parameter

World State

Transition

Path of Analysis

A
lte

rn
at

iv
es

Criteria and Costs

World
State

Simulation
Model Control

Parameter

Criteria and Costs

World
State

Simulation
Model Control

Parameter

Criteria and Costs

World
State

Simulation
Model Control

Parameter

Criteria and Costs

World
State

Simulation
Model Control

Parameter

Criteria and Costs

World
State

Simulation
Model Control

Parameter

Criteria and Costs

World
State

Simulation
Model Control

Parameter

Criteria and Costs

World
State

Simulation
Model Control

Parameter

Criteria and Costs

World
State

Simulation
Model Control

Parameter

World State

World State

World State

World State

Figure 19: World State Transition, Alternatives and Path of analysis at a Transition Point.

A node in this graph pinpointing the possibility to interfere in the simulation is called a
Transition Point. Alternatives are represented by the triples (World State, Transition,
{World State’, World State’’,…, World Staten}) at a specific Transition Point (Figure 19).

A consecutive sequence of Transitions through the Simulation Case Graph can be called a
Path of Analysis. Finally, a Path of Analysis (Figure 20) that starts at the root of a
Simulation Case and ends at a leaf can be called a Simulated Crisis Management
Scenario (for more details see section 3.1.4).

28.2.2014 | 34

http://www.crismaproject.eu

Figure 20: Simulation Case, Transition Point and Path of Analysis.

This understanding of a Scenario as consisting of a sequence of Transitions changing
World States is essential to the understanding of the overall concept. Moreover, it is
important to note that the concept is independent of crisis management phases as well as
the elapsed time of a crisis. This is because all aspects of time are considered as
elements of a World State.

3.1.3. Central concepts for crisis management simulation analysis

Comparison and analysis of different World States, Alternatives and related Transitions
enables crisis managers to explore the effects of changes in mitigation strategies affecting
vulnerabilities based on related World State Data.

3.1.3.1. Crisis management simulation analysis

In CRISMA the concept of Crisis Management Simulation Analysis has three variants:

 The assessment of planning options
 Training i.e. the education of stakeholders
 Decision support for crisis management activities

For each of the three variants CRISMA supports Crisis Management Simulation Analysis
on three levels:

 Exploration of World State Data
 Comparison and assessment of aggregated data
 Algebraic Comparison that enables e.g. ranking

The core concepts for the upper two levels of this approach are Indicators and Criteria
being the basis for a possible Multi-Criteria Analysis.

3.1.3.2. Indicator, indicator vector, indicator space and indicator function

From the viewpoint of Crisis Management Simulation Analysis we can extend the concept
of Indicators and related terms as shown in Figure 21.

28.2.2014 | 35

http://www.crismaproject.eu

Figure 21: Indicator, Indicator Vector, Indicator Space and Indicator Function.

An Indicator is an aggregation of elements of a World State. The Indicator Space is a
mathematical vector space so we can scale and add its elements. Each vector in this
space represents an aggregated image of a World State. By this an Indicator Vector is an
instance in an Indicator Space and contains a number of Indicators as elements. An
Indicator Function produces an Indicator Vector where the dimension and complexity of
the World State Space is drastically reduced.

In other words, Indicators are a concept that helps us to bring more structure in the
Simulated World aggregating thus losing information so we can do e.g. algebra on this
representation of World States for the benefit of being able to better evaluate complex
World State Data.

3.1.3.3. Criteria, criteria vector and criteria function

A Criterion sets an Indicator in relation to a Simulation Objective. More precisely, Criteria
measure the level of satisfaction of an Indicator in the context of a specific Simulation
Objective. A Criteria Function maps an Indicator Vector to a corresponding Criteria Vector.
The dimension of an Indicator Vector and a Criteria Vector is usually the same.

The use of the Criteria concept is the basis for Algebraic Comparison of World State
based Crisis Management Scenarios that enables us to introduce e.g. ranking methods.

3.1.3.4. Algebraic comparison, multi-criteria analysis and ranking

To be able to give a decision maker hints regarding which Crisis Management Scenario
performs best according to specific Criteria we have to further aggregate information
(Figure 22) and introduce methods to set the scenarios into an order relation. On the basis
of this order relation we can algebraically compare scenarios and produce e.g. a ranking of
scenarios with respect to specific criteria.

28.2.2014 | 36

http://www.crismaproject.eu

World State Indicator Criteria Algebraic
Comparison

Figure 22: Aggregation Steps for Crisis Management Simulation Analysis.

There are a number of prominent methods in the field of Multi-Criteria-Analysis to
essentially map a Criteria Vector to a representative single scalar value. CRISMA has
selected the OWA (Ordered Weighted Averages) method that allows the definition of a
specific decision strategy by combining the means to emphasise specific Criteria and their
achieved level of satisfaction. For more details refer to the specification of the Model for
decision-making assessment, economic impacts and consequences and Simulation
(D44.1, 2013) and section 3.19 of this document.

3.1.4. Simulation case graph

As already described in section 3.1.2.4, each Simulation Case is initially specified as a set
of Transition Points that are the nodes of a Simulation Cases Graph (Figure 23). This
graph defines a Path of Analysis that can be followed in a CRISMA Application.

28.2.2014 | 37

http://www.crismaproject.eu

Figure 23: Simulation Case Graph.

A Transition Point represents the type of the Transition that can be performed by the user
at a defined point in a Simulation Case. Thus, the temporal or logical evolvement of a
Simulation Case and its concrete instances, the Simulated Crisis Management Scenarios,
respectively, can be expressed by a sequence of Transition Points (Simulation Case
Graph). Transition Points can be freely defined by the designer of the Simulation Cases
and the CRISMA Application, respectively.

While in a certain Simulation Case an arbitrary number of Transition Points could be
defined, it is advisable to limit the number of Transition Points to the ones required to
support the decision objective. For this purpose, a Simulation Case should be divided into
discrete steps whereby at each step the CRISMA Application should allow the user to
perform e.g. important or alternate decisions, an analysis of the current World State, a
comparison of Indicators, etc which are then related to Transition Points. Thus, the
Simulation Case Graph actually defines the Analysis Viewpoint (section 3.1.3) of a
CRISMA Application.

Both concepts Transition Points and World State Definitions (specifications of the World
State Data Slots) act as input for individual Crisis Management Scenarios which consist of
a sequence of concrete Transitions and World States (Experiments). Figure 24 shows an
example of a Crisis Management Scenario which follows a specific path through the
Simulation Case Graph.

This path is chosen by the user during the execution of the scenario. The Simulation Case
Graph can therefore be considered as a set of suggested Paths of Analysis, i.e.
sequences of Transitions that are required to meet particular Simulation Objectives (see
section 3.1.2.4) of a Simulated Crisis Management Scenario.

28.2.2014 | 38

http://www.crismaproject.eu

Simulation Case

Simulated Crisis Management Scenario

Figure 24: Simulated Crisis Management Scenario as Instance of Simulation Case.

As shown Figure 24, the Scenario Graph permits different alternative paths. Except for
root (TP A/0 in the example above) and leaf nodes (TP A/7 and TP D/3 in the example
above), a Transition Point has one or more predecessors and successors. In general, it is
up to the developer of the CRISMA Application to enforce the predefined order of
Transition Points. Therefore a user of the Application may or may not be allowed to
perform Transitions which deviate from the predefined paths of the Simulation Case
Graph.

The self reference of the Transition Point emphasises the possibility to create a set of
alternative Transitions which can then be compared during a Crisis Management
Simulation Analysis (e.g. comparing Indicators of different alternative decisions).

As already shown in Figure 23, the Simulation Case Graph itself permits alternate paths to
be followed according to the temporal evolvement of a crisis or the logical evolvement of a
specific use case. The graph defines mainly in which order which types of Transitions can
be created in the Application.

Additionally, at each Transition Point the user has the possibility to create different
alternate variations of a Transition, e.g. by choosing different Simulation Control
Parameters (earthquake intensity, number of resources deployed, ...).

The difference between choosing an alternative path in the Simulation Case Graph and
performing an alternate Transition in a Simulated Crisis Management Scenario might not
be easily understandable in the first place. Therefore, one should keep in mind that a

28.2.2014 | 39

http://www.crismaproject.eu

Transition Point represents a type (what can be done) and the Transition a concrete
instance (what is done).

An example of six different Crisis Management Scenarios (CMS1 + CMS6) which all follow
the same path of the Simulation Case Graph of Figure 24 is shown in Figure 25 below.

CMS1

CMS2

CMS3

CMS4

CMS5

CMS6Crisis Management Scenarios

Evolution (defined by the Simulation Case Graph)

A
lte

rn
at

iv
es

(f
re

el
y

de
fin

ed
by

th
e

us
er

)

Figure 25: Crisis Management Scenarios.

Like a Transition Point, a Transition as shown in Figure 25 above has also one
predecessor and possibly multiple successor Transitions, except for the root Transitions
and Leaf Transitions. While a Simulation Case can be modelled as graph of Transition
Points, a concrete Crisis Management Scenario is always represented as a path in a tree
of Transitions.

3.1.5. Relevance of the conceptual business logic

In relation to the Conceptual Business Logic the objective of SP3 is to provide software
elements (Building Blocks and respective Software Components) that implement the
business logic in the form of a software framework. As a consequence the framework will
be most useful for applications that follow/adopt the Conceptual Business Logic.

After all, the Conceptual Business Logic is not only the conceptual basis of the CRISMA
Framework but equally important as the foundation of more advanced Crisis Management
Simulation Concepts that are in the focus of CRISMA i.e. Cascade Events and effects
(D42.1, 2013) and Time-Dependent Vulnerability (D43.1, 2013).

28.2.2014 | 40

http://www.crismaproject.eu

3.2. Reference architecture

Essentially, the largest part of the CRISMA Framework Architecture is the Functional
Architecture e.g. specifying the functional Building Blocks of the Architecture on an
abstract level rather than describing or selecting existing Software Components.
Obviously, Functional (abstract) Building Blocks will in general not be implemented from
scratch and a decision for a specific Software Component has to be made at a certain
point in time. However, due to the diversity of the envisioned CRISMA Applications in
terms of requirements, objectives and availability of models and tools to be reused the
CRISMA Framework Architecture cannot always anticipate the decision how and by which
Software Component a certain Building Block has to be realised (or implemented).
Therefore, one goal of this architecture is to define how existing applications and systems
can be complemented by CRISMA functionality.

Thus, a proper balance between the requirement to be able to incorporate legacy
applications or legacy components available at the pilot sites on the one hand and the
ability to build a custom CRISMA Application on basis of ready-to use Building Blocks
contributed by the CRISMA Framework on the other hand has to be found.

Figure 26: Reference architecture.

As a consequence, the CRISMA Functional Architecture is designed as a reference
architecture that follows a lightweight and pragmatic reference model approach. A
reference architecture is an architecture to build concrete architectures (Figure 26).

Therefore, a realisation in the context of a reference architecture is a concrete
architecture. As a reference architecture the Functional Architecture provides the tools,
Building Blocks and guidelines to create a concrete architecture of a CRISMA Application,
a so called Application Architecture.

However, the CRISMA Framework Architecture does not stop at the abstract level; it
provides also an Implementation Architecture (chapter 5). The Implementation Architecture

28.2.2014 | 41

http://www.crismaproject.eu

selects and defines already all Software Components for the implementation of the
Building Blocks of the Functional Architecture. Furthermore, it defines the common and
generic Core Control and Communication Information Model which can be extended by
the individual Application Architectures.

Figure 27: CRISMA Architecture Relationships.

The relationship between the different architecture types is visualised in Figure 27: The
Implementation Architecture is a realisation of the Functional Architecture. There exists
exactly one Functional Architecture and exactly one Implementation Architecture.

An Application Architecture is a specialisation of the general Implementation Architecture
and thus an intermediate realisation of the Functional Architecture. The number of
Application Architectures is not limited. Following this approach, the CRISMA project will
deliver 5 different Application Architectures, one for each pilot. Since an Application
Architecture inherits the concepts and generic interfaces of the Functional Architecture
interoperability between different Application Architectures is fostered.

3.3. CRISMA federations, applications and scenario orientation

As can be seen in Figure 28, a CRISMA Application is an implementation of an Application
Architecture. Moreover, it is realised with the help of Software Components that are

28.2.2014 | 42

http://www.crismaproject.eu

provided by the CRISMA Framework. Like the CRISMA Framework Architecture which
provides the means to create (specify) a specific Application Architecture, the CRISMA
Framework is implemented as integration Toolkit which offers a set of defined
functionalities represented by Software Components, Building Blocks exposing well
defined APIs, and general guidelines, templates, Control and Communication Information
Models and so on. The CRISMA Framework thereby implements, selects and adapts all
Building Blocks that are the basis to build an entire CRISMA Application.

Specification
Level

Implementation
Level

Figure 28: CRISMA Framework and applications.

The terminology of Functional Architecture, Implementation Architecture, Application, etc.
is used to illustrate the relationships and dependencies between the different levels of
specifications and the implementation as well as to establish a common conceptual basis
for the design and implementation of CRISMA Applications on the basis of a common
architecture and framework.

Furthermore, to illustrate important interoperability and integration concepts and to
distinguish between CRISMA-aware and non-aware as well as external (integrated) and
internal components we introduce the terms of Federates and Federation. Please be
aware, that the terms CRISMA Application and CRISMA Federation are used
synonymously. The terms Federate and Federation have been adopted from HLA, High
Level Architecture (IEEE, 2010).

Using this terminology and as illustrated in Figure 29, a CRISMA System which comprises
the overall outcome of the CRISMA project is a Federation of Federations. Although
interoperability between different Federations is supported by architectural concepts this is
out of scope of the project even though inter-Federation interactions open the possibility
for various cross-pilot activities, e.g. propagation of cascading effects from one pilot
application to another.

28.2.2014 | 43

http://www.crismaproject.eu

Figure 29: CRISMA System as Federation of Federations.

As can be seen in Figure 30, a CRISMA System is not a single CRISIS Management
System but a system of different CRISIS Management Applications which are built using a
common framework.

28.2.2014 | 44

http://www.crismaproject.eu

Figure 30: CRISMA Applications.

A CRISMA federation is a scenario oriented Crisis Management Application
composed of CRISMA Federates and built with the help of Building Blocks (services, tools,
models, etc.) and guidelines provided by the CRISMA Framework. Scenario orientation
(Rome, 2009) in this context means, that the CRISMA Framework cannot anticipate the
management of all possible types of crisis scenarios in detail but rather provides the
means to define and use simulated crisis scenarios for training, planning and decision
making. As already observed in the architectural constrains (section 2.4), the CRISMA
Framework is a generic integration and development framework but not a generic Crisis
Management System. To leverage the development of individual CRISIS Management
Application, the CRISMA Framework provides several pre-integrated Reference
Applications. The design and implementation of Reference Applications is focused on the
support of a set of Reference Scenarios as described in section 3.15.

CRISMA Framework Building Blocks must be composable and configurable, and
thus adaptable to the needs and requirements of the CRISMA Application to be built. Of
course, CRISMA Pilot Applications don’t have to be realised exclusively with help of the
CRISMA Framework Building Blocks. Application specific legacy applications may either
be wrapped into the CRISMA Federates, e.g. by implementing a specific interface, or just
be integrated on a lower e.g. data level.

28.2.2014 | 45

http://www.crismaproject.eu

CRISMA
Application

CRISMA
Framework

BB

BB

M

BB

BB

M
BB

C

M

S

GUI

Figure 31: Relation of a CRISMA Application to the CRISMA Framework.

As shown in Figure 31, a CRISMA Application may be built around an existing system as
long as the core concepts of the CRISMA Framework Architecture are respected and the
essential Infrastructure Building Blocks are used. Thus, a CRISMA Application may consist
of application specific models, components, GUIs or even complete legacy systems which
are not part of the CRISMA Framework.

The relation of the different types of Building Blocks, Federations and Integrated Systems
and components as well as a precise definition is given in section 3.7.

3.4. Communication paradigms and spatial distribution

Since a CRISMA Application should function standalone as well as distributed system (see
section 2.1 for more details), the Functional Architecture is based on paradigms for
distributed systems. Due to this, the CRISMA Framework Architecture is designed as
multi-tiered architecture that supports the creation of potentially spatially distributed
CRISMA Applications (Federations) which may interact and exchange data over public
networks (e.g. the internet) as well as systems deployed on a single and isolated machine.

Considering this in combination with strong interoperability requirements it is obvious that
the very flexible distributed system design approach has to be applied to the CRISMA
Framework Architecture. Additionally, it has to be clarified how the communication and
information exchange between disparate actors can be harmonised.

A possible solution to this problem based on global information models and one common
communication infrastructure is provided by High Level Architecture (HLA). However, as
already observed in section 2.4 applying the HLA approach to a CRISMA Federation might
impose too many restrictions on the participating Federates and Integrated Systems. Not
only models but any other component of the Federation would have to adhere to HLA

28.2.2014 | 46

http://www.crismaproject.eu

interfaces and principles and thus route all data through a HLA compliant Runtime
Infrastructure (RTI). Furthermore, all participants of the Federation would have to agree
upon one Common Information Model, the Federation Object Model (FOM).

Figure 32: Information Flows.

Therefore, in the CRISMA Framework Architecture a different approach is followed which
applies an event based Control and Communication Information management paradigm
on top of existing client/server infrastructures. One of the fundamental concepts is the
separation of Control and Communication Information and data flows (section 3.11).
Thereby strict rules regarding communication paradigms, encodings, protocols, etc. for the
Control and Communication Information flows have to be enforced by the architecture. On
the other hand, the rules for actual data flows are recommendations and subject to
interpretation during the implementation of an individual CRISMA Application. Although we
claim that the Functional Architecture is implementation and technology independent,
these rules have also to include some technological aspects with potential impact on the
architecture in general.

28.2.2014 | 47

http://www.crismaproject.eu

As shown in Figure 32, Control and Communication flows (blue) are handled by a
Middleware Infrastructure which connects Federates in a uniform, simple and transparent
way (section 3.5). Data flows (red) may be established between any Federates and
Integrated Systems, components, or models directly. For an explanation of the difference
between Federated and Integrated Systems or components please refer to section 3.7.
The communication model applied in the interaction between Federates and the
Middleware Infrastructure can best be described as resource-oriented and event based.

Thereby, communication styles like publish-subscribe and the request-response are
supported in the communication with the Middleware Infrastructure. The publish-subscribe
pattern is mainly used for the propagation of events while the request-response pattern is
used for the general access to Control and Communication Information. It is important to
note, that Control and Communication Information shall not be exchanged between
Federates directly and thus must be transferred solely using the APIs provided by the
Middleware Infrastructure (section 3.5). In accordance to common REST principles the
mandatory communication protocol used in this type of communication is the hypertext
transfer protocol (HTTP).

The exchange of data (maps, time series, …) occurs in general in a peer to peer fashion
where the actors in the data exchange are directly connected. Although HTTP is the
obvious choice, any other protocol may be permitted as long as it is required to
communicate with an Integrated System or component. To foster interoperability on data
level the architecture proposes several standardised protocols and message formats for
direct data exchange between Federates.

3.5. Middleware infrastructure

CRISMA Federates are interconnected through a central Middleware Infrastructure which
acts as interoperability layer between disparate systems and components. This
Middleware Infrastructure is driven by Control and Communication Information and
provides common functionalities and a model for the interaction of heterogeneous
components. It can be seen as the core of the CRISMA Framework and thus of each
CRISMA Application. The Middleware Infrastructure is realised as a generic distributed
resource-oriented Integrated Crisis Management Middleware (ICMM) which in turn is one
of the most important Infrastructure Building Blocks of the CRISMA Framework
Architecture. An overview of the ICMM Building Block can be found in section 4.1.

To be able to integrate legacy applications, models and data sources this Integrated Crisis
Management Middleware has to support arbitrary Control and Communication Information
Entities, including Simulation Models, Simulation Model adapters and Simulation Cases.
Moreover, it needs to allow the management of Control and Communication Information.
Thus it provides basic create, update and delete (CRUD) operations for all types of Control
and Communication Information Entities. The functionality of the ICMM is exposed through
easy to use and easy to understand web-based RESTful APIs (some examples shown in
Figure 33) that are usable by a wide variety of different client applications like capacity
resource & assets management systems, model wrappers, mobile apps or web browsers.

28.2.2014 | 48

http://www.crismaproject.eu

Figure 33: Examples of Middleware Infrastructure APIs.

As shown in Figure 33, the ICMM provides also repositories and APIs that enable secured
and controlled access to Control and Communication Information Entities, including
support for authentication and authorisation.

Another important ability of the ICMM is to build modularised Control and Communication
Information Models (CCIMs) and to allow the introduction of new entity types without
causing changes to the core API and clients of the ICMM or the infrastructure. The
development of CCIMs goes hand in hand with the provision of Control and
Communication Information Repositories and related repository APIs. Figure 33 also
shows some example repository APIs to be provided by the ICMM as well as a number of
core APIs. The actual standard repository APIs of the ICMM are defined by the Core CCIM
which is described in chapter 5.

Figure 34 shows the relation between CCIMs, Repositories and APIs. The CCIM
represents both the information schema (e.g. a database schema) that defines the
structure of the repository (e.g. a data base) as well as the formal specification of the
repository’s API. Due to the RESTful approach followed by the CRISMA Middleware
Infrastructure, Control and Communication Information Entities defined by the CCIM and
stored in the Control and Communication Information Repository can be mapped to URLs
exposed by a REST API. Ideally, the definition of a new repository is just a matter of
providing a new CCIM if supported by the Software Component that implements the ICMM
API.

28.2.2014 | 49

http://www.crismaproject.eu

Figure 34: Control and Communication Information Repositories.

It is important to note, that the term ”resource oriented” in the context of the ICMM refers to
the concept of generic resources as used in the specification of the Resource Oriented
Architecture. An ICMM “resource” may represent Control and Communication Information
on Simulation Models, Simulation Model wrappers or Simulation Cases. Therefore a clear
distinction has to be made between the management of so called Objects of Interest (OOI)
which represent abstractions of real world phenomena (e.g. capacity resources) and of
“virtual” Control and Communication Information Entities. Of course the ICMM may also
provide and manage Control and Communication Information describing CRISMA relevant
aspects of OOIs. To avoid ambiguities with the term “resource” we call “resources”
managed by the ICMM Control and Communication Information Entities or short entities.

In accordance with the publish-subscribe pattern the ICMM supports mechanisms to
subscribe to events related to Control and Communication Information Entities, e.g. the
state of a Simulation Model run (not started yet, running, finished, cancelled, ...). Other
functionalities of the ICMM include the ability to save and restore the actual state of a
Control and Communication Information Entity, to support the creation of catalogues and
search functions.

3.6. Modular control and communication information model

As already mentioned in section 3.5, Control and Communication Information managed by
the ICMM plays an important role for discovery, access, integration and interpretation of
data and models. With the help of the ICMM and related Control and Communication
Information Repositories, it will be possible to describe all aspects of a CRISMA
Federation and to manage the Control and Communication Information and the actual data
independently.

The ICMM manages Simulation Case information like basic configuration parameters,
location and access to input data while the actual input data and results are provided by
different components (DDS, WMS, SOS, RDMBS …). A dedicated repository which is part
of the ICMM will store Control and Communication Information about data transformation
adapters and Simulation Model wrappers or may even provide machine-processable

28.2.2014 | 50

http://www.crismaproject.eu

transformation rules e.g. encoded in Extensible Style Sheet Language Transformations
(XSLT) or even a scripting or programming language.

The actual content of those repositories is defined by modular Control and Communication
Information Models. Modular in this context means that a generic Core CCIM exists which
can be extended by user defined modules. The core model is defined by the
Implementation Architecture and the modules by the different Application Architectures.

Figure 35: Example of Modular CCIMs.

It is worth noting, that the Core CCIM does not only enable interoperability among different
CRISMA Federations, it is also the basis for the development of generic and configurable
Building Blocks (see section 3.7). This implies that generic Building Blocks that are
designed to operate on basis of the core information model shall be adaptable to user
defined modules e.g. by offering plug-in or extension mechanisms.

Figure 35 shows an example of a modular CCIM. It describes some core Control and
Communication Information Entities which are then extended by the application specific
models. The model shown in Figure 35 is a simplified example to illustrate the general

28.2.2014 | 51

http://www.crismaproject.eu

concepts. The actual Core CCIM is described in the Implementation Architecture (chapter
5).

We foresee also that the ICMM reserves the possibility to import Control and
Communication Information that originally resides in another system. Either an initial
import or a continuous integration with direct access to the other systems data stores is
supported. This kind of ”live” Control and Communication Information integration is
especially required when a CRISMA Application and an Integrated System shall coexist
and Control and Communication Information about objects of interest for the purpose of
integration and interoperability has to be provided.

Among the main properties of the modular CCIM are

 The ability to support relationships between Control and Communication
Information Entities like generalisation / specialisation, links, aggregations, and
others;

 the ability to provide a (lifetime) unique reference for identifying (URN) and
accessing (URL) a Control and Communication Information Entity; and

 the ability to support complex (hierarchical) Control and Communication
Information Entities that are made of references to other entities.

In accordance to the RESTful principles supported by the ICMM REST API (section 3.5)
references can be expressed as URIs and thus be resolved on demand.

3.7. Federates and integrated components

One fundamental concept of architectural design is to establish a consistent terminology
which unambiguously defines the various elements of the architecture and explains their
relationships. While most of the key terminology of the CRISMA Framework Architecture
has already been used in the previous section and the glossary this section intends to give
a formal definition of terms required to describe the concepts of a CRISMA Federation and
to establish a link to the previously introduced architectural concepts. Figure 36 visualises
the relationship between the different Federation related terms established by the CRISMA
Framework Architecture (Federates, Building Blocks, Integrated Components, etc.) Please
note that the dark blue boxes represent arbitrary examples of instances of the respective
Federates. The Federation concept terminology is further extended by the CRISMA GUI
Integration Approach which introduces additional types of Federated .and Integrated GUI
Components. Those GUI related terms are defined in section 3.12.

28.2.2014 | 52

http://www.crismaproject.eu

Figure 36: Terminology of the CRISMA Framework Architecture.

3.8. CRISMA federates

A CRISMA Federate is a Software Component (including CRISMA Building Blocks) that is
able to interact with the Middleware Infrastructure and thus exchange Control and
Communication Information with the ICMM. A CRISMA Federate may but does not have to
expose a dedicated RESTful CRISMA API that is aligned to the APIs of the ICMM.

Accordingly, an existing Software Component that wants to join a CRISMA Federation and
thus become a CRISMA Federate has to be aware of the ICMM API but does not
necessarily have to expose such an API. This keeps the effort for integrating existing
Software Components at a minimum (especially components with GUI). Other Federates,

28.2.2014 | 53

http://www.crismaproject.eu

especially CRISMA Building Blocks need to be integrated more tightly. As a general rule
they offer their programmatically accessible functionality through well-defined RESTful
APIs. CRISMA Federates are explicitly allowed to communicate with non-CRISMA
components (Integrated Components) e.g. a CRISMA-aware GIS Viewer (CRISMA
Federate) is allowed to communicate with a non-CRISMA-aware Web Map Service (WMS)
while the ICMM is not involved in this communication at all (see section 3.11). In summary,
we can state that a component that is aware of the ICMM API and the Core CCIM and
thus can interact with the Middleware Infrastructure to access Control and Communication
Information Entities is called CRISMA Federate. In this spirit, we can also state that such a
component is CRISMA-aware. Thus, the process of modifying or wrapping an existing
system, a Simulation Model or a component to become a CRISMA Federate is called
“making it CRISMA-aware”.

3.9. CRISMA building blocks

We can distinguish between Federates, that are an integral part of the CRISMA
Framework and other Federates that are only relevant in the context of a specific CRISMA
Application. Federates that are provided by the CRISMA Framework are called CRISMA
Building Blocks. CRISMA Building Blocks shall be generic, composable and configurable
and should expose their GUI as CRISMA web based Composite UI Modules (see section
3.12). The generic and configurable aspects of a Building Block refer to its ability to
operate both on the basis of the Core CCIM and application specific extensions (modules).
To give an example, a generic Building Block for the configuration of Simulation Models
may be designed according to the Simulation Model Control and Communication
Information definition specified by the Core CCIM of the CRISMA Framework (section 3.6).
Since a CRISMA Application may extend this model and provide an application-specific
Simulation Model definition as part of its Application Architecture the implementation of the
aforementioned Building Block shall be easily adaptable to a new model.

CRISMA Building Blocks can be categorized as Infrastructure Building Blocks (section
4.1), User Interaction Building Blocks (section 4.3) and Integration Building Blocks
(section 4.2). End users of a CRISMA Application will directly interact with the User
Interaction Building Blocks only. An example for an Infrastructure Building Block is the
ICMM as the central Infrastructure Building Block and an example for an Integration
Building Block is a Simulation Model Integration (Simulation Model Wrapper) Building
Block.

3.10. The federation concept

The CRISMA Federation Concept explains the relationships between the different
components that may become part of a CRISMA Application.

3.10.1. Federated components and federated systems

Application-specific Federates are also called Federated Components. In general, those
Federated Components are existing Software Components which originally haven’t been
designed to be part of a CRISMA Application but have been modified, wrapped or
extended to become CRISMA-aware. This term can also be extended to Federated
System when several Federated Components act together. Hence, the difference
between a Federated Component and a Building Block is that the Federated Component
doesn’t need to be generic and configurable and therefore it is not part of the CRISMA
Framework but of a CRISMA Application only. Thus, in contrast to a Building Block, a

28.2.2014 | 54

http://www.crismaproject.eu

Federated Component may but does not have to be implemented as a transferable
Software Component that can be reused in the context of a different location and domain.

3.10.2. Federated simulation models and federated simulations

Another type of Federate is the Simulation Model. Simulation Models can be wrapped into
CRISMA-aware Federates and thus become Federated Simulation Models. Since
Simulation Models may be specialized for a certain CRISMA Application or domain they
are not considered Building Blocks. The concept of model integration in CRISMA is
described in section 3.14. The term federated simulation is used to highlight that a
federated simulation is composed of several distinct Simulation Models.

3.10.3. Integrated components, simulation models and systems

Any other component, Simulation Model or system that is not aware of the ICMM API and
the Core CCIM but that takes part in an interaction of CRISMA Federates is called
Integrated Component. The difference between a CRISMA Federate and an Integrated
Component is that the Integrated Component is not CRISMA-aware. It has been integrated
on a lower level e.g. by offering standardised services that are accessible by CRISMA
Federates or allowing direct access to its internal data stores or public service interfaces
(APIs). The same applies to integrated Simulation Models which are not integrated
according to the Model Integration Approach presented in section 3.14. Their results
however are made available to the system somehow. With help of the ICMM and a CCIM,
a CRISMA Application may be able to establish a “CRISMA-aware view” on the data of an
Integrated System without the need to interfere with the Integrated Systems itself (see
section 3.6). In general, integrated components, Simulation Models and system don’t have
to be modified or extended to become part of a CRISMA Application.

3.10.4. CRISMA federations and applications

As already explained in section 3.3, while a CRISMA Federation is composed of
Federates only a CRISMA Application may additionally consist of Integrated
Components, Simulation Models and Systems (Figure 37). This distinction is necessary to
highlight the fact that it must be possible to build CRISMA Applications that are composed
of CRISMA Building Blocks and legacy Software Components without the need to modify
the legacy components. This is an important prerequisite to foster the integration of legacy
systems (section 3.15). Thereby the loosely integrated Software Components are left
entirely unchanged and are not made CRISMA-aware. In the case that a tighter integration
is necessary Software Components may be changed or wrapped to become Federated
Components (see section 3.10).

28.2.2014 | 55

http://www.crismaproject.eu

Figure 37: Relation between CRISMA Federation and CRISMA Application.

3.11. Separation of data and control and communication information
flows

An important concept of the ICMM is the separation of data and Control and
Communication Information flows. While all Control and Communication Information is
routed through the ICMM, data can be directly exchanged between Federates and
Integrated Components. For CRISMA Federates there are two binding rules regarding the
flow of Control and Communication Information:

 Control and Communication Information is exchanged exclusively via the
Middleware Infrastructure through the ICMM API.

 Control and Communication Information exchanged must be conformant to the core
information model of the CRISMA Framework (Core CCIM).

The first rule guarantees that all Control and Communication Information is routed through
the Middleware Infrastructure and thus auxiliary functions like event propagation,
versioning, logging, access control, cataloguing, indexing, etc. are applied by the ICMM
and related Infrastructure Building Blocks.

The second rule enforces interoperability between Federates on the Control and
Communication Information level. All Federates can unconditionally rely on the Core CCIM
and thus interoperate.

28.2.2014 | 56

http://www.crismaproject.eu

For data flows there are no strict rules but recommendations focusing on the data
exchange services and standards. A list of recommended standards, their usage and
applicability in the CRISMA Framework Architecture is provided in section 4.4.

Figure 38: Separation of Data Flows (Example).

Whether an information set is considered as data or Control and Communication
Information depends on its purpose and usage context, therefore it is not always easy to
distinguish the two. However, we can consider any information produced by Integrated
Components (non-CRISMA-Federates) as data. A Web Map Service e.g. that is not
related to the ICMM provides data (maps, features). A CRISMA-aware Simulation Model
and GIS viewer e.g. may produce or consume both Control and Communication
Information and data. In the example shown in Figure 38, the CRISMA-aware Federated
Simulation Model stores its output (data) in a WMS-accessible database (peer to peer)
and notifies clients via the ICMM API (publish/subscribe) that a new Simulation Model
result is available.

3.12. GUI integration approach

The CRISMA Framework must provide a set of default composable GUIs which can be
interactively combined to support specific workflows of CRISMA applications. However,
potential CRISMA users already have powerful legacy applications potentially making use
of CRISMA functionality as add-on. This is one reason why the CRISMA Framework does
not aim to provide one overall and coherent GUI for all possible CRISMA Applications
(CRISMA Federations). Instead, some CRISMA Applications will be realised as a
conglomeration of disparate GUIs varying from separate and isolated desktop applications
to HTML mashups. Those CRISMA GUIs need to consider different integration
approaches. Existing applications or Building Blocks realised with help of existing Software
Components already use their legacy user interfaces and client-side applications. Other
potential clients would prefer to integrate CRISMA GUI components into their user
interface and sometimes vendors of Simulation Models that come without any GUI might
want to benefit from the CRISMA model integration GUI components.

For that reason CRISMA will introduce central CRISMA mashup user interfaces that are
capable to work as a standalone user interface but that can also be consumed by external
CRISMA-aware systems. The basic concept is to create web applications that expose
CRISMA web based Composite UI Modules for arbitrary browser environments. Such web

28.2.2014 | 57

http://www.crismaproject.eu

based Composite UI Modules can be embedded into any application GUI as explained in
the next paragraph.

When considering embedding the GUI of an application in the GUI of another application
there are several challenges such as technological barriers, interoperability and usability.
CRISMA is targeting a markup based application (e.g. HTML5 and JavaScript) that can
work standalone or embedded in a desktop application by using an appropriate web
engine1. Such a pure web application GUI can be consumed by a desktop application or
another markup based application. It can be embedded in a markup based HTML
application with help of the concepts of HTML frames and browser plug-ins2.

Exchange of data and events between two disparate GUI applications (tight integration)
can become a challenging task as will be explained later. The Composite UI Modules will
enable bidirectional communication (e.g. publish-subscribe) between the legacy
application and other CRISMA components via those APIs and the CRISMA Middleware
Infrastructure.

The main features of the composite CRISMA UI modules are:

 UI modules are standalone and depend on the CRISMA web application server
side only.

 UI modules can share a common CRISMA state on the server side (with help of
the ICMM).

 UI modules are integrated into the CRISMA security model and may require
authentication and authorization in order to be initialized.

 UI modules are developed using pure web technologies, such as HTML,
JavaScript and CSS in order to have a platform-independent support.

 UI modules are operating in the context of a specific user.

Example for potential Composite UI Modules:

 Run simulation Composite UI Module: Select the simulation and the relevant
parameters (such as simulation type, initial state, simulations input and output
parameters) and run the simulation (immediately, schedule based).

 Monitoring simulations lifecycle composite: enable to track all active simulations
and understand a current state in the simulation lifecycle (such as pending,
running, completed, failed, and aborted).

 Search simulation results Composite UI Module: Enable search in the simulation
results catalogue based on keywords, parameters and hierarchical browsing.

 Simulation visualization composite UI Modules: Enable a view of simulation
results in several visual representations, such as native result (for debugging
and demonstrations), Tabular visualization, Geo map (per vendor ESRI, Google
Maps …).

 Capacity resources management composite UI Modules: Enable the life-cycle
management of OOI and other resources that are manipulated by the different
models. Support operations such as Add\Modify new resources, Import
resources from file, Search resources, View resources types and current state.

Since the GUI Integration Approach is a fundamental concept for the non-intrusive
integration of the CRISMA results into legacy system and vice versa (see section 3.15), a

1 Examples for web engines are MSHTML, Mozilla Gecko, WebKit
2 Examples are ActiveX and Java applets

28.2.2014 | 58

http://www.crismaproject.eu

comprehensive set of rules for the design and development of Composite UI Modules has
been defined. The fist and most important rule in this regard is, that

Each Composite UI Module shall be realised as distinct website which
consists of a static part (HTML/CSS + other static resources) defining layout
and structure of the user interface and a dynamic part (JavaScript) providing
dynamic content and interaction functionalities.

Additional rules are needed to ensure technical interoperability and composability,
especially regarding the UI Integration Platform and the UI Mashup Platform. The
complete set of rules for composite UI Modules is presented in the following.

There are few technical requirements that set the boundaries for the development of
Composite UI Modules and the Integration Platform Building Block. Of course, since
composite UI Modules and the UI Integration Platform are by definition CRISMA
Federates, all technical and interoperability requirements on CRISMA Federates apply
also to Composite UI Modules and the UI Integration and Mashup Platforms. Technically,
and as shown in Figure 39,

Composite UI Modules must be implemented in HTML5, CSS3 and JavaScript.

Figure 39: Composite UI Module Overview.

Accordingly, we can also define what Composite UI Modules are not made of:

Composite UI Modules must not rely on any type of external plug-ins like
Oracle Java, Adobe Flash, Microsoft Silverlight, and others.

Additionally, Composite UI Modules must be standalone and self-contained, which means
they must not rely on a certain server infrastructure in the backend to function properly.

Composite UI Modules shall be realised as purely client-side and server-
agnostic solutions that do not require any specific backend server-side
infrastructure (e.g. enterprise application server, servlet container, portal
server, ...), services or components apart from the Infrastructure services
Building Blocks provided by the CRISMA Framework (e.g. ICMM, UI Mashup
Platform for Mashable Composite UI Modules, etc.).

28.2.2014 | 59

http://www.crismaproject.eu

More precisely, a Composite UI Module is a static HTML page and its dynamic behaviour
is realised entirely by HTML5 and AJAX techniques in conjunction with CRISMA APIs (e.g.
the ICMM APIs). Techniques that rely on server-generated dynamic content like Portlets,
Servlets, PHP Scripts, etc. are not suitable for the implementation of Composite UI
Modules. Moreover, a Composite UI Module should also operate properly when loaded
from the local file system involving no HTTP web server whatsoever.

Furthermore, and especially in regard to security sensitive information exchanged within a
CRISMA Application, the usage of proprietary and vendor-specific APIs (e.g. Google APIs,
Yahoo APIs, ...) by a Composite UI Module is strongly discouraged. Although not a rule,
the following recommendation is given:

Composite UI Modules should not rely on proprietary APIs or services that
pose the risk of exposing security and privacy sensitive information to third
parties.

Whether such a service or API is save to be used has to be decided on a case by case
basis by the architects and developers of the respective CRISMA Application. While it
might be o.k. to use the Google Maps API for displaying background maps, storing
sensitive information in cloud services like Dropbox3 or Google Drive4 might be in violation
to data protection rules or non-disclosure agreements.

Since Composite UI Modules may also provide functionalities that can be called by other
Composite UI Modules or even other types of components, there is a need for a well
defined API exposed by each Composite UI Module. However, in contrary to the initial GUI
integration concept presented in the first version of this Architecture specification (D32.1,
2013) this API should not exclusively be realised as RESTful API. Since pure HTML
components are not able to offer such a RESTful API it would have to be provided by a
separate server side component. The initial Composite UI Modules interaction concept
shown in Figure 40 has therefore been extended by a more flexible approach which is
based on JavaScript and ICMM APIs.

According to Figure 40, Composite UI Modules should be split into a client-side and a
server side part. The server-side part would expose a REST API that accepts incoming
calls from other components which want to call functions of the Composite UI Module.

Thus, besides the creation of HTML, CSS and JavaScript snippets the development of a
Composite UI Module would also include the implementation of a RESTful service that can
be deployed on a web server. Since the implementation of such an additional server-side
component would place an unnecessary burden on developers, integrators and
maintainers of a CRISMA Application, the second iteration of the CRISMA Framework
Architecture introduces an improved interaction concept for Composite UI Modules.

However, one must realise that in some cases a server-side component for encapsulating
the business logic of a Composite UI Module might be required. For those cases, either an
ICMM Actions API or an Extension API can be used to outsource time and resource
demanding tasks (see Figure 48). In consequence, we can state that

3 https://www.dropbox.com
4 https://drive.google.com/

https://www.dropbox.com/
https://drive.google.com/

28.2.2014 | 60

http://www.crismaproject.eu

 it is o.k. to split a Composite UI Module into a server-side and a client-side part
when the role of the server-side part is to encapsulate business logic of the
Composite UI Module; and

 it is not o.k. to split a Composite UI Module into a server-side and a client-side
part when the role of the server-side part is to provide an endpoint for other
components to communicate and interact with the Composite UI Module.

Figure 40: Initial Composite UI Modules Interaction Concept.

For the direct communication and interaction with Composite UI Modules a new concept
has been introduced. This concept is based on the fact that web pages are able to call
JavaScript functions of other web pages acting in the same scope (e.g. in the same web
browser window). Furthermore, a HTML/JavaScript engine (e.g. a web browser) is also
able to directly call JavaScript functions of the web pages it is rendering. Therefore, a
further rule for Composite UI Modules can be defined:

Composite UI Modules shall expose their programmatically accessible
functionality via a JavaScript API.

However, in some cases a component that wants to interact with a Composite UI Module
may not have the possibility or capability to directly invoke JavaScript functions. In this
case, an alternative possibility is provided by the ICMM. The ICMM Action and Event
Delegation APIs can be used to forward arbitrary action requests to a Composite UI
Module that is registered with the ICMM. Figure 41 shows how different types of
components can interact with the Composite UI Modules’ JavaScript API.

28.2.2014 | 61

http://www.crismaproject.eu

Figure 41: Improved Composite UI Modules Interaction Concept.

Depending on its capabilities a Federated Component may either use the mandatory
Composite UI Modules’ JavaScript API or the ICMM Action REST API to interact with the
Composite UI Module. An Integrated Component which is not aware of any ICMM API may
only interact with the Composite UI Modules through the JavaScript API.

Please note that in this case Composite UI Module and Integrated Component must reside
in the same scope, e.g. the same web page or the same web browser window (or frame).

An important prerequisite for communicating via the optional Action API is the ability of the
Composite UI Module to accept and answer incoming requests sent by a web server. In
principle, there exist two techniques for realising this kind of server induced
communication with HTML/JavaScript based web clients: WebSockets and Server-Sent
Events (SSE). While WebSockets natively support bidirectional communication through a
two-way communication channel SSE connections can only push data from the web server
to the client. However, there exist client- and server-side frameworks like the Atmosphere
Framework5 which provide transparent bidirectional client-server communication
regardless of the underlying transport technique. Even fallback transport like long-polling
can be enabled if the client cannot accept incoming requests at all. In any case,
bidirectional communication between the ICMM and CRISMA Federates is a key
requirement for event notifications (Event API) and action requests (Action API). Therefore
also this requirement applies to Composite UI Modules:

As any other Federate, Composite UI Modules shall support bidirectional
communication with the ICMM. Specifically, Composite UI Modules must be

5 https://github.com/Atmosphere/atmosphere

https://github.com/Atmosphere/atmosphere

28.2.2014 | 62

http://www.crismaproject.eu

able to receive action requests or event notifications dispatched by the ICMM.
Thereby, appropriate transport techniques like WebSockets, Server-sent
Events or long-polling shall be supported by a Composite UI Module.

It is important to note that the ICMM Action API is a generic API for executing arbitrary
actions in the context of the ICMM and each action has to be implemented for each
Composite UI Module communication. Moreover, the approach of action delegation though
the ICMM is considered as workaround when no JavaScript Communication with
Composite UI Modules is possible.

The ICMM Action API can also be used in conjunction with the Event Delegation API to
forward action requests to Composite UI Modules. The Event Delegation API is realised by
the Publish/Subscribe Context Broker Infrastructure Building Block. The Publish/Subscribe
Context Broker is used by the ICMM to delegate events to CRISMA Federates. Thereby, a
CRISMA Federate can be notified once a new CCIM entity of a specific type is created,
deleted or updated in the respective ICMM repository. However, the Publish/Subscribe
Context Broker can also be triggered by the Action API to delegate action requests to
respective Federates.

Another general rule for Federates that has to be slightly extended when applied to
Composite UI Modules is the rule for self-describing components:

A Composite UI Module has to provide a self-description that informs about
its capabilities. Specifically, this self-description has to be provided as JSON-
encoded CCIM and has to contain general descriptive and technical meta-
information as well as a description of the Composite UI Modules’ JavaScript
API.

Having formulated those basic rules for the realization and behaviour of Composite UI
Modules we can now discuss how Composite UI Modules can be embedded or composed
into whole CRISMA Applications. Ideally, the GUI of a CRISMA Application is composed
entirely of Composite UI Modules. However, the GUI integration approach of the CRISMA
Framework Architecture takes also into account that a CRISMA Application may be based
upon existing non-CRISMA-aware GUIs and possibly also a mixture of Composite UI
Modules and existing GUIs. Therefore the concepts and Building Blocks, respectively, of
the UI Integration and UI Mashup Platform were introduced.

The UI Integration Platform is a client-side component for displaying Composite UI
Modules. A technical requirement and basic rule for this UI Integration Platform is:

The UI Integration Platform must be able to render and execute Composite UI
Modules. Thus, it must support HTML5, CSS3 and JavaScript.

28.2.2014 | 63

http://www.crismaproject.eu

Figure 42: UI Integration Platform Basic Overview.

Technically, this basic requirement is met by most modern web browsers as they
implement the respective rendering and execution engines (Figure 42).

In consequence, the GUI of a CRISMA Application may be realized as browser-based rich
internet application (RIA). Nevertheless, additional requirements on the UI Integration
Platform arise when Composite UI Modules shall be able to interact with other types of
existing GUIs or even be embedded into existing GUIs. Before going further into detail,
additional aspects when building RIAs have to be considered first.

Those are the aspects of modularity and composability. Composite UI Modules are self-
contained and modular by itself. As mentioned before different Composite UI Modules
must possibly be composed to form one whole application.

Although there are several techniques and frameworks for building modularized RIAs, an
overall concept and a separate Building Block that seamlessly fits into the CRISMA
Framework Architecture had to be defined – the UI Mashup Platform. Basically, the UI
Mashup Platform is a server-side layout container and execution environment for
interactively composing (mashing up) HTML widgets (Figure 43).

28.2.2014 | 64

http://www.crismaproject.eu

Figure 43: UI Mashup Platform Basic Overview.

The UI Mashup Platform provides auxiliary functions exposed as JavaScript APIs, further
one referred to as Mashup APIs. Among others, this Mashup APIs can be consumed by
widgets to leverage communication with widgets among each other or with the platform
itself. Following the concept of CRISMA-aware (federated) Components that are able to
interact with the CRISMA Middleware Infrastructure (ICMM) through its RESTful API we
introduce the concept of “Mashable” Composite UI Modules that are aware of the Mashup
JavaScript APIs.

A Mashable Composite UI Modules must be able to interact with the UI
Mashup Platform or other Mashable Composite UI Modules through the
Mashup JavaScript APIs which are provided by the UI Mashup Platform.

Likewise, the general rule for the UI Mashup Platform is:

The UI Mashup Platform shall support the interactive composition of
Mashable Composite UI Modules and Integrated Widgets to rich internet
applications.

Interactively means, that a graphical designer tool for creating the overall application
layout and for connecting (“wiring”) widgets should be provided by the UI Mashup
Platform. Otherwise there would be no real benefit compared to an ordinary RIA
framework.

Mashable Composite UI Modules shall also inform the UI Mashup Platform about their
composability with other widgets. This rule is already covered by the general rule of self-
description. However, the format of the self-description (capabilities) expected by a

28.2.2014 | 65

http://www.crismaproject.eu

particular UI Mashup Platform (e.g. XML Widget Description Language6, portlet.xml, etc.)
may be different from the capabilities JSON document provided by an ordinary Composite
UI Module. Also the interaction between widgets may have to be realized with help of UI
Mashup Platform specific methods instead of the JavaScript API and the ICMM Action
API. These are potential conflicts; therefore the distinction between Composite UI Modules
and Mashable Composite UI Modules and their relationships to the UI Integration and the
UI Mashup Platform respectively is an important aspect to be considered.

While a Composite UI Module may exist independently of a particular UI Integration
Platform (e.g. not bound to a specific web browser or web server), a Mashable Composite
UI Module is always depended on a certain UI Mashup Platform (e.g. a portal server like
Liferay or an actual widget mashup platform like Wirecloud).

The CRISMA Framework intends to deliver generic and composable Building Blocks.
However, it is not guaranteed that every CRISMA Application will use the UI Mashup
Platform Building Block or a specific implementation of this Building Block. Therefore, the
following rule is introduced:

Mashable Composite UI Module should be based upon Composite UI Modules
which can be used independently of a particular UI Mashup Platform in a
CRISMA Application.

In consequence, a Mashable Composite UI Module should be implemented first as (non-
mashable) Composite UI Module and then wrapped into a Mashable Composite UI Module
(Figure 44). How this wrapping is performed depends on the particular UI Mashup Platform
Implementation. The UI Mashup Platform Implementation of the Implementation
Architecture of the CRISMA Framework is the Wirecloud Platform. In principle,
functionalities required by the enclosing UI Mashup Platform for Mashable Composite UI
Modules, e.g. for being able to connect (wiring) widgets, should be mapped to the
JavaScript API of the Composite UI Module.

Communication and Interaction between Mashable Composite UI Modules
among each other and between the UI Mashup Platform should be based
upon functions exposed by the JavaScript API of wrapped Composite UI
Modules.

6 http://conwet.fi.upm.es/docs/display/wirecloud/XML+Widget+Description+Language

http://conwet.fi.upm.es/docs/display/wirecloud/XML+Widget+Description+Language

28.2.2014 | 66

http://www.crismaproject.eu

Figure 44: Wrapping of Composite UI Modules into Mashable Composite UI Modules.

Figure 45 brings the concepts of the UI Integration and the UI Mashup Platform into
relation to the general terminology of the CRISMA Framework Architecture (section 3.7).

Interestingly, the UI Mashup Platform may also be used to mash-up Composite UI
Modules with other types of widgets. Following the definition of Integrated Components
which are not CRISMA-aware but can be integrated into a CRISMA Application, we call
such widgets Integrated Widgets.

It is important to note, that the Mashup JavaScript API is by no means a replacement of
the RESTful ICMM API but an optional extension that leverages interactive composability
(shown also in Figure 44). Mashable Composite UI Modules are by definition CRISMA
Federates and as a matter of course all rules and restrictions (see chapter 5.4.2)
especially regarding the exchange of CCIM with the ICMM, apply also to Composite UI
Modules.

28.2.2014 | 67

http://www.crismaproject.eu

Figure 45: UI Integration Terminology.

Also notably in Figure 45 is, that the realization relationships between UI Integration
Platform and UI Mashup Platform, respectively, to the Integration and User Interaction
Building Blocks are shown greyed out to highlight a weak relationship. Whether the UI
Integration Platform or the UI Mashup Platform have to be realized as Building Block and
thus as CRISMA Federates depends on the design of a concrete Application Architecture.

An Application Architecture that defines one central GUI which is based on the UI Mashup
Platform and the widgets contained therein does not necessarily need a sophisticated
federated UI Integration Platform. Since the UI application logic is already covered by the
mashed up RIA, a simple web browser will be able to play the role of the UI Integration
Platform.

In the opposite case, when a Composite UI Module shall be integrated into an existing
application, the UI Integration Platform should be able to support interaction and
communication between the existing application and the Composite UI Module. Preferably
via the Composite UI Module’s JavaScript API as defined previously (Figure 46).

28.2.2014 | 68

http://www.crismaproject.eu

Figure 46: UI Integration Platform interacting with Composite UI Modules.

Furthermore, when several Composite UI Modules shall be integrated into an existing
application the UI Mashup Platform should be used to assemble them into one RIA.
Consequently there are several different possibilities for UI Integration and Interaction
(Figure 47).

28.2.2014 | 69

http://www.crismaproject.eu

Figure 47: UI Integration and Interaction Possibilities.

Another important topic that has already been mentioned but not yet been considered in
detail is the fact that web applications should be optimised for responsiveness. Thus, load
times, server communication, complex processing of data, etc. should be kept at a
minimum. Some CRISMA Building Blocks realised as Composite UI Modules may
however require complex business logic. Especially Building Blocks dealing with World
State Transition and Simulation Model execution possibly need to transfer and process
large amounts of data and support fault tolerant and recoverable transactions.

Thus, pure web applications are not suited for demanding and long-running processes like
managing Transitions and starting and monitoring model executions. The business logic
for such processes should therefore be executed by a server-side component and
exposed via dedicated APIs.

28.2.2014 | 70

http://www.crismaproject.eu

The business logic of Composite UI Modules that need to perform demanding
and long-running processes should be encapsulated in a dedicated server-
side component.

There are two possibilities for realising such a server-side component. The first possibility
has already been presented in the context of UI Module communication through action
delegation (Figure 41). It is based on the ICMM Action API. The Action API is a generic
extension point of the ICMM to execute arbitrary actions in the context of the ICMM. Being
a core API of the ICMM the Action API is rather generic and basically designed to support
arbitrary asynchronous tasks.

Figure 48: Composite UI Modules Server-Side Business Logic.

If a more fine grained service interface is needed, the server-side component should be
realised by a dedicated RESTful Web Service. Of course, this server-side component
should also follow the rules for Building Block Implementations and RESTful APIs. Apart
from that, no further rules or guideless are given since the realisation of this component
depends on the business logic of the respective Building Block.

In conclusion, plug-in interfaces and open standards based (web) service interfaces are
the most suitable means to support integration of CRISMA functionality in legacy GUI
applications across hardware and software-boundaries. For newly developed user
interfaces, Mashup Interfaces are adequate, as they allow to reuse widgets and to

28.2.2014 | 71

http://www.crismaproject.eu

combine individual user interfaces in order to support varying application contexts in the
CRISMA pilot sites.

Furthermore, the following recommendations regarding user interfaces apply for the
implementation of functional Building Blocks and the integration of legacy applications with
GUIs: Although the GUI of a CRISMA Building Block should be realised by Composite UI
Modules, this might not always be possible depending on the Software Component used
to implement the functional Building Block. However, an existing Software Component
should be wrapped into a Composite UI Module if technologically feasible. CRISMA
Building Blocks that cannot be wrapped into a Composite UI Module due to technological
barriers as they are based on existing software should provide a plug-in-interface or any
other means to integrate generic Composite UI Modules provided by other Building Blocks.

3.13. Data integration approach

The preferred method for direct data transfer between Federates (see section 3.11) is
based upon open standards and services such as those of OGC (see section 4.4).
Therefore, the CRISMA Framework must provide respective Integration Building Blocks
that leverage standards based access to a wide variety of different data sources.

Furthermore, besides the mere access to data the CRISMA Framework has also to
support mechanisms that leverage a harmonisation of different data models. However, as
observed in section 3.6, the transformation of disparate data models into one federation-
wide data model is unrealistic due to the diversity of formats and information schemas
used in legacy systems. Instead, the data integration approach followed in CRISMA is
based on open standards, lateral coupling as introduced by the DIESIS project (Rome,
2009) and Meta-Information as described by (Denzer, 2003). The lateral coupling
approach relies on re-usable coupling solutions (data adapters) that ensure syntactic and
semantic interoperability of the data exchanged between Federates. As the name implies
data providers and data consumers are coupled pair wise by data adapters. Data
consumer and producers may be represented by CRISMA Federates or arbitrary data
sources like services, files, data bases. Meta-information which is represented by Control
and Communication Information in CRISMA context comes into play when the input as
well as the output formats of producers and consumers is syntactically and semantically
described. The same applies to data adapters that mediate between different formats.

28.2.2014 | 72

http://www.crismaproject.eu

Figure 49: Data Integration Approach.

According to Figure 49 we can also distinguish between adapted and non-adapted I/O.
Many Federates will be able to interpret data provided in several standardised formats with
the consequence that no adapter is needed when the data of the producer (e.g. an OGC
Web Map Service) is natively understood by the consumer (e.g. an OGC Web Map Client).
To foster interoperability between Federates the CRISMA Framework features a common
Control and Communication Information Repository of data formats and adapters shared
among all CRISMA Federations. This repository can store shared data type definitions and
information about the adapters. Each CRISMA Federation contributes to the shared
repository. Data Formats (structure and syntax) can be described according to a widely
adopted standard e.g. XML-Schema, IDL and JSON. Furthermore, a set of default data
types for Objects of Interest (OOIs, see section 3.18) like date, geographic location etc. as
well as generic types representing concepts relevant for crisis management is defined
whereby each Federation may add specific types as extension of default types.

As said before, the most relevant standards to foster interoperability within a CRISMA
Federation are those of the OGC, namely Web Feature Service (WFS and WFS-T primary
for vector data), Web Map Service (WMS, for map images), Web Coverage Service (WCS,
for raster data) and Sensor Observation Service (SOS and SOS-T, for time series of data).
The usage of those OGC services offers not only a standard data encoding and transport
mechanism but even more important a standardized method of data description by
providing meta-information.

If data cannot be encoded matching the OGC rules the usage of the WebDAV (Web-based
Distributed Authoring and Versioning) standard is foreseen. WebDAV is preferred over the
File Transfer Protocol (FTP) because of security considerations (encrypted data transfer
can be enabled by default) and for practical reasons because of easier access over
firewalls. Another point is that WebDAV can offer data versioning, which is useful to
reproduce results later on. Unlike OGC standards WebDAV allows any file format to be
used. If possible file formats including meta-information should be used, e.g. the Network
Common Data Format (NetCDF).

28.2.2014 | 73

http://www.crismaproject.eu

3.14. Simulation model integration approach

One major aspect of CRISMA is the usage of Simulation Models in order to enable users
to assess the evolution of events in case of a crisis and thus to support decision making to
mitigate direct and indirect consequences. Hence the CRISMA Framework allows the
integration of newly developed Simulation Models as well as already existing ones.
However, especially due to the heterogeneity of existing Simulation Models CRISMA has
to ensure that they can be integrated in a standardized way and ultimately become a
CRISMA Federate (see section 3.6.4). External accessibility is a requirement for
components participating in a CRISMA Federation as CRISMA aims at offering software
the Software as a Service (SaaS) way, more specifically the Model as a Service (MaaS)
way for Simulation Model integration. Moreover CRISMA recommends the usage of well-
known and widely adapted standards to handle data flow between Federates (see section
3.7). Ultimately due to the variety of different Simulation Models, their various runtime
environments and other boundary conditions a standard to be used within CRISMA has to
be versatile and also needs to fulfil a certain set of requirements common to Simulation
Models:

 Any Simulation Model shall be able to provide a human readable description of
its purpose.

 Any Simulation Model shall be able to provide information about the supported,
required and optional parameters that have to be available in order to perform a
new model run. This includes information how this data can be provided, e.g. if it
can be transmitted prior to the actual execution request and where it shall
reside, if it shall be part of the actual execution request, if the actual execution
request may contain links to the actual data. Additionally it must state what
formats and encodings are supported for each parameter as well as being able
to provide validity ranges if applicable.

 Any model shall be able to provide information about its result data. This
includes information on supported data formats and means for retrieving the
data (Example: the result of a run is map raster data and can be fetched at a
specific WMS using a certain URL).

 Any model shall be able to provide information about the status of a specific
execution. Requesters may be informed at any time whether an execution is
 Running
 Failed
 Finished

 Any model shall be able to either indicate the expected execution time for a
certain run and the remaining execution time or at least provide an indication of
the actual status. This requirement is directly dependent on the capacity of the
model to provide this kind of information.

 Any model shall be able to provide detailed error messages e.g. in case of a
failed execution

The OGC Web Processing Service (WPS) standard is perfectly suited for these needs. It
enables the web-based execution of processes that can be any algorithm, calculation or
model operating.

The WPS provides rules for standardizing the way how the processes and their inputs and
outputs are described, how a client can request the execution of the processes and how
the outputs of the process are delivered. The WPS defines a standardized interface to
configure, initiate, manage and access the results of services. It facilities the publishing,

28.2.2014 | 74

http://www.crismaproject.eu

the discovery of and binding to these processes by clients. The WPS supports
computationally expensive models with the asynchronous execution mode. The
processing time of the models is an important point of the models integration approach. In
CRISMA, several models require considerable computation time. For example, time
processing of the coastal submersion model (TELAMAC-2D) exceeds 5 hours.

In addition, the WPS provides several functions:

 encode requests for process execution
 encode responses from process execution
 embed data and metadata in process execution inputs/outputs
 reference web-accessible data inputs/outputs
 return process status information
 return processing errors
 request storage of process outputs
 assure the interoperability of the process

The WPS also supports Simulation Model chaining which is needed for the calculation of
cascading effects. More information on how the conceptual model for considering
cascading effects is realised by the Simulation Model Integration Approach is provided in
section 3.19.

Although a WPS process is normally an atomic function, it can be integrated into a chain of
different WPS processes. Therefore, a Simulation Model chain can be easily wrapped into
a WPS and the outputs of one Simulation Model can be used as input of another
Simulation Model as shown in Figure 50.

Figure 50: WPS Process Chaining.

In CRISMA, Simulation Model chains will be controlled by a specific WPS that takes care
of the correct orchestration of several single WPS-wrapped Simulation Models. The
chaining of Simulation Models is implemented using workflow management techniques.
Workflow management allows combining simple or basic Simulation Models into a new
complex Simulation Model providing added value results to the users. This new complex
Simulation Model is also available as a WPS. Of course this kind of chaining does not
prevent the other simple or basic Simulation Models to be accessible as WPS.

28.2.2014 | 75

http://www.crismaproject.eu

Figure 51: Model Chaining in CRISMA.

The approach shown in Figure 24 enables users of CRISMA to access Simulation Model
chains in a uniform way, i.e. they can use model chains like single Simulation Models
using the OGC WPS standard. This way, even external non-CRISMA users may benefit
from a CRISMA outcome.

When Simulation Model Integration is done using the OGC WPS standard the level of
integration is that of Integrated Simulation Models according to section 3.6.5. In order to
fully participate in a CRISMA Federation it is required that any model has to be able to
connect to the CRISMA Middleware Infrastructure (see section 3.4). Hence any Simulation
Model shall on the one hand become an Integrated Simulation Model through adopting the
OGC WPS standard and on the other hand be aware of the ICMM API as well as provide a
standardised RESTful interface that complies with the requirements of tight integration
(see section 3.6.1).

The latter will be achieved by a CRISMA-aware WPS wrapper that translates between
CRISMA Federates and the Integrated Simulation Model. With this approach Simulation
Models integrated in CRISMA will ultimately offer maximal interoperability as they will be

28.2.2014 | 76

http://www.crismaproject.eu

Federated Simulation Models as well as Integrated Simulation Models at the same time.
This way CRISMA models can:

 participate in a CRISMA Federation / Application
 be accessed by ordinary non-CRISMA WPS clients
 be accessed by proprietary clients (e.g. if the model originates from already

existing software)

Figure 52: Federated Model Access Possibilities.

The CRISMA Framework will provide a Model Interaction UI (Simulation Interaction View
Building Block, see section 4.3.12) as a CRISMA Building Block that basically consists of
an embeddable UI according to the GUI integration approach (see section 3.8) that helps
users manage their actual model execution which is part of a simulation run. This UI will
allow users to:

 List the actually available Simulation Models and their properties
 Provide required and optional model input data
 Create single or batch executions
 Get information about their current executions
 Fetch model output data

3.15. Compatibility with legacy systems

The ability to integrate and interoperate with legacy systems and related data, services,
models and user interfaces is one of the primary objectives of the project and thus also of
the CRISMA Framework. These issues are addressed by the CRISMA Framework
Architecture in depth and various approaches for integration on different levels of
interoperability including the integration of CRISMA results in legacy systems and vice
versa have been defined.

28.2.2014 | 77

http://www.crismaproject.eu

Conceptually, the architecture supports two dimensions of system integration: The first
dimension is that of a Federated System (see section (3.10) whereby the legacy system to
be integrated is aware of the CRISMA Framework and in particular the CRISMA
Middleware Infrastructure (ICMM Building Block). Thus it is able to interact directly with
CRISMA Building Blocks and information models (e.g. Core CCIM and its extensions). The
legacy system needs to be adapted to take advantage of the extended crisis management
support functionalities offered by the CRISMA Framework. This tight integration approach
is commonly followed when a CRISMA Application is built around a legacy crisis
management system or the legacy system is enhanced by CRISMA functionality. The
second dimension is that of an Integrated System (see section 3.10.3). This loose and
non-intrusive integration approach leaves the legacy system completely unchanged. This
approach is commonly followed when only parts of the legacy system (data, models, user
interfaces) are used in the overall CRISMA Application.

Apart from the integration dimensions, three general system integration approaches have
been taken into account thoroughly during the specification and design of the CRISMA
Framework Architecture. Those are: (1) integration on data level, (2) integration on
business logic level and (3) integration on user interface level. (Probst, 2010) writes about
those integration approaches:

“In the past decades, software engineering has been changing from building one-piece
monolithic programs to assembling systems from modular and distributed
components. Furthermore, as the number of pre-existing Software Components is
continuously increasing, integration of those components has become an important part of
software engineering. Today, developers and integrators should be enabled to connect
software modules without having to know about other components’ internal
functionality except for well-defined interfaces. Reality, however, most often shows a
different picture: integrating software applications requires large coordination efforts, and
component developers and integrators need a lot of knowledge about how other
components actually work internally. Integrating applications requires a common
understanding of those applications as well as the information they process. Software
systems most often consist of three layers: the data source layer, the business logic
layer, and the user interface layer. Therefore, the integration of software systems can be
performed on three levels:

Integration on the data source level provides a unified view on heterogeneous
data sources.
Integration on the business logic level unifies different implementations of
business logic, each using its own data sources, under a common user
interface.
Integration on the user interface level unifies different user interfaces in one
common system, e.g. a portal or a plugin-based user interface.”

While in fact those different approaches are not mutually exclusive the CRISMA
Framework Architecture pursues each of the three integration approaches to certain extent
supported by different concepts and Building Blocks. Figure 53 gives an overview on the
levels of system integration supported by the architecture and the related Building Blocks.
The architecture defines furthermore respective concepts for Data Integration (section
3.13), Simulation Model Integration (section 3.14) and GUI Integration (section 3.12) which
rely on well defined standards and APIs to reach compatibility with legacy systems.
Thereby it must be noted that the Simulation Model Integration Approach as well as the

28.2.2014 | 78

http://www.crismaproject.eu

corresponding Building Blocks are suitable for the integration of arbitrary processes, not
only Simulation Models.

Figure 53: Levels of System Integration.

CRISMA Framework Building Blocks are implemented as Software Components (services
and GUI modules) that take advantage of state of the art web technologies and thus can
be integrated seamlessly in existing infrastructures. Figure 54 provides an example on
how Mashable Composite UI Modules can be used to enhance the user interface of a
legacy application. This integration of CRISMA User Interaction Building Blocks into
autonomous graphical user interfaces of legacy systems is a major topic of the GUI
Integration Concept and is explained thoroughly in section 3.12.

28.2.2014 | 79

http://www.crismaproject.eu

Figure 54: Compatibility with Legacy Systems (GUI Integration).

In conclusion, the CRISMA Framework Architecture establishes concepts and approaches
that allow interaction and integration with legacy decision support and crisis management
systems used in crisis management today.

3.16. Transferability

The transferability of the CRISMA Framework and thus the applicability of CRISMA results
in other crisis domains and locations other than the ones addressed in the Pilot
Applications has been a key requirement of the architectural work from the beginning. The
approach to guarantee transferability is already laid down in the project structure as SP3
work is crisis domain and location independent and the actual domain and location context
is added by SP5 by building Pilot Applications.

Several architectural concepts have been established to create a Software Framework that
consists of generic, reusable and extensible Building Blocks which are essentially
independent from domain or location specific aspects. A major concept which must be

28.2.2014 | 80

http://www.crismaproject.eu

mentioned in this context is the Core Control and Communication Model (CCIM) of the
CRISMA Framework (see section 3.6 for more details). Although completely generic and
domain independent the Core CCIM explicitly defines extension points for plugging-in
domain specific information. In each CRISMA Application, those extensions are used to
define concrete Data Slots, Simulation Models, etc. that are only relevant in the scope of
this particular Application.

CRISMA Framework

Infrastructure
Building Blocks

User Interaction
Building Blocks

Integration
Building Blocks

Simulation
Models

Reference
Application
Reference

Application
Reference

Application
Reference

Application

Reference
Application

Pilot
Application

Reference
Application

Pilot
Application

is composed of

is a customisation of

+ Reference Scenario
Business Logic

+ pilot-specific Data, Models,
Business Logic, Customisations
and Extensions

SP3
SP4

SP5

Figure 55: Reference Applications and Pilot Applications.

Furthermore, the implementation of Software Components (realisations of Functional
Building Blocks) of the CRISMA Framework is driven by consolidated and general
functional requirements that are derived from more concrete and domain specific user
requirements. Thus, software provided by SP3 covers most functionality requested by pilot
users without being bound to a particular domain or Pilot Application.

In fact SP3s main activities WP32 Architecture, WP34 (Building Blocks) and WP35
(Framework integration) are focusing on the creation of a general software framework for
Crisis Management Simulation that is also usable by other scenarios and organisations
than those foreseen in the five pilot cases of the CRISMA project.

Besides the mere provision of individual and independent Software Components for
building Crisis Management Simulation Applications, the CRISMA Framework offers also

28.2.2014 | 81

http://www.crismaproject.eu

several pre-integrated Reference Applications. A Reference Application represents the
transferable composition of CRISMA Framework Building Blocks and Simulation Models
(Software Components, respectively) without any pilot-specific logic. As shown in Figure
55 Reference Applications serve as basis for the development of the Pilot Applications.

Updated
Reference
Scenarios

Consolidation
&

Abstraction

Generic
Reference

Applications

Development
&

Integration

SP2 SP3

Pilot
Applications

Adaptation,
Integration &
Development

SP3 & SP5

Building Blocks
&
CRISMA Models

Development

SP3 & SP4

Figure 56: Development of Reference Applications.

Thereby, the main objective of a Reference Application is to provide a customizable,
extensible and transferable implementation of a Reference Scenario (D25.1, 2014).

As described previously, the Reference Application can then be customised, extended and
adapted to create a more specific CRISMA Application by adding specific data models,
location context, etc. Figure 56 shows the general development process of Reference
Applications and the involved CRISMA SPs.

3.17. Training

The support of Crisis Management Training is one of the main CRISMA targets.
Preparedness action is carried out within the context of disaster risk management and
aims to build the capacities needed to efficiently manage all types of emergencies and

28.2.2014 | 82

http://www.crismaproject.eu

achieve orderly transitions from response to recovery. The Crisis Operator is normally the
first person to become aware of a developing emergency situation. The actions of the
operator can often make the difference between the inconvenience of managing a minor
incident or managing a full scale emergency.

Operator competency is based on knowledge, skills and experience. It is crucial that Crisis
operators have the proper training to do their jobs effectively. Operator mistakes can be
both costly and potentially life threatening. Therefore, training and field exercises are a
major part of Preparedness activities. As described in section 3.1.1, CRISMA focuses on
Crisis Management Simulations that support specific decision support objectives. Thereby,
Crisis Management Simulation Analysis concepts have been established (see section
3.1.3) that allow decision makers to judge which Simulated Crisis Management Scenario
performs best according to specific Criteria.

Figure 57: Mapping Training to the World State Transition Concept.

In case of a training-related Simulation Case this judgment has already been by taken by a
Training Operator for one or more concrete Crisis Management Simulations. Thereby, a
Simulation Case defines the outline of the overall training exercise, that is, the actions
(Transition Points) that can be performed by a trainee. A concrete training session then
corresponds to an instance of the Simulation Case, thus a Crisis Management Simulation.

A training operator may define an Optimal Crisis Management Scenario leading to an
optimal level of satisfaction for a given Simulation Objective (shown in green in Figure 57).
The training sessions of a trainee can be recorded as World States and Transitions
(shown in blue in Figure 57), thus leading to alternate Crisis Management Scenarios.
Indicator based comparison as well as Multi Criteria Analysis can then be used to

28.2.2014 | 83

http://www.crismaproject.eu

(vertically) compare the scenarios of the trainee with the optimal scenario defined by the
training operator.

In fact, judging the performance in a training exercise does not differ from regular Crisis
Management Simulation Analysis except for the fact that an “optimal” solution is known
beforehand and can be used as a reference. Besides the relation to the Conceptual
Business Logic, the support of Crisis Management Training in CRISMA encompasses
several other aspects which are briefly explained in the following.

A system supporting Crisis Management Training can be perceived as a CRISMA
Federation (as described in section 3.2 and 3.6.1) which is fully aware of the CRISMA
services. It internally hosts CRISMA Composite UI Modules. A Training Federation
enables a trainee to learn emergency management in a virtual environment. The trainee-
user is a control room operator or an on-scene commander. The (optional) coach-user is a
trainer that is able to add additional incidents or change incident parameters during a
training session.

The main features of a Training Federation are:

 Plan custom training scenario: using an easy-to-use planning tool and a BPM
workflow/rule correlation engine, trainers plan incident scenarios. The trainer
can define the following:
 The roles involved (stakeholders)
 The procedures by building a hierarchical task-based scenario
 The resources involved in the training scenario

 Execute training scenarios manually on demand or based on a predefined
schedule.

 The trainee is able to evaluate and monitor the situation using a Geographical
Information System (GIS).

 The trainee can interact with field trainees via two-way communication methods
such as radio and telephony.

 Use the CRISMA Framework in order to incorporate simulation in training
scenarios.

 Debrief of a training session with ability to reconstruct multimedia resources,
user actions and simulation usage, generate reports and provide training scores.

Integration of the CRISMA Infrastructure Building Blocks and the Training Federation is
performed in the following way:

 Integrate predefined simulations results with real-time incident management by
using the Simulation Result Catalogue module.

 As part of the incident management process use the CRISMA Run simulation UI
to collect user input, fetch the relevant simulations results and visualize them on
the GIS map that supports the CRISMA simulation result standards such as
OGC.

 Common operating picture: User sees a hybrid view of the current state
integrated with simulation results. E.g. the expected fire direction along with the
amount of fire brigade in the area.

 User takes decisions based on the presented information. E.g. direct more fire
brigade forces to the relevant high risk areas.

 User verifies the situation in real time using map overlays of real time sensors
information and live/playback video.

28.2.2014 | 84

http://www.crismaproject.eu

3.18. Resource management

The term resource in this context is used for the information representing an entity that can
be used to potentially affect the operations and resolving of serious hazard incidents.
Crisis managers use resources in the context of response actions including aspects of
logistics, deployment, evacuation and monitoring. As shown in Figure 58, in a crisis
simulation, crisis managers deal with the information representing incident response
resources (such as ambulances and paramedics), incident affected entities (such as
patients), hazard related properties (such as effected radius) and environmental properties
(such as weather conditions, roads and traffic). As part of CRISMA terminology these
resources are called Object of Interest and in short OOIs.

Crisis Manager

Incident respond
Resources

Hazard related
Properties

Environmental
Properties

Incident affected
Entities

Figure 58: Relevant OOIs in Crisis Management.

Managing this kind of information encompasses:

 Identify the relevant OOI types.
 Initialize instances of these types.
 Associate instances to a specific simulation exercise or training session.
 Execute commands (such as dispatch resources).
 Let these instances develop their state over time (according to the resource

management models).
 Capture snapshots of the resources in a World State format.
 Visualize the status of these instances (over time, final, on a map, summary, …)
 Enable analysis of simulation sessions by comparing World States and visualize

Indicators and measurements.

The OOI Resource Management Domain Model is used to define the entities (OOI
Instances) which are manipulated by the user or automatically by some resource
management mathematical model. It contains a flat list of properties, each constructed
from one of the following types: Number, Text, Date and Time and Geometry (Geo data).
The relation between the different entities is shown in Figure 59.

28.2.2014 | 85

http://www.crismaproject.eu

Figure 59: OOI Types and Instances Relations.

By defining an OOI Type an initial type including the available properties of a resource is
set. According to the definition of an OOI (feature representation), a distinction between
two generic property types can be made (shared properties and unique properties). Figure
60 provides an overview on OOI Types Class Hierarchy.

Figure 60: Overview of generic OOI Types Class Hierarchy.

All OOI Types share the following properties:

 Type Identifier – Object kind definition. Identifies this object type so it is unique in a
Federation of Federates.

 Name – Object short description text.
 Description - Object long description text.
 Base type – The base object type. Indicate inheritance of all base type properties.
 Geometry – Used to express the spatial component of the OOI.
 Symbol – Resource identifier for symbol display. Usually raster or vector image file.
 Properties – Collection of properties that characterise this OOI Type.

28.2.2014 | 86

http://www.crismaproject.eu

All OOI Type Properties share the following properties:

 Type Identifier – Object kind definition.
 Name – Property short description text.
 Description - Property long description text.
 Associated OOI Type – The OOI Type that contains this type as part of its

Properties collections.

By defining an OOI Instance an instance of a type including the available properties of a
resource are set. Figure 61 provides an overview on the OOI Instances Class Hierarchy.

Figure 61: Overview of OOI Instances Class Hierarchy.

All OOI Instances share the following properties:

 Identifier – Object instance identifier. Identifies this object so it is unique in a
Federation of Federates.

 OOI Type – Object kind definition.
 Name – Object short description text.
 Description - Object long description text.

All OOI Instance Properties share the following properties:

 OOI Identifier – The OOI instance that this property is associated with.
 OOI Type Property – The property type that this property represents.
 Property Value - a primitive that represents the actual value of this property.
 World State – The point in time, snapshot, that this property is related to. A specific

OOI Instance and property combination can be related to a single World State at a
specific point in time. World States represent the evolvement of OOI properties data
across time.

All OOI Geometry Properties shares the following properties:

 Identifier – Object instance identifier.
 World State – The point in time, snapshot, that this property is related to.

28.2.2014 | 87

http://www.crismaproject.eu

 Geometry – Represents a geographical representation of the OOI Instance. The
geometry data type enables the representation of geometric shapes. The supported
OOI Geometry Types are shown in Figure 62 below:

Type Examples
Point POINT (30 10)

LineString LINESTRING (30 10, 10 30, 40 40)

Polygon POLYGON ((30 10, 40 40, 20 40,
10 20, 30 10))

POLYGON ((35 10, 45 45, 15 40,
10 20, 35 10),

(20 30, 35 35, 30 20, 20 30))

Figure 62: Supported OOI Geometry Types.

The main aim of the Resource Management Concept is to provide a unified OOI World
State storage and management system that enables user interface components
(Mashable Composite UI Modules) to create the initial World State and to record and
encode resource management related user commands. Then a Resource Management
Model can decode this user input and the initial World State and execute the commands
while producing new time stamped World States.

Consumers such as UI views visualize the World State to the user. Other analysis
components can inspect the World State evolvements and provide additional insights.

Figure 63 shows a simplified example of an architecture of a resource management
related CRISMA Application that uses CRISMA Infrastructure Building Blocks, such as the
Pub/Sub Context Broker for publishing events between components and the ICMM in
order to register the simulation World State and enable external tools to access and
investigate the resource management simulation results. Please note, that the example
architecture is further elaborated and detailed in the context of the specification and
development of the respective CRISMA Application.

http://en.wikipedia.org/wiki/Point_(geometry)
http://en.wikipedia.org/wiki/File:SFA_Point.svg
http://en.wikipedia.org/wiki/Line_segment
http://en.wikipedia.org/wiki/File:SFA_LineString.svg
http://en.wikipedia.org/wiki/Polygon
http://en.wikipedia.org/wiki/File:SFA_Polygon.svg
http://en.wikipedia.org/wiki/File:SFA_Polygon_with_hole.svg

28.2.2014 | 88

http://www.crismaproject.eu

Figure 63: Architecture of a Resource Management Application (simplified).

3.19. Relation to models for multi-sectoral consequences

The CRISMA Framework Architecture has to support the development of Models for Multi-
Sectoral Consequences (SP4 Models) taking place in SP4 as well as their integration into
the CRISMA Framework. To achieve this, the architectural concepts and Building Blocks
of SP3 have to be put in relation to the concepts and models developed in SP4. While the
general relationship between SP3 and SP4 has already been described in the introduction
to this document (section 1.6), this section intends to give further details and point to
relevant documents that explain the SP4 point of view.

From the (Simulation) Model Integration perspective (section 3.14) of the CRISMA
Framework Architecture Software Components (“models” and “tools”) developed in SP4
are generally considered as Federated Simulation Models and thus have to be
implemented and integrated according to a WPS-based approach. In this regard, both
conceptual and technical compliance of SP4 Software Components with the SP3 part of
the CRISMA Framework is ensured. The aforementioned integration approach considers
also methods for chaining of different models thus it perfectly fits to the realisation of the
Cascade Events and Time-Dependent Vulnerability concepts of SP4.

When talking about models, it is important to point out the difference between Simulation
Models with the meaning of hazard models, impact models, etc. that are specific to a
particular CRISMA Application (see section 3.3) and Models for Multi-Sectoral
Consequences that are an integral part of the CRISMA Framework.

Although a distinction between those two types of models seems only relevant on
conceptual level (technically, both are exposed by WPS), it is important to highlight the fact
that dedicated User Interaction Building Blocks for Models for Multi-Sectoral
Consequences are provided by SP3.

28.2.2014 | 89

http://www.crismaproject.eu

Theoretically, the Simulation Interaction View (see section 4.3.12) which provides,
amongst others, functionalities to configure and monitor a simulation run could also be
used as client for models provided by SP4. Due to its genericity and adaptability the
Simulation Interaction View perfectly fits as client for (domain and application specific)
Simulation Models. Genericity is imposed by the requirement for transferability of CRISMA
Framework (section 3.16). Therefore a certain amount of configuration and implementation
effort is required to provide an application-specific customisation of this Building Block that
is tailored to the needs of a particular Simulation Model and CRISMA Application,
respectively.

In contrast, Models for Multi-Sectoral Consequences are by definition also transferable
results that shall support Crisis Management Simulations as envisaged by the CRISMA
Framework. Thus, SP3 provides dedicated but still domain and application independent
User Interaction Building Blocks for those models. Therefore, the relation of Models for
Multi-Sectoral Consequences to the concepts of the CRISMA Framework Architecture as
well as to relevant Building Blocks of SP3 is explained in subsequent sections.

3.19.1. Crisis management strategies and planned action

Task 44.3 “Simulation model and virtual application for crisis management strategies and
planned action” concentrates on the development of a conceptual model for Resource
Management. As has been explained in CRISMA D41.1 (D41.1, 2013), resources are
various assets that can be actively used by a crisis manager. The crisis manager can take
advantage of resources for the purpose of danger defence, crisis alleviation, civil
protection, etc., as long as adequate information about these resources is available.
Resources include materials (e.g. sandbags, medical products), personnel (e.g. fire
brigades), protection infrastructure and facilities (e.g. hospital, shelters), and installations
(e.g. weirs).

The conceptual model for Resource Management specified in (D44.1, 2013) was designed
using agent-based modelling, which includes active agents and passive objects and
enables the comparison of alternative Crisis Management Scenarios, which can be
usefully applied for decision support in resource management. According to (D41.1, 2013)
the conceptual architecture of a decision-making agent can be described as having five
major components:

1. The first is a set of facts representing knowledge about the world that the agent
currently holds. These facts get updated as the agent experiences the world.

2. The second component of the agent is a specification of goals that the agent is
trying to achieve.

3. The third component represents the set of actual goals the agent is currently
trying to achieve - its intentions.

4. The fourth component is a library of plans. Plans are sequences of concrete
actions for achieving the agent goals.

5. The fifth component is a reasoner or interpreter. The role of the reasoner is to
orchestrate the overall behaviour of the agent.

The agent-based Resource Management Simulation Models used in CRISMA Applications
are implemented by SP4 on the basis of an Agent-Oriented Simulation Models Building
Block (section 4.2.1). Additionally, SP3 provides various User Interaction Building Blocks
that realise general conceptual models for Resource Management and thus act as clients
for the Resource Management Simulation Models. Those Building Blocks are:

28.2.2014 | 90

http://www.crismaproject.eu

 Resource Management Tactical Training (section 4.3.8)
 Resource Management Training Dispatch and Monitor View (section 4.3.9)
 Resource Management Training Indicators and Statistics View (section 4.3.10)
 Resource Management Training Simulation Scenario Setup View (section

4.3.11)

In section 3.18, the CRISMA Framework Architecture defines furthermore a concrete
Resource Management Architecture for Objects of Interest (OOI).

3.19.2. Economic impacts and consequences

The conceptual model Economic Impacts and Consequences defined in (D44.1, 2013)
presents the economic impacts assessment approach used as well as the position of the
evaluation application in the overall CRISMA concept, for example the connection to the
CRISMA World States.

The economic evaluation in CRISMA is a multidimensional problem and various aspects
need to be taken into account in the evaluation. Two different types of economic
evaluation models can be distinguished: (1) the economic evaluation at the general level
and (2) the pilot-specific economic evaluation. In WP44, the main focus is on developing
the general evaluation framework to be applied for the economic evaluation of impacts of
preparedness and the consequences of a crisis. It needs to cover the evaluation of
economic damages and losses and the evaluation of mitigation measure options.

The Economic Impacts and Consequences Model of SP4 follows the logic of the
Conceptual Business Logic of the CRISMA Framework Architecture. Thereby, it takes a
World State snapshot, created by Simulation Models, as a static input (called as a
scenario description for the economic evaluation), and calculates the cost of a crisis and/or
the economic impact of different possible mitigation actions. The simulation of economic
parameters is done by the economic evaluation model but all other simulation runs are to
be done by other CRISMA models.

The concept is implemented by two Building Blocks: The Economic Impact Calculation
View (4.3.1), a User Interaction Building Block provided by SP3 and the Economic Impact
Calculation Service, the actual implementation of the model provided by SP4.

3.19.3. Multi-criteria decision analyses

Multi-Criteria Decision Analyses (MCDA) as introduced in (D44.1, 2013) makes it possible
to consider a large number of data (i.e. inputs from several criteria), relations and goals
which are generally present in the decision making process, so that the specific problem
can be studied from multiple angles. Also, decision makers are supported by Crisis
Management Simulation Analyses that suitably combines ICC (Indicators, Criteria and
Cost) according to standard rules.

ICC are automatically determined and appended to the World State, using dedicated
Indicator functions or models, and depend on the GIS information and databases
describing the world as well as on Simulation Control Parameters (SCP).

ICC parameters are essentially used in WSA in order to summarize the World States by
providing some relevant measures that are useful to take decisions. ICC parameters, after
having been selected, generally need a further elaboration with the aim to obtain a

28.2.2014 | 91

http://www.crismaproject.eu

synthetic judgment. This can be made by a Multi-Criteria Analysis, a powerful method that
is able to take into account a large number of information, relations and goals and mostly
the possibility to include intangible effects (e.g. value of people).

Indicators, Criteria and Cost are a central component of the Conceptual Business Logic of
the CRISMA Framework as described in section 3.1. Thus, the MCDA concepts specified
by SP4 perfectly fits into the SP3 architecture. A method proposed in (D44.1) for the
realisation of Multi-Criteria Decision Analyses is based on Ordered Weighted Average
(OWA). It will be used together with Crisis Management Simulation Analyses, which, in
fact, as result of the workflow of a simulation includes cascading effects of WP42 and time
dependent vulnerability of WP43.

Besides its inherent support for MCDA on conceptual level (see section 3.1.3), SP3
defines the Multi Criteria Analysis and Decision Support View (section 4.3.5) and Scenario
Analysis and Comparison View (section 4.3.12) User Interaction Building Blocks for the
definition and execution of alternate decision strategies based on the OWA method and for
the Indicator- and Criteria based visualisation and comparison have to be provided.

3.19.4. Cascade events and time-dependent vulnerability

The term Cascade Effect in CRISMA describes a chain of events affecting each other.
These events can be series or parallel sequences of adverse events generated by one or
more sources, e.g. an earthquake that causes ground motion triggering a landslide in a
given area. CRISMA will enable the end user to determine the related events and possible
cascading effects for each hazard (directly or indirectly) and also to evaluate indirect
effects caused by the incident.

In (D42.1, 2013), a methodology to define the possible scenarios of cascading effects is
introduced while in (D42.2, 2013) a data base and an actual model for cascading effects is
defined. The Conceptual Business Logic of the CRISMA Framework relies on the concept
of World State and Transitions between World States that are driven either by events, by
model outputs and/or by user manipulation. Within this concept, cascading effects are
integrated as sequences of triggered events following an initial ”triggering event” occurring
at a given time and affecting the World State (WS) at that given time.

There are three different concepts that are introduced for the integration of the cascading
effects into the CRISMA Framework:

Cascading Effects Database
The scope of the cascading effects database is to communicate to the system
the possible cascading scenarios that can be developed after the occurrence of
a given event at a given time.
Transition Matrix
The transition matrix is a representation of the conditional probabilities of the
form P(T1|E1), which means the probability of having the triggered event T1
given the occurrence of a triggering event E1.
Time-Dependent Vulnerability Model
A Time-Dependent Vulnerability Model calculates the probable damage
distribution after each event, meaning: given (as input) the hazard intensity and
the inventory of elements at risk, the model calculates as an output, for each
class of the elements at risk, the number of elements that are likely to sustain
the different damage levels considered in the damage scale.

28.2.2014 | 92

http://www.crismaproject.eu

Supporting Cascading Effects implies major technological challenges, since it requires that
two or more Simulation Models will share data and exchange data at run-time, which
includes also updating inventories of elements at risk as envisaged by the Time-
Dependent Vulnerability Model.

According to the Simulation Model Integration Approach defined in this document (section
3.14), the CRISMA Framework supports cascading effects by defining common interfaces
(OGC) and standards that will be supported by all Simulation Models that require
participating in a cascading effect scenario. A Cascade Effects Scenario is realized by a
dedicated WPS which allows executing the distinct (WPS-wrapped) Simulation Models
and mediating between different producers and consumers of model input and output.
Such a WPS model chain is defined by a Path of Analysis that is chosen by the user from
a Transition Matrix. Support for Cascade Effects on the GUI Level is provided by the
Cascade Events Configuration and Interaction View Building Block (4.3.1).

3.20. Access control

The topic of Information System security covers the protection of information from
unprivileged use. Most aspects of information system security like the encryption of
messages sent through communication channels is usually handled on lower layers of the
protocol stack. Due to this, most aspects of information system security are transparent for
the architectural concepts discussed in this section. One exception is the topic of Access
Control mechanisms where usually some type of credentials need to be managed and
used for authentication and authorisation purposes and thus need to be considered on an
architectural level even though established methods, standards and solutions can be used.

In CRISMA we presume that Access Control to resources controlled by specific Federates
and Integrated Components needs to be managed by the very same Federates and
Integrated Components. In that sense the owner of a Federate or Integrated Component is
free to choose any Access Control mechanism that suits the individual security
requirements. From the CRISMA point of view required credentials are only part of the
information needed to gain access to a particular resource (service or data). For this
reason credential information are handled the same way as any other information enabling
the access to the resources of a Federate and thus need to be made available to the
ICMM or provided e.g. by user interaction at the time of the access.

Even though there are no restrictions on conceptual level the CRISMA Framework
Architecture recommends the use of state-of-the-art authentication and authorization
solutions for this purpose7 because it is the general project policy to foster relevant open
standards like: OpenId and OAuth and solutions using these standards are recommended
to be used in CRISMA Applications. See section 4.4.3 for more information.

3.21. Administration

As already described in D23.1 “Scenarios, Requirements and Criteria for Crisis
Management Modelling” (D23.1, 2013), administration and configuration in the scope of
the CRISMA project can be perceived from different perspectives. This section intends to
provide a brief recapitulation of the aforementioned considerations and to discuss their

7 Quite often the users will have authentication and authorization systems capable of Federation and providing the single sign on in
place. If and when this is not the case, the FI-Ware Identity Management generic enabler may provide a good solution to a problem at
hand (see https://forge.fi-ware.eu/plugins/mediawiki/wiki/fiware/index.php/FIWARE.OpenSpecification.Security.IdentityManagement)

https://forge.fi-ware.eu/plugins/mediawiki/wiki/fiware/index.php/FIWARE.OpenSpecification.Security.IdentityManagement

28.2.2014 | 93

http://www.crismaproject.eu

relevance and applicability context of the CRISMA Framework. While in the user
requirements rather specific administration tasks were described from the perspective of
the individual pilots the CRISMA Framework has to concentrate on common administration
tasks and describe them in a more general and crisis domain independent fashion.

As CRISMA doesn’t intend to deliver one monolithic system but a toolbox or framework for
building custom applications, there cannot be only one common approach for the
administration of a CRISMA Application. Instead common administration tasks such as the
administration of deployed service instances, user and policy management, administration
of the information models, etc. can only be performed in relation to a specific building
Block. Those tasks are then usually carried out with the help of administration APIs or
GUIs provided by the Software Components implementing the respective Building Block.
Furthermore, due to the open nature of the CRISMA Framework, where Building Blocks
can be implemented using different approaches, programming languages, libraries and
legacy tools, etc., each featuring possible configuration options and methods, the CRISMA
Framework cannot enforce one harmonised administration interface for all kinds of tasks
and Software Components.

In conclusion, administration is a topic that has to be considered individually on the level of
Building Blocks, or more precisely on the level of the implementation (Software
Component) of a Building Block. Therefore, when applicable, the descriptions of Software
Components (D34.1, 2013) report on the supported administration mechanisms and tools.

28.2.2014 | 94

http://www.crismaproject.eu

4. Realisation
This chapter explains how a number of the concepts defined in chapter 3 are applied to
realise the mission of the CRISMA Framework Architecture defined in chapter 2. Thereby,
it introduces Functional Building Blocks and gives an overview about various standards
that are relevant for their implementation.

Figure 64: Functional Building Blocks Overview.

Figure 64 shows all Functional Building Blocks defined by the CRISMA Framework
Architecture. The following colours are used to distinguish between Building Block

28.2.2014 | 95

http://www.crismaproject.eu

Categories: red stands for Infrastructure, orange for Integration and blue for User
Interaction. New Building Blocks that have been introduced in the second version of the
architecture specification are indicated by a thick outline.

The first Architecture specification (D32.1, 2013) provided comprehensive summaries and
detailed functional specifications of CRISMA Framework Building Blocks as integral part of
the deliverable document. The report on Building Block Implementation (D34.1, 2013) then
introduced a central entry point for up to date description of CRISMA software results
(Software Components): The CRISMA Catalogue.

http://catalogue.crismaproject.eu/

The major advantage of an online catalogue compared to a static document is that the
catalogue always contains the most current information. The CRISMA Catalogue is
continuously updated and therefore keeps up with the progress made in the CRISMA
project.

BB Specification

- Summary
- Related BBs &

Interactions
- Functional

Requirements
- Software

Candidates

CRISMA
Catalogue

Figure 65: Building Block Specifications in CRISMA Catalogue.

Therefore, this document, the second and last specification of the CRISMA Framework
Architecture, follows the same approach. Nevertheless, to make this deliverable a self
contained document, each Building Block is briefly described in the following sections.
Those condensed Building Block descriptions are sufficient for the understanding of the
role and scope of the Building Block, its main functionalities and its position in the CRISMA
Framework.

Developers of the Building Block Software Components or architects of individual CRISMA
Applications will find the latest detailed functional specification in the CRISMA Catalogue.

https://crisma-cat.ait.ac.at/bb

http://catalogue.crismaproject.eu/
https://crisma-cat.ait.ac.at/bb

28.2.2014 | 96

http://www.crismaproject.eu

As shown in Figure 65, this document provides a brief summary with general information
on the Building Blocks (chapter 4) as well as on their implementation (chapter 5) while the
catalogue additionally contains functional requirements (D31.2, 2013) and information on
relations and interaction (diagrams, etc.).

4.1. Infrastructure building blocks

Infrastructure Building Blocks are working in the background building the core of the
CRISMA Framework. Figure 66 shows all Infrastructure Building Blocks defined in the final
Architecture specification of the CRISMA Framework.

Figure 66: Infrastructure Building Blocks of the CRISMA Framework.

4.1.1. Integrated crisis management middleware

The Integrated Crisis Management Middleware (ICMM) is the Building Block that
represents the Middleware Infrastructure of the CRISMA Framework Architecture (see
section 3.5). It is a generic, distributed and Integrated Crisis Management Middleware. It
relies on concepts of the resource oriented architecture (ROA) and RESTful web services
for the management of arbitrary Control and Communication Information Entities. It
exposes several RPC based HTTP APIs and provides also an event based publish-
subscribe mechanism that allows clients to subscribe to certain properties of a Control and
Communication Information Entity. Thereby, clients may use the publish-subscribe
mechanism e.g. to monitor a simulation execution or to trigger events that influence a
running simulation. In principle, any CRISMA Federate is a client of the ICMM since a
fundamental requirement of CRISMA Federates is to be able to interact with the ICMM.

The ICMM has also to support the common, minimal and generic control and
Communication Information Models (CCIMs) of the Implementation Architecture (chapter
5) and the individual extension of these models provided by the different CRISMA
Application Architectures. Additional functionalities of the ICMM include the ability to define
user dependent-views and catalogues of Control and Communication Information, search
functions, access control and others.

28.2.2014 | 97

http://www.crismaproject.eu

CRISMA Catalogue URL:
https://crisma-cat.ait.ac.at/bb/Integrated-Crisis-Management-Middleware-BB

4.1.2. Object of interest world state repository

The Object of Interest World State Repository (OOI-WSR) is an Infrastructure Building
Block and enables archiving, querying and manipulation of OOI World State data. This
module serves as a Repository service for OOI data that can be consumed or manipulated
by other interaction- or functional building blocks and resource management models.

The OOI-WSR supports the basic functionality to store, query and manipulate OOI data
requested by Resource Management related Building Blocks and Federations. User
Interaction Building Blocks require a quick and simple way to access World State
information in order to visualize it via plain text, GIS display, tabular display and graphs.
Functional BBs that analyse simulation results require direct data access in order to
generate Key Performance Indicators (KPI) and identify trends. CRISMA Models require
access to the initial OOI World State and update the new World State based on simulation
results.

CRISMA Catalogue URL:
https://crisma-cat.ait.ac.at/bb/OOI-World-State-Repository-BB

4.1.3. Publish/subscribe context broker

The Publish/Subscribe (Pub/Sub) Context Broker is an Infrastructure Building Block and a
cross-over between an event broker which accepts events and dispatches them to
subscribers and an access service providing the information on the current state of the
“world”.

It simplifies the design of CRISMA Applications by minimizing the need for direct
interaction between CRISMA Federates (and Building Blocks, respectively) and for hard-
coding such interactions. A Context Broker exposes the (standard) interfaces for retrieval
of the context information, events and other data from the Context or Data/Event
Producers by the Context or Data/Event Consumers. The consumer doesn’t need to know
where the data are located and what the native protocol for their retrieval is. It will just
communicate to the Context Broker through a well-defined interface specifying the data it
needs in a defined way: on request or on subscription basis.

Event handling is also a central concept of the Integrated Crisis Management Middleware
(ICMM). The Publish/Subscribe Context Broker Building Block can be used to
transparently extend the ICMM with event subscription and event delegation functionality.

CRISMA Catalogue URL:
https://crisma-cat.ait.ac.at/bb/Publish-Subscribe-Context-Broker-BB

4.2. Integration building blocks

Integration Building Blocks are used for the integration of data and Simulation Models into
a CRISMA Application. Figure 66 shows all Infrastructure Building Blocks defined in the
final Architecture specification of the CRISMA Framework.

https://crisma-cat.ait.ac.at/bb/Integrated-Crisis-Management-Middleware-BB
https://crisma-cat.ait.ac.at/bb/OOI-World-State-Repository-BB
https://crisma-cat.ait.ac.at/bb/Publish-Subscribe-Context-Broker-BB

28.2.2014 | 98

http://www.crismaproject.eu

Figure 67: Integration Building Blocks of the CRISMA Framework.

Please note that from the architecture’s point of view and explained in section 3.19 in
contrast to Models for Multi-Sectoral Consequences (SP4) application-specific Simulation
Models are not Building Blocks of the CRISMA Framework. However, the components that
are needed for the integration and/or implementation (like the Agent-Oriented Simulation
Models Building Block) of the respective Simulation Models are Building Blocks.

4.2.1. Agent-oriented simulation models

The Agent-Oriented Simulation Models Building Block serves for the development of
dynamic maps – specific (individual-based) Simulation Models composed of interacting
software agents situated in some environment. This Building Block comprises a collection
of generic agents and interaction templates for dynamic map construction, for describing,
defining and specifying points, areas and layers of interest.

It provides furthermore a dynamic-map-based user interface for interaction and
visualization. Thus, it can be considered both an Integration and User Interaction Building
Block.

For decision support in crisis management it is essential to provide good situational
awareness, including data fusion from and dissemination to different sources. Agent-
oriented simulations, e.g. agent-based simulations of the crisis evolving in some
environment, include Simulation Models for the environment and agents' behaviours and
interaction patterns. Simulations serve for developing better understanding of situations
and relationships between processes in the crisis area/aspect of interest.

CRISMA Catalogue URL:
https://crisma-cat.ait.ac.at/bb/Agent-Oriented-Simulation-Models

https://crisma-cat.ait.ac.at/bb/Agent-Oriented-Simulation-Models

28.2.2014 | 99

http://www.crismaproject.eu

4.2.2. Data integration

The Data Integration Building Block is an Infrastructure Building Block that provides
components that can be used to easily offer data in a CRISMA-compliant (OGC open
standard compatible) way so that other Building Blocks may use them for further
processing like viewing or editing. That way data can be made accessible for CRISMA
components. The envisioned technique to make data available is to use standardized
OGC WMS (WMS, 2006), WFS-T (WFS, 2010) and SOS-T (SOS, 2012) services. Future
versions might include WCS (WCS, 2010) and WCPS (WCPS, 2009) also.

CRISMA Catalogue URL:
https://crisma-cat.ait.ac.at/bb/Agent-Oriented-Simulation-Models

4.2.3. Indicators building block

The Indicators Building Blocks supports the execution of Indicator Functions which is a
central concept of the Conceptual Business Logic of CRISMA. According to this, the
Indicators Building Block is used for calculation of World State indicators, key performance
indicators. Indicators are calculated in order to provide feedback regarding the impact of a
specific crisis management action and to allow comparison between different decisions.
Impact in this sense refers to the question of how specific actions affect the current
mission (i.e. material costs, lost productivity, number of death, time needed for
normalization).

CRISMA Catalogue URL:
https://crisma-cat.ait.ac.at/bb/Indicator-Building-Block

4.2.4. Simulation model integration

The Simulation Model Integration Building Block is an Integration Building Block and
provides components that can be used to integrate Simulation Models in a CRISMA
Application. Being aware of the heterogeneity of existing Simulation Models CRISMA has
to ensure that they can be integrated in a well-defined and standardized way and
ultimately become a CRISMA Federate.

The approach to be used is the so called wrapping. The Simulation Model Integration
Building Block provides a piece of software that can be used to make (existing) Simulation
Models CRISMA-aware with as little effort as possible with respect to the specifics of the
different Simulation Models.

The Simulation Model integration approach of the CRISMA Framework Architecture
(section 3.14) is based on OGC Web Processing Service (WPS, 2007). Thereby, also
several Simulation Models may be exposed as one WPS interface thus supporting model
chaining, the simulation of cascading events, etc.). For developers, it is important to note
that the Simulation Model Integration Building Block does not have to expose an API other
than that supported by the OGC WPS standard.

CRISMA Catalogue URL:
https://crisma-cat.ait.ac.at/bb/Simulation-Model-Integration-BB

https://crisma-cat.ait.ac.at/bb/Agent-Oriented-Simulation-Models
https://crisma-cat.ait.ac.at/bb/Indicator-Building-Block
https://crisma-cat.ait.ac.at/bb/Simulation-Model-Integration-BB

28.2.2014 | 100

http://www.crismaproject.eu

4.3. User interaction building blocks

This section describes the User Interaction Building Blocks that provide GUIs allowing
direct interaction of the end user. They constitute the graphical user interface of a CRISMA
Application. Figure 68 shows all User Interaction Building Blocks defined in the final
Architecture specification of the CRISMA Framework.

Figure 68: User Interaction Building Blocks of the CRISMA Framework.

4.3.1. Cascade events configuration and interaction view

The Cascade Events Configuration and Interaction View is a User interaction Building
Block that allows a user to configure and run a Cascade Events and Effects Scenario. The
user can select a triggering event (e.g. an earthquake). On the basis of the selection the
View shows the possible cascade events that are available according to the respective
Transition Matrix that contains the possible Paths of Analysis. In this way, the user may
select a specific chain of events.

CRISMA Catalogue URL:
https://crisma-
cat.ait.ac.at/bb/Cascade%20Events%20Configuration%20and%20Interaction%20View

4.3.2. Economic impact calculation view

This Building Block is an economic evaluation tool to support crisis management and to be
used in the preparedness phase for planning and training purposes. The main objective of
an economic evaluation in CRISMA is:

https://crisma-cat.ait.ac.at/bb/Cascade%20Events%20Configuration%20and%20Interaction%20View
https://crisma-cat.ait.ac.at/bb/Cascade%20Events%20Configuration%20and%20Interaction%20View

28.2.2014 | 101

http://www.crismaproject.eu

 to present the Economic Impacts arising from crises (ex post performance) and
 to assess different mitigation options and their costs/benefits (ex ante planning).

This Building Block‘s purpose is two-fold. Firstly, to collect cost related data (economic
parameters) which are not readily available from the World State description and are
needed in Economic Impact calculation from a user thus serving as Simulation
Configuration Widget. Secondly, its purpose is to show results related to economic impact
analysis.

From an architectural point of view this Building Block is a GUI client invoking the
Economic Impact Calculation Service which is provided by SP4 - Models for Multi-Sectoral
Consequences (Task 4.4.2 - Simulation of Economic Impacts and consequences).

CRISMA Catalogue URL:
https://crisma-cat.ait.ac.at/bb/Economic-Impact-Calculation-View

4.3.3. GIS widget

The GIS Widget is a User Interaction Building Block that enables the visualisation and
manipulation of geo-spatial data. Geospatial data plays a predominant role in all crisis
management related applications, because most if not all information playing a role in
crisis management has a geospatial component.

The GIS Widget must be able to handle data delivered by the Data Integration Building
Block (section 4.2.2) but also other well-known GIS formats. Furthermore, it must be able
to visualise geo-spatial data from multiple sources simultaneously to allow a comparison of
different scenarios (GIS layers). Moreover, the GIS Widget shall not only be able to show
static information like background maps (e.g. road transport infrastructure, topographic
maps) but also dynamic content which is updated according to a progressing Crisis
Management Simulation.

For example, the current location of resources and actors, as well as the status of other
objects of interest should be shown in their spatial context. Additional user interaction
features of the GIS Widget include, for example, the ability to interactively manipulate
objects on the map.

CRISMA Catalogue URL:
https://crisma-cat.ait.ac.at/bb/GIS-Widget-BB

4.3.4. Integrated planning view

The Integrated Planning View is a generic integrated view for the configuration and
inspection of arbitrary Crisis Management Scenarios in planning situations. In (D25.1,
2014) the Integrated Planning View is described as interaction concept that can be tailored
to all use cases related to planning tasks. It is a suitable reuse of common components
and ensures a harmonized usability and user experience in CRISMA applications that are
built on the basis of the Integrated Planning View.

Thereby, the Integrated Planning View is realised by combining several other User
Interaction Building Blocks and their Software Components (Widgets), respectively, to
support application-specific planning use cases.

https://crisma-cat.ait.ac.at/bb/Economic-Impact-Calculation-View
https://crisma-cat.ait.ac.at/bb/GIS-Widget-BB

28.2.2014 | 102

http://www.crismaproject.eu

CRISMA Catalogue URL:
https://crisma-cat.ait.ac.at/bb/Integrated%20Planning%20View

4.3.5. Multi-criteria analysis and decision support view

The Multi Criteria Analysis and Decision Support View is a User Interaction Building Block
that allows performing a ranking of different Crisis Management Scenarios with respect to
specific Criteria. Together with the Scenario Analysis and Comparison View it realises the
concepts for Crisis Management Simulation Analysis as defined by the CRISMA
Framework Architecture (section 3.1.3) and the Model for Decision-Making Assessment
(D44.1, 2013). While the Scenario Analysis and Comparison View only allows a
comparison of Indicators and Criteria for different scenarios, the Multi Criteria Analysis and
Decision Support View adds supplemental decision support functionalities.

The Multi Criteria Analysis and Decision Support View is composed of two different
Widgets: The Decision Strategy Widget and the Decision Ranking Widget. The Decision
Strategy Widget allows defining a weighting strategy for different Criteria to ultimately allow
a ranking of Crisis Management Scenarios on basis of a Multi Criteria Analysis. Thereby, a
static weighting factor can be assigned to each Indicator. This factor specifies the
contribution of the particular Criteria to the overall level of satisfaction of a particular Crisis
Management Scenario. Additionally, a dynamic weighting factor can be specified which
emphasises specific Criteria in relation to the achieved level of satisfaction according to
the OWA (Ordered Weighted Averages) method (refer to D44.1 for more details).

The Decision Ranking Widget allows selecting a previously defined Decision Strategy and
to apply it to a set of Crisis Management Scenarios. Crisis Management Scenarios are
represented by World States (leaf nodes in a World State Tree).

The Decision Support View can therefore be invoked from the Worldstate View (section
4.3.16) by selecting different World States for the comparison. After the Decision Strategy
has been applied, the widget will present a list of World States ordered according to their
level of satisfaction. Further visualisation and comparison of Indicators and Criteria can
then be performed with help of the Scenario Analysis and Comparison View (section
4.3.12).

CRISMA Catalogue URL:
https://crisma-
cat.ait.ac.at/bb/Multi%20Criteria%20Analysis%20and%20Decision%20Support%20View

4.3.6. Object of interest management

The Object of Interest (OOI) Management Building Block is a User Interaction Building
Block that enables the user to view and edit the actual data available for a specific
scenario or simulation.

It enables the system administrator to detect the OOI data type’s properties based on the
OOI Information Models definitions. It also enables the user to monitor and edit a specific
snapshot context (time, user, and workflow).

The OOI Management Building Block has a generic UI for creating and instantiating
different data types. It enables creating a new instance from an existing data type or
editing an existing object instance. Support for new data types can be done by creating a
dedicated plug-in that contains a data adapter and an optional UI data visualization.

https://crisma-cat.ait.ac.at/bb/Integrated%20Planning%20View
https://crisma-cat.ait.ac.at/bb/Multi%20Criteria%20Analysis%20and%20Decision%20Support%20View
https://crisma-cat.ait.ac.at/bb/Multi%20Criteria%20Analysis%20and%20Decision%20Support%20View

28.2.2014 | 103

http://www.crismaproject.eu

CRISMA Catalogue URL:
https://crisma-cat.ait.ac.at/bb/OOI-Management-BB

4.3.7. Preparedness plan

The Preparedness Plan Building Block represents a decision support mechanism which
helps the decision maker to allocate resources for response and recovery tasks in different
scenarios according to pre-planned patterns and up-to-date resource and situation data.

Different phases of an emergency require different kinds of actions. For example, in the
early warning phase the actions can be reservations of resources according to existing
contracts. If the situation further evolves to an actual emergency, the proposed actions
may be e.g. dispatching of the response units or taking actions needed for evacuation of
the affected people. Proposed actions for a certain situation may be provided, for example,
as check lists or communication plans.

CRISMA Catalogue URL:
https://crisma-cat.ait.ac.at/bb/Preparedness%20Plan%20BB

4.3.8. Resource management tactical training

The Resource Management Tactical Training Building Block (RMTT) enables a Trainee to
learn emergency management in a virtual environment. The Trainee-User is a control
room operator or an on-scene commander.

The Trainee-User needs to be trained in his natural environment, which is the command
and control, information management or situational management application.

CRISMA Catalogue URL:
https://crisma-cat.ait.ac.at/bb/Resource-Management-Tactical-Training-BB

4.3.9. resource management training dispatch and monitor view

The Resource Management Training Dispatch and Monitor View is a User Interaction
Building Block realised as Mashable Composite UI Module. It provides a high-level
overview on the simulation's state. Its purpose is to display one s state at a time and allow
the user to distribute resources (ambulances, etc.) among different areas of the crisis
scenario.

Trainee operators are presented with the number of resources available at the current time
in the resource management simulation, incidents and OOI states (depending on whether
the administrator chose not to hide these details from trainees).

The map contains a predefined number of incidents depending. The operator can dispatch
resources to scenes if they are available, or recall already dispatched resources. The
operator is also always informed about the state of each resource at his disposal as well
as the incident evolvement (aggregated patient states, severity of incidents, etc.).

CRISMA Catalogue URL:
https://crisma-cat.ait.ac.at/bb/Resource-Management-Training-Dispatch-and-Monitor-View

https://crisma-cat.ait.ac.at/bb/OOI-Management-BB
https://crisma-cat.ait.ac.at/bb/Preparedness%20Plan%20BB
https://crisma-cat.ait.ac.at/bb/Resource-Management-Tactical-Training-BB
https://crisma-cat.ait.ac.at/bb/Resource-Management-Training-Dispatch-and-Monitor-View

28.2.2014 | 104

http://www.crismaproject.eu

4.3.10. Resource management training indicators and statistics view

The Resource Management Training Indicators and Statistics View Building Block is a
User Interaction Building Block realised as Mashable Composite UI Module. It focuses on
the visual presentation of statistics and Indicators of a given World State in order to
provide a quick overview on the situation and to allow the comparison of two given World
States. The component performs no complex calculations by itself. It only takes data either
directly from the World State, or from other Building Blocks providing such Indicators
unless they are not already part of the World State (e.g. the Indicators Building Block).

The CRISMA Resource Management Concept (section 3.18) demands an easy-to-grasp
representation of the state and the evolution of resources in a given simulation by visually
highlighting the most important details. Resource Management tasks require benefit from
the visualization of resource states at a given point in time as well as the distribution of
available resources within a simulation run. There is no need for complex number
aggregation or arithmetic operations, which allows these visualizations to run on the client
and on demand.

CRISMA Catalogue URL:
https://crisma-cat.ait.ac.at/bb/Resource-Management-Training-Indicators-and-Statistics-
View

4.3.11. Resource management training simulation scenario setup view

The Resource Management Training Simulation Scenario Setup View is a User Interaction
Building Block realised as Mashable Composite UI Module.

It allows the creation and modification of resource management simulations. It allows the
user to create incidents and scenes as well as to create and manage objects of interest
(OOI) instances.

It consists of a map widget displaying the world map as well as layers for items that have
been added through a toolbox widget (consisting of simply buttons) that contains controls
to create OOI instances and other map elements as well as the ability to manage and edit
properties of elements created this way and the scenario itself (name, description).

This is an important view focusing on the creation and management of simulations that are
later used as configurations for initial World States. It allows the definition of simulation
parameters, placement and configuration of object of interest instances, scenario evolution
and other details that form a fully configured simulation for training purposes.

CRISMA Catalogue URL:
https://crisma-cat.ait.ac.at/bb/Resource-Management-Training-Simulation-Scenario-Setup-
View

4.3.12. Scenario analysis and comparison view

The Scenario Analysis and Comparison View visualises Indicator and Criteria data in a
way that users are able to analyse and compare different Simulated Crisis Management
Scenarios and ultimately come to a decision which fits the simulation objective best for a
specific Simulation Case.

https://crisma-cat.ait.ac.at/bb/Resource-Management-Training-Indicators-and-Statistics-View
https://crisma-cat.ait.ac.at/bb/Resource-Management-Training-Indicators-and-Statistics-View
https://crisma-cat.ait.ac.at/bb/Resource-Management-Training-Simulation-Scenario-Setup-View
https://crisma-cat.ait.ac.at/bb/Resource-Management-Training-Simulation-Scenario-Setup-View

28.2.2014 | 105

http://www.crismaproject.eu

As Indicators and Criteria data have the same format both of them use the same
visualisation facilities which are provided by the Indicator Visualisation and Comparison
and the Criteria Visualisation and Comparison Widgets. Those Widgets provide a plain
table-like visualisation for all values of all select World States. Additionally, they provide a
bar chart visualisation to give an impression on how much the single values differ.
Moreover, the widgets are able to visualise the data as spider charts in order to give a fast
impression of the overall performance of the different scenarios.

CRISMA Catalogue URL:
https://crisma-cat.ait.ac.at/bb/Scenario-Analysis-and-Comparison-View

4.3.13. Simulation model interaction view

The Simulation Model Interaction Widget Building Block is a Composite UI Module that lets
end users interact with the various simulation models exposed by the Simulation Model
Integration Building Block. It is responsible for collecting simulation model parameters,
launching the respective simulation model, showing status information and retrieving
simulation model results. It also constitutes the GUI to the Simulation Model Integration
Building Block.

Since the current model integration approach described in section 3.14 of this document is
based on OGC Web Processing Service (WPS), the Simulation Model Interaction Widget
is essentially a CRISMA-aware WPS client.

CRISMA Catalogue URL:
https://crisma-cat.ait.ac.at/bb/Simulation-Model-Interaction-View

4.3.14. UI mashup platform

The UI Mashup Platform is an Infrastructure, Integration and User Interaction Building
Block that acts as a runtime environment for Mashable Composite UI Modules (widgets)
and provides inter-widget communication, persistent per-widget configuration as well as
proxy capabilities.

The platform allows the user (in this case the person configuring a CRISMA application) to
create a HTML5-based front-end by selecting certain user components (widgets and
operations) that can be combined into a mashup. The user components are provided by
the catalogue, and can be installed and connected (“wired”) into a mashup using a
graphical editor.

CRISMA Catalogue URL:
https://crisma-cat.ait.ac.at/bb/UI-Mashup-Platform

4.3.15. UI integration platform

The UI Integration Platform is both a User Interaction and Integration Building Block that is
able to host Composite UI Modules. Composite UI Modules are User Interaction Building
Blocks that are realised as HTML5 and JavaScript widgets. The UI Integration Platform BB
constitutes the Runtime Environment of the Composite UI Modules as they - by their
nature - cannot be used as stand-alone applications.

In general, the UI Integration Platform will not be used to render a single Composite UI
Module but a set of Mashable Composite UI Modules (e.g. Wirecloud Widgets) which have

https://crisma-cat.ait.ac.at/bb/Scenario-Analysis-and-Comparison-View
https://crisma-cat.ait.ac.at/bb/Simulation-Model-Interaction-View
https://crisma-cat.ait.ac.at/bb/UI-Mashup-Platform

28.2.2014 | 106

http://www.crismaproject.eu

been combined into a Mashup Application with help of the UI Mashup Platform (e.g.
Wirecloud).

CRISMA Catalogue URL:
https://crisma-cat.ait.ac.at/bb/UI-Integration-Platform-BB

4.3.16. World state view

The World State View Building Block is a set of generic Widgets (Mashable Composite UI
Modules) that allow visualising Control and Communication Information (CCIM) related to
World States and World State Transitions. Thus, it operates mainly on common meta-
information about the world rather than the real data of the world (World State Data Slots).

The World State View consists of the following four independent and generic Widgets:

Scenario Evolution Widget
The Scenario Evolution Widget visualises the evolution of a specific scenario
from the beginning (the “initial” World State or Root World State) to the currently
selected World State (leaf in the World States tree).
Scenario List Widget
The Scenario List Widget visualises the currently available Scenarios.
World State Tree Widget
The World State Tree Widget visualises the World State Trees of a CRISMA
Application.
World State Widget
The World State Widget is capable of visualising and editing the details of a
World State, in fact the actual World State data (with the help of World State
specific extensions). As a World State may actually contain lots of information
the World State Widget creates a logical grouping of several aspects and
visualises a single group with full detail whereas all the other groups are
visualised via miniature views.

CRISMA Catalogue URL:
https://crisma-cat.ait.ac.at/bb/World State-View

4.4. Interoperability standards

This section gives an overview on standards investigated due to their relevance for
CRISMA.

The standards are relevant for different aspects of the architecture:

Data Integration
For data integration two aspects need to be considered: How to process data
(syntactic interoperability) and how to represent the meaning of data (semantic
interoperability)
Simulation Model Integration
How to control model execution, but also how to describe models, parameters
and data.
Meta-Information
Standards used to describe data and Simulation Models. While this is required
in general it is especially important for Cascade Events where it is necessary to

https://crisma-cat.ait.ac.at/bb/UI-Integration-Platform-BB
https://crisma-cat.ait.ac.at/bb/Worldstate-View

28.2.2014 | 107

http://www.crismaproject.eu

decide if the output from one simulation model is usable as input for the next
model. This topic relates to all other standards.
Communication
Standards specifying the transport of data, including notifications.
User interfaces and data presentation
Since there is the requirement for modular user interfaces, allowing parts to be
embedded in other solutions, the most relevant standard for CRISMA user
interfaces will be HTML5 and JavaScript.
Authentication and Authorisation
Standards used control the access to information or services.

4.4.1. Open geospatial consortium and opengis standards

There are a many standards from OGC (Open Geospatial Consortium) relevant for Data-
and Simulation Model Integration. These standards describing data encodings, meta-
information and service interfaces are well established in the GIS community and beyond.

All OGC standards documents can be found at http://www.opengeospatial.org.

CRISMA relevance: The OGC standards are relevant for CRISMA since many of the data
sources and Simulation Models that will be integrated into CRISMA are already accessible
in an OGC compliant way. Moreover, there are explicit user requirements asking for the
usage of OGC standards.

4.4.1.1. SWE common data model encoding standard

“The Sensor Web Enablement (SWE) Common Data Model Encoding Standard defines
low level data models for exchanging sensor related data between nodes of the OGC®
Sensor Web Enablement (SWE) framework. These models allow applications and/or
servers to structure, encode and transmit sensor datasets in a self-describing and
semantically enabled way.” (SWEdata, 2011)

CRISMA relevance: Describes basics for data encoding, used by OGC services.

4.4.1.2. SWE service model implementation standard

“This standard currently defines eight packages with data types for common use across
OGC Sensor Web Enablement (SWE) services. Five of these packages define operation
request and response types. The packages are:

1) Contents – Defines data types that can be used in specific services that provide
(access to) sensors;

2) Notification – Defines the data types that support provision of metadata about
the notification capabilities of a service as well as the definition and encoding of
SWES events;

3) Common - Defines data types common to other packages;
4) Common Codes –Defines commonly used lists of codes with special semantics;
5) DescribeSensor – Defines the request and response types of an operation used

to retrieve metadata about a given sensor;
6) UpdateSensorDescription –Defines the request and response types of an

operation used to modify the description of a given sensor;
7) InsertSensor – Defines the request and response types of an operation used to

insert a new sensor instance at a service;

http://www.opengeospatial.org/

28.2.2014 | 108

http://www.crismaproject.eu

8) DeleteSensor – Defines the request and response types of an operation used to
remove a sensor from a service.

These packages use data types specified in other standards. Those data types are
normatively referenced herein, instead of being repeated in this standard.” (SWEservices,
2011).

CRISMA relevance: Describes the basics for other OGC model integration standards.

4.4.1.3. Sensor model language encoding standard

“The OpenGIS® Sensor Model Language Encoding Standard (SensorML) specifies
models and XML encoding that provide a framework within which the geometric, dynamic,
and observational characteristics of sensors and sensor systems can be defined. There
are many different sensor types, from simple visual thermometers to complex electron
microscopes and earth observing satellites. These can all be supported through the
definition of atomic process models and process chains. Within SensorML, all processes
and components are encoded as application schema of the Feature model in the
Geographic Markup Language (GML)” (SensorML, 2007).

CRISMA relevance: This standard can be used to describe Simulation Models in an OGC
compliant way. The usage of this standard depends on the Software Components actually
used.

4.4.1.4. Web map service

“The OpenGIS® Web Map Service Interface Standard (WMS) provides a simple HTTP
interface for requesting geo-registered map images from one or more distributed
geospatial databases. A WMS request defines the geographic layer(s) and area of interest
to be processed. The response to the request is one or more geo-registered map images
(returned as JPEG, PNG, etc) that can be displayed in a browser application. The interface
also supports the ability to specify whether the returned images should be transparent so
that layers from multiple servers can be combined or not.” (WMS, 2006)

Note: WMS 1.3 is also described in ISO/DIS 19128.

CRISMA relevance: WMS provides maps as rastered images.

4.4.1.5. Web coverage service

“The OGC Web Coverage Service (WCS) supports electronic retrieval of geospatial data
as "coverages" – that is, digital geospatial information representing space/time-varying
phenomena. This document specifies the WCS core; every implementation of a WCS shall
adhere to this standard. This standard thus defines only basic requirements. Extensions to
the core will define extensions to meet additional requirements, such as the response
encoding. Indeed, additional extensions are required in order to completely specify a WCS
for implementation. A WCS provides access to coverage data in forms that are useful for
client-side rendering, as input into scientific models, and for other clients.” (WCS, 2010)

CRISMA relevance: This service can deliver the same data as the WMS, but in a format
allowing further processing. This might be used for the chaining of Simulation Models to
process Cascade Events.

28.2.2014 | 109

http://www.crismaproject.eu

4.4.1.6. Web coverage processing service

“The OpenGIS® Web Coverage Processing Service Interface Standard (WCPS) defines a
protocol-independent language for the extraction, processing, and analysis of multi-
dimensional gridded coverages representing sensor, image, or statistics data.

Services implementing this language provide access to original or derived sets of
geospatial coverage information, in forms that are useful for client-side rendering, input
into scientific models, and other client applications.” (WCPS, 2009)

CRISMA relevance: Might be useful not only for chaining of Simulation Models but also to
visualize and compare data.

4.4.1.7. Web feature service

“The Web Feature Service (WFS) offers direct fine-grained access to geographic
information at the feature and feature property level. Web feature services allow clients to
only retrieve or modify the data they are seeking, rather than retrieving a file that contains
the data they are seeking and possibly much more. That data can then be used for a wide
variety of purposes, including purposes other than their producers' intended ones.

In the taxonomy of services defined in ISO 19119, the WFS is primarily a feature access
service but also includes elements of a feature type service, a coordinate
conversion/transformation service and geographic format conversion service.” (WFS,
2010)

Note: WFS 2.0 is also described in ISO/DIS 19142

CRISMA relevance: WFS can be used to access structured data including access to
simulation results. Unlike WCS this service is not limited to gridded data.

4.4.1.8. Sensor observation service

“The OpenGIS® Sensor Observation Service (SOS) has been designed to provide access
to sensor observations. In practical terms “sensor observations” mean data provided by
sensors (e.g. weather measurements) as well as model results (e.g. weather forecast
maps). So sensor can be either a real measurement device (Temperature sensor, weather
observation satellite) or a simulation (Weather forecast model). Many sensors repeatedly
observe the same phenomenon, so the result is typically a timeseries of observations,
each associated to a time stamp. In contrast to WMS, WFS and WCS there are not many
open source implementations available.” (SOS, 2012).

CRISMA relevance: Access to time series data from sensors and simulations. Will be of
limited use because of a small usage area and lack of support in popular Software
Components.

4.4.1.9. Observations & measurements

“The OGC Observations & Measurements (O&M) standard specifies an XML
implementation for the OGC and ISO Observations and Measurements (O&M) conceptual
model (OGC Observations and Measurements v2.0 also published as ISO/DIS 19156),
including a schema for Sampling Features. This encoding is an essential dependency for
the OGC Sensor Observation Service (SOS) Interface Standard. More specifically, this

28.2.2014 | 110

http://www.crismaproject.eu

standard defines XML schemas for observations, and for features involved in sampling
when making observations.

These provide document models for the exchange of information describing observation
acts and their results, both within and between different scientific and technical
communities.” (O&M, 2011)

CRISMA relevance: One of the standards for data encoding that can be used within OGC
services (part of SWE Common).

4.4.1.10. Web processing service

“The OpenGIS® Web Processing Service (WPS) Interface Standard provides rules for
standardizing how inputs and outputs (requests and responses) for geospatial processing
services, such as polygon overlay. The standard also defines how a client can request the
execution of a process, and how the output from the process is handled. It defines an
interface that facilitates the publishing of geospatial processes and clients’ discovery of
and binding to those processes. The data required by the WPS can be delivered across a
network or they can be available at the server.” (WPS, 2007)

CRISMA relevance: This is the preferred service to be used for Simulation Model
Integration (see section 4.2.4). This standard is already used by many already existing
Simulation Models that are planned to be integrated into CRISMA and was also used for
the prototyping activities.

4.4.1.11. Geography markup language

“The Geography Markup Language (GML) is an XML grammar for expressing
geographical features. GML serves as a modelling language for geographic systems as
well as an open interchange format for geographic transactions on the Internet. As with
most XML based grammars, there are two parts to the grammar – the schema that
describes the document and the instance document that contains the actual data. A GML
document is described using a GML Schema.” (GML, 2012).

CRISMA relevance: This is one of the basic GIS related standards, relevant because most
data processed within CRISMA have a spatial reference.

4.4.1.12. ISO 19115

“ISO 19115 is a standard of the International Organization for Standardization (ISO). The
standard is part of the ISO geographic information suite of standards (19100 series). ISO
19115 and its parts defines how to describe geographical information and associated
services, including contents, spatial-temporal purchases, data quality, access and rights to
use.

The objective of this International Standard is to provide a clear procedure for the
description of digital geographic datasets so that users will be able to determine whether
the data in a holding will be of use to them and how to access the data. By establishing a
common set of metadata terminology, definitions and extension procedures, this standard
will promote the proper use and effective retrieval of geographic data.

This International Standard defines metadata elements, provides a schema and
establishes a common set of metadata terminology, definitions, and extension procedures.

https://en.wikipedia.org/wiki/ISO/TC_211

28.2.2014 | 111

http://www.crismaproject.eu

This International Standard defines the schema required for describing geographic
information and services. It provides information about the identification, the extent, the
quality, the spatial and temporal schema, spatial reference, and distribution of digital
geographic data.

This International Standard defines:

mandatory and conditional metadata sections, metadata entities, and metadata
elements;
The minimum set of metadata required to serve the full range of metadata
applications (data discovery, determining data fitness for use, data access, data
transfer, and use of digital data);
optional metadata elements – to allow for a more extensive standard description
of geographic data, if required;
a method for extending metadata to fit specialized needs.”

(ISO_19115, 2003)

CRISMA relevance: This international standard describes basic concepts used by many
other standards concerning Control and Communication Information that might be used in
CRISMA.

4.4.1.13. ISO 19119

“The geographic services architecture specified in this International Standard has been
developed to meet the following purposes:

provide an abstract framework to allow coordinated development of specific
services;
enable interoperable data services through interface standardization;
support development of a service catalogue through the definition of service
metadata;
allow separation of data instances and service instances;
enable use of one provider's service on another provider's data;
define an abstract framework which can be implemented in multiple ways.”

(ISO_19119, 2003)

CRISMA relevance: International standards about service specifications. Relevant as the
CRISMA Framework Architecture is based on a service oriented architecture (SOA).

4.4.2. W3C standards

“The World Wide Web Consortium (W3C) is an international community where Member
organizations, a full-time staff, and the public work together to develop Web standards.
Led by Web inventor Tim Berners-Lee and CEO Jeffrey Jaffe, W3C's mission is to lead the
Web to its full potential”. (W3C, 2012)

CRISMA relevance: Most of the standards used in WWW have been developed by the
W3C. For CRISMA this includes not only Web-Clients but also the communication within
the service oriented architecture, either local or over a (public or private) network.

28.2.2014 | 112

http://www.crismaproject.eu

4.4.2.1. Extensible markup language

XML is not only one standard. Different aspects are specified by different W3C standards.
The most relevant are Extensible Markup Language (XML), Namespaces in XML and
W3C XML Schema Definition Language (XSD). (XML, 2010)

CRISMA relevance: XML is one of the basic methods for data encoding for storage and
process communication. All the OGC standards are primarily based on XML.

4.4.2.2. Web design and applications

“This W3C standard set contains HTML and CSS that are the basics for every web page,
extended by graphics format, JavaScript APIs and Canvas. All this is described in W3C
standards.” (Web Design, 2013).

CRISMA relevance: The set of standards around HTML is highly relevant as this will be
the basic technology behind the GUI related Building Blocks.

4.4.3. Other standards

“In computer network engineering, a Request for Comments (RFC) is a memorandum
published by the Internet Engineering Task Force (IETF) describing methods, behaviours,
research, or innovations applicable to the working of the Internet and Internet-connected
systems.” (RFC, 2013)

“The mission of the IETF is to make the Internet work better by producing high quality,
relevant technical documents that influence the way people design, use, and manage the
Internet. The Internet Engineering Task Force (IETF) is a large open international
community of network designers, operators, vendors, and researchers concerned with the
evolution of the Internet architecture and the smooth operation of the Internet. It is open to
any interested individual.” (IETF, 2013)

More information can be found at http://www.ietf.org/.

CRISMA relevance: The RFC’s defines some basics for the internet which are used for
communication in CRISMA – even in a local installation.

4.4.3.1. RFC 1945 – hypertext transfer protocol 1.0

RFC 1945: Hypertext Transfer Protocol -- HTTP/1.0 describes the common usage of the
HTTP protocol in the early years of the Web. (RFC_1945, 1996).

CRISMA relevance: The first version, still in use, but superseded by an optimized update.
The standard describes all basic concepts and operations.

4.4.3.2. RFC 2616 – hypertext transfer protocol 1.1

RFC 2616: Hypertext Transfer Protocol – HTTP/1.1 describes the HTTP 1.1 protocol.
Quoting from the RFC: "The Hypertext Transfer Protocol (HTTP) is an application-level
protocol for distributed, collaborative, hypermedia information systems. It is a generic,
stateless, protocol which can be used for many tasks beyond its use for hypertext, such as
name servers and distributed object management systems, through extension of its
request methods, error codes and headers." (RFC_2616, 1999)

http://www.ietf.org/glossary.html#IETF
http://www.ietf.org/

28.2.2014 | 113

http://www.crismaproject.eu

CRISMA relevance: Nearly all the communication over the internet uses this as a basis. It
is therefore a basis for all the higher level communication standards used in CRISMA.

4.4.3.3. RFC 4918 – web distributed authoring and versioning

“Web Distributed Authoring and Versioning (WebDAV) consists of a set of methods,
headers, and content-types ancillary to HTTP/1.1 for the management of resource
properties, creation and management of resource collections, URL namespace
manipulation, and resource locking (collision avoidance). RFC 2518 was published in
February 1999, and this specification obsoletes RFC 2518 with minor revisions mostly due
to interoperability experience.” (RFC_4918, 1999)

CRISMA relevance: This protocol is foreseen to be used where OGC services, which are
mainly targeted to geo data, don’t fit.

4.4.3.4. Dublin core

“The Dublin Core metadata terms are a set of vocabulary terms which can be used to
describe resources for the purposes of discovery. The terms can be used to describe a full
range of web resources (video, images, web pages, etc.), physical resources such as
books and objects like artworks.” (Dublin Core, 2013)

CRISMA relevance: This is a very basic and therefore relatively easy to provide set of
descriptions that might be useful to allow a user to search for information.

4.4.3.5. JavaScript object notation

“JSON (JavaScript Object Notation) is a text-based open standard designed for human-
readable data interchange. It is derived from the JavaScript scripting language for
representing simple data structures and associative arrays, called objects. Despite its
relationship to JavaScript, it is language-independent, with parsers available for many
languages. The JSON format was originally specified by Douglas Crockford, and is
described in RFC 4627. The JSON format is often used for serializing and transmitting
structured data over a network connection. It is used primarily to transmit data between a
server and web application, serving as an alternative to XML.” (JSON, 2013)

CRISMA relevance: JSON as lightweight and more flexible alternative to XML is often
much easier to use. Especially when exchanging data with an HTML / JavaScript GUI as
the one foreseen for CRISMA. JSON was chosen as default encoding standard for CCIMs
as described in section 5.2.3.

4.4.3.6. Representational state transfer

“Representational State Transfer (REST) is a style of software architecture for distributed
systems such as the World Wide Web. REST has emerged as a predominant web service
design model. The term representational state transfer was introduced and defined in 2000
by Roy Fielding in his doctoral dissertation. Fielding is one of the principal authors of the
Hypertext Transfer Protocol (HTTP) specification versions 1.0 and 1.1.” (REST, 2013)

CRISMA relevance: Even as there is no formal specification for REST it is a widely used
style for implementing services. Easy to implement and use, often combined with a
lightweight JSON data encoding it is ideal for services that need not to provide any of the
formal service interfaces.

28.2.2014 | 114

http://www.crismaproject.eu

4.4.3.7. OpenId

“OpenId is a standard for user identification and often used for single sign on. The user is
authenticated by one trusted party (the OpenID provider). Applications don’t need to know
the users credentials, so there is no need for a user to have a password or identify himself
in different ways for each service but only once at his OpenID provider.” (OpenID, 2007)

CRISMA relevance: OpenId is the preferred way for single sign on.

4.4.3.8. OAuth

“The OAuth 2.0 authorization framework enables a third-party application to obtain limited
access to an HTTP service, either on behalf of a resource owner by orchestrating an
approval interaction between the resource owner and the HTTP service, or by allowing the
third-party application to obtain access on its own behalf. This specification replaces and
obsoletes the OAuth 1.0 protocol described in RFC 5849.” (OAuth, 2012) This
specification is the same as RFC 4749.

CRISMA relevance: OAuth might be useful to enable Building Blocks to access other
Building Blocks on behalf of a user without the need to store and transmit usernames and
passwords. The problems with OAuth are interoperability issues between different
implementations.

4.4.3.9. OpenMI

“OpenMI is a standard promoted by the OpenMI Association, it is an environment aimed to
define a Software Component interface for the interoperation between simulators (Open
MI has been designed with deterministic Simulation Models) in a water domain. Model
components that comply with this standard can, without any programming, be configured
to exchange data during computation (at run-time). This means that combined systems
can be created, based on OpenMI-compliant models from different providers, thus
enabling the modeller to use those models that are best suited to a particular project. The
standard supports semantic connectivity, where the involved models mutually depend on
calculation results from each other. Like in HLA a simulator must be OpenMI compliant to
interoperate, but differently from it the OpenMI environment provides utilities to support
wrapping of legacy code and to configure and deploy components which are not part of the
OpenMI standard decreasing in this way the effort of integration with other components;
the architecture imposes only few rules on how the wrapper should be implemented. In
addition any software language can be used for computational cores, but may require
wrapping in a .NET language or Java.” (Adinolfi, 2009)

CRISMA relevance: Recommendations: The default Simulation Model Integration
Approach of the CRISMA Framework is based on OGC WPS as explained in section 3.14.
However, certain concepts of OpenMI like the data adapters became part of the
architecture. OpenMI specification and concepts may also further influence the
specification of application-specific Control and Communication Information Models for the
integration of legacy Simulation Models.

4.4.3.10. NGSI content management

“NGSI Context Management by Open Mobile Alliance (OMA) specifies two interfaces
(NGSI-9 and NGSI-10) to a publish / subscribe system. NGSI-9 specifies operations
(register, discovery, subscribe, notify) on context. Context is a description of what values

28.2.2014 | 115

http://www.crismaproject.eu

might exist, there units and how they are grouped together. NGSI-10 specifies operations
(update, query, subscribe, notify) on actual value changes within one or more contexts.”
(NGSI, 2010)

CRISMA relevance: While this is just one of many standards in the field of notification
services this interfaces are offered by the FI-WARE Orion Context broker used within the
CRISMA Framework (see section 5.1.1.3).

28.2.2014 | 116

http://www.crismaproject.eu

5. Implementation
The Implementation Architecture is a realisation of the Functional Architecture which has
been specified in the previous chapters Mission, Concepts and Realisation (Figure 71)
according to the MRCI schema introduced in section 1.7.2. In reference to section 1.7.3,
the main purpose of the Implementation Architecture is to map the Functional Building
Blocks to concrete Software Components, to specify a generic Core Control and
Communication Information Model (Core CCIM) that is usable by any CRISMA Federation,
to provide a template for the specification of individual Application Architectures and to
formulate rules and guidelines for the development of Software Components (Figure 71).

Application
Architecture
Application
Architecture

CRISMA
Framework Architecture

Functional
Architecture

Implementation
Architecture

Application
Architecture

M
C
R

I

Figure 69: Distinct Parts of the CRISMA Framework Architecture.

The second iteration of the CRISMA Framework Architecture provides a consolidated and
complete view on the Implementation Architecture which is a result of the combined effort
of WP32 and WP34 (Figure 70). The specification of the Implementation Architecture went
hand in hand with the development of the CRISMA Framework and its Building Blocks.

28.2.2014 | 117

http://www.crismaproject.eu

Functional
Architecture

Implementation
Architecture

Building Block
Implementation

D32.2D32.1 D34.2D34.1
W

P3
2

W
P3

4

Figure 70: Evolution of the Implementation Architecture.

While the Functional Architecture establishes the basic concepts of the CRISMA
Framework and identifies the core Building Blocks, it does neither provide formal
specifications nor is it concerned with detailed software design. Software design has been
carried out jointly in T3.2.3 “ICMS Implementation Architecture V1”, T3.4.1 “ICMS Building
Block Implementation V1” and the respective implementation workpackages of SP4. The
implementation is based on an iterative development approach; therefore the
Implementation Architecture evolved as the development progressed.

Also shown in Figure 70, the development and partially also the software design process
in WP34 continues beyond the end of WP32. Although all Software Components that
constitute the CRISMA Framework have been properly identified and described, some
updates and improvements are likely to happen. Those updates will be documented in the
CRISMA Catalogue as well as in the upcoming deliverable D34.2 “ICMS Building Blocks
V2” of WP34.

28.2.2014 | 118

http://www.crismaproject.eu

Application
Architecture

Template

Core Control
and

Communication
Information

Model

Rules and
Guidelines

Software
Components

Figure 71: Implementation Architecture.

Figure 71 recalls the four cornerstones of the final version of the Implementation
Architecture which are described in the subsequent chapters: Software Components
(section 5.1), the Core CCIM (section 5.1.3.15), the Application Architecture Template
(section 5.3) and Rules and Guidelines (section 5.4).

5.1. Software components

According to the high level concepts of the Functional and Implementation Architecture
(section 1.7.3), a Software Component is a concrete realisation of a Functional Building
Block (Figure 72). The architecture anticipates also the possibility that a Functional
Building Block is implemented in several different ways and different Software
Components for the implementation of a Functional Building Block do exist.

28.2.2014 | 119

http://www.crismaproject.eu

Figure 72: Building Blocks and Software Components.

Realisation in this context does not only encompass providing the functionalities specified
in the Functional Building Block Description (chapter 4), but also to ensure that the
resulting Software Component complies to the architectural concepts and technological
and non-functional requirements as specified in D31.2 “Technology, Concepts & Technical
Requirements Report V2” (D31.2, 2013).

Several candidates for Software Components suitable for the implementation of the
Functional Building Blocks described in chapter 4 have been identified in the first iteration
of the Architecture specification (D32.1, 2013). A Software Candidate is an existing piece
of software that is extended, adapted or simply used as-is to realise a specific Functional
Building Block. On the one hand, the focus has been on open source software and on the
other hand on proprietary software developed and owned by CRISMA partners. Software
Components owned by CRISMA partners have been selected because they can easily be
adapted to fulfil CRISMA functional and technical requirements. The result of this
investigation has been taken up by T3.4.1 “ICMS Building Block Implementation V1” to
develop extensions and modifications of the Software Candidates. The results have been
reported in the D34.2 “ICMS Building Blocks V2” (D34.1, 2013) and CRISMA Catalogue.

While with the delivery of D32.2 “ICMS Architecture Document V2” most specifications of
Functional Building Blocks can be considered as finalised (Figure 73), the implementation
of Software Components and the related technical implementation specifications are
subject to continuous improvement during the second development phase of WP34
(T3.4.2 “ICMS Building Block Implementation V2”). Therefore, this section of the
Implementation Architecture can only provide a snapshot of the current status of Software
Component descriptions at the end of the second specification phase of WP32 (Figure 73).

28.2.2014 | 120

http://www.crismaproject.eu

D32.1
ICMS
Architecture
Document V1

D34.1
ICMS
Building
Blocks V1

M20 M24M14

D32.2
ICMS
Architecture
Document V2

D34.2
ICMS
Building
Blocks V2

S
of

tw
ar

e
C

an
di

da
te

s

Evolution of Functional Building Blocks

M34

S
of

tw
ar

e
C

om
po

ne
nt

s

Evolution of Software Components

Figure 73: Evolution of Building Blocks and Software Components.

As already mentioned in the introduction to this chapter, a separate deliverable, D34.2
“ICMS Building Blocks V2”, as well as the CRISMA Catalogue will report on the final status
of Software Components. In consequence, this section follows the same approach as the
Functional Building Blocks descriptions of chapter 4 and provides only a brief summary of
the Software Components along with a reference to the most up to data descriptions in the
CRISMA Catalogue.

Table 2 gives a complete overview on Building Blocks and related Software Components
that are described in this document.

Table 2: Building Blocks and related Software Components.

Building Block
Group

Name of the
Functional Building Block

Name of the
Building Block

Software Component
Type of the

Software Component

Simulation
Management

Simulation Model
Integration PyWPS Generic Web

Processing Service

Simulation Model
Interaction Widget

Simulation Model Interaction
Wirecloud Widget

Web Processing
Service Client

Cascade Events
Configuration and
Interaction View

To be defined in Task
3.4.2

To be defined in Task
3.4.2

World State
Management World State View

Scenario Evolution Java
Widget Java GUI Component

Scenario Evolution Wirecloud
Widget

Wirecloud Widget
(HTML+JS)

Scenario List Java Widget Java GUI Component
Scenario List Wirecloud
Widget

Wirecloud Widget
(HTML+JS)

World State Tree Java
Widget Java GUI Component

World State Tree Wirecloud
Widget

Wirecloud Widget
(HTML+JS)

28.2.2014 | 121

http://www.crismaproject.eu

Building Block
Group

Name of the
Functional Building Block

Name of the
Building Block

Software Component
Type of the

Software Component

World State Java Widget Java GUI Component

World State Java Wirecloud Wirecloud Widget
(HTML+JS)

World State Data
Management

GIS Widget
cismap Java GUI Component
OpenLayers JavaScript Framework
Leaflet.js JavaScript Framework

Object of Interest World
State Repository

Object of Interest World State
Storage Service

OGC Web Processing
Service

Data Integration

GeoServer
OGC Web Map
Service and OGC Web
Feature Service

MapServer
OGC Web Map
Service and OGC Web
Feature Service

Preparedness
Planning Preparedness Plan Insta Preparedness Planner Rich Internet

Application

Indicator
Management Indicators Building Block PyWPS Web Processing

Service

Economic
Impact

Economic Impact
Calculation View

Economic Impact Calculation
Setup Wirecloud Widget

Wirecloud Widget
(HTML+JS)

Economic Impact Calculation
Results Wirecloud Widget

Wirecloud Widget
(HTML+JS)

Resource
Management

Object of Interest
Management

Object of Interest
Management

Wirecloud Widget
(HTML+JS)

Resource Management
Training Dispatch and
Monitor View

Resource Management
Training Dispatch and
Monitor Wirecloud Widget

Wirecloud Widget
(HTML+JS)

Resource Management
Training Simulation
Scenario Setup View

Resource Management
Training Simulation Scenario
Setup Wirecloud Widget

Wirecloud Widget
(HTML+JS)

Resource Management
Training Indicators and
Statistic View

Resource Management
Training Indicators and
Statistic Wirecloud Widget

Wirecloud Widget
(HTML+JS)

Resource Management
Tactical Training View

NICE Situator Training
System Desktop Application

Agent-Oriented Simulation
Platform Dynamic Map Agents Rich Internet

Application

World State and
Scenario Analysis

Multi Criteria Analysis
and Decision Support
View

To be defined in Task
3.4.2

To be defined in Task
3.4.2

Scenario Analysis
and Comparison
View

To be defined in Task
3.4.2

To be defined in Task
3.4.2

Integrated Planning View To be defined in Task
3.4.2

To be defined in Task
3.4.2

28.2.2014 | 122

http://www.crismaproject.eu

The following subsections provide a brief description of the Software Components listed in
Table 2 and a relation to their Building Block.

5.1.1. Infrastructure software components

Figure 74 shows the Infrastructure Software Components that have been identified and
described for the Implementation Architecture of the CRISMA Framework.

Figure 74: Infrastructure Software Components and related Building Blocks.

5.1.1.1. Cids system

Related Building Block: Integrated Crisis Management Middleware (section 4.1.1)

The ICMM is implemented by CRISMA partner CIS on basis of the cids system, an open
source product owned by CIS. The cids system is licensed under GNU Lesser General
Public License (LGPL, 2007) and can be used free of charge during and beyond the
project lifetime.

The cids product suite consists of a set of services, applications, software components,
management tools, development tools, and application programming interfaces (APIs) for
the management, integration, and development of heterogeneous information systems
with a special focus on interactive geo-spatial systems.

CRISMA Catalogue URL:
https://crisma-cat.ait.ac.at/component/cids-System

5.1.1.2. Object of interest world state repository

Related Building Block: Object of Interest World State Repository (section 4.1.2)

The OOI-WSR is implemented by CRISMA partner NICE as new Software Component. It
is licensed under GNU Lesser General Public License (LGPL, 2007) and can be used free

https://crisma-cat.ait.ac.at/component/cids-System

28.2.2014 | 123

http://www.crismaproject.eu

of charge during and beyond the project lifetime. The OOI-WSR is developed entirely from
scratch in phase one of WP34.

OOI-WSR is a Resource Management related module that enables archiving, querying
and manipulation of OOI World State data. This module serves as a Repository service for
OOI data that can be consumed or manipulated by other Integrated Components, CRISMA
Federates and resource management models.

CRISMA Catalogue URL:
https://crisma-cat.ait.ac.at/component/OOI-World-State-Repository

5.1.1.3. Orion context broker

Related Building Block: Publish/Subscribe Context Broker (section 4.1.3)

The Software Component selected for implementing the Publish/Subscribe Context Broker
Infrastructure Building Block of the CRISMA Framework is the Orion Broker, a Generic
Enabler in the Future Internet Public Private Partnership (FI-PPP) Project and was
implemented by the FI-Ware partner Telefonica8. The licensing conditions are not clearly
stated but the usage is free of charge for partners (i.e. AIT). The software will most likely
be distributed as Open Source in the future.

Using the Orion Context Broker one is able to register context elements and manage them
through updates and queries. In CRISMA for instance a “World State” or a “resource” can
be seen as a typical context element. Subscriptions can be used to track changes of
context elements with respect to some predefined conditions.

CRISMA Catalogue URL:
https://crisma-cat.ait.ac.at/component/Orion-Context-Broker

5.1.2. Integration software components

Figure 75 shows the Integration Software Components that have been identified and
described for the Implementation Architecture of the CRISMA Framework.

Figure 75: Integration Software Components and related Building Blocks.

8 http://www.tid.es

https://crisma-cat.ait.ac.at/component/OOI-World-State-Repository
https://crisma-cat.ait.ac.at/component/Orion-Context-Broker
http://www.tid.es/

28.2.2014 | 124

http://www.crismaproject.eu

5.1.2.1. Agent-oriented simulation models

Related Building Block: Agent-Oriented Simulation Models (section 4.2.1)

The Agent-Oriented Simulation Models is implemented by CRISMA partner TTU on basis
of their own Dynamic Map Agents Software.

Dynamic Map Agents is a self-organizing system of networking information and map
agents. The multi-layer map is constructed and updated dynamically, on the basis of
reciprocal interactions of its actors – the map emerges from activities of its agents (incl.
users). The map could be coupled with specific information layers adjusted to particular
users and collections of objects-of-interest (e.g. situational information items or (pro-)active
information providers) linked with it.

CRISMA Catalogue URL:
https://crisma-cat.ait.ac.at/component/Dynamic-Map-Agents

5.1.2.2. MapServer

Related Building Block: Data Integration Building Block (section 4.2.1)

There exist several Software Components, both commercial and open source products
that cover nearly the entire functionality of the Data Integration Building Block. Currently,
MapServer is one of the open source products that have been selected for the
implementation of the Data Integration Building Block.

“MapServer is an Open Source geographic data rendering engine written in C. Beyond
browsing GIS data, MapServer allows you to create “geographic image maps”, that is,
maps that can direct users to content. For example, the Minnesota DNR Recreation
Compass provides users with more than 10,000 web pages, reports and maps via a single
application. The same application serves as a “map engine” for other portions of the site,
providing spatial context where needed.” (http://mapserver.org/about.html)

CRISMA Catalogue URL:
https://crisma-cat.ait.ac.at/component/MapServer

5.1.2.3. GeoServer

Related Building Block: Data Integration Building Block (section 4.2.1)

There exist several Software Components, both commercial and open source products
that cover nearly the entire functionality of the Data Integration Building Block. Currently,
GeoServer is one of the open source products that have been selected for the
implementation of the Data Integration Building Block.

“GeoServer is an open source software server written in Java that allows users to share
and edit geospatial data. Designed for interoperability, it publishes data from any major
spatial data source using open standards. GeoServer is the reference implementation of
the Open Geospatial Consortium (OGC) Web Feature Service (WFS) and Web Coverage
Service (WCS) standards, as well as a high performance certified compliant Web Map
Service (WMS). GeoServer forms a core component of the Geospatial Web”
(http://geoserver.org/display/GEOS/Welcome)

https://crisma-cat.ait.ac.at/component/Dynamic-Map-Agents
http://mapserver.org/about.html
https://crisma-cat.ait.ac.at/component/MapServer
http://geoserver.org/display/GEOS/Welcome

28.2.2014 | 125

http://www.crismaproject.eu

CRISMA Catalogue URL:
https://crisma-cat.ait.ac.at/component/GeoServer

5.1.2.4. PyWPS

Related Building Block: Simulation Model Integration (section 4.2.4)

The Software Component technically appropriate to realise the functionalities of the
Simulation Model integration Building Block is PyWPS (Python Web Processing Service).
PyWPS is an implementation of the Web processing Service (WPS, 2007) standard from
Open Geospatial Consortium. Within CRISMA, the PyWPS is (can be) used to make
legacy models and other software available within the CRISMA Framework. In order to do
so, one has to extend the basic PyWPS classes and introduce invocations of the own
software.

CRISMA Catalogue URL:
https://crisma-cat.ait.ac.at/component/PyWPS

5.1.3. User interaction software components

Figure 76 shows the User Interaction Software Components that have been identified and
described for the Implementation Architecture of the CRISMA Framework.

https://crisma-cat.ait.ac.at/component/GeoServer
https://crisma-cat.ait.ac.at/component/PyWPS

28.2.2014 | 126

http://www.crismaproject.eu

Figure 76: User Interaction Software Components and related Building Blocks.

5.1.3.1. Economic impact calculation results widget

Related Building Block: Economic Impact Calculation View (section 4.3.1)

The Economic Impact Calculation Results Widget is a new software component developed
from scratch and based on a Microsoft Excel prototype developed by VTT.

28.2.2014 | 127

http://www.crismaproject.eu

The development in HTML and JavaScript follows the technological requirements for
software developments of new User Interaction Building Blocks (Mashable Composite UI
Module).

CRISMA Catalogue URL:
https://crisma-cat.ait.ac.at/component/Economic-Impact-Calculation-Results-Widget

5.1.3.2. Economic impact calculation setup widget

Related Building Block: Economic Impact Calculation View (section 4.3.1)

The Economic Impact Calculation Setup Widget is a new software component developed
from scratch in V2 of WP34 and based on a Microsoft Excel prototype developed by VTT.

The development in HTML and JavaScript follows the technological requirements for
software developments of new User Interaction Building Blocks (Composite UI Module).

CRISMA Catalogue URL:
https://crisma-cat.ait.ac.at/component/Economic-Impact-Calculation-Results-Widget

5.1.3.3. Cismap

Related Building Block: GIS Widget (section 4.3.3)

There exist several Software Components, both commercial and open source products
that cover large parts of the functionality of the GIS Widget Block. Currently, cismap is one
of the open source products that have been selected for the implementation of the GIS
Widget Building Block.

Cismap is a java-based Software Component for the GIS Widget and is implemented by
CRISMA partner CIS on basis of the open source software cismap. Cismap is licensed
under the GNU Lesser General Public License (LGPL, 2007) and can be used free of
charge during and beyond the project lifetime.

Cismap is a map application specialised to access OGC compliant services like WFS
(WFS, 2010) and WMS (WMS, 2006) for information from internal and external geospatial
data sets. Thereby, it supports also powerful visualisation and editing functionalities for
OGC compliant geospatial information (e.g. GML).

CRISMA Catalogue URL:
https://crisma-cat.ait.ac.at/component/cismap

5.1.3.4. Leaflet.js

Related Building Block: GIS Widget (section 4.3.3)

There exist several Software Components, both commercial and open source products
that cover large parts of the functionality of the GIS Widget Block. Currently, Leaflet.js is
one of the open source products that have been selected for the implementation of the
GIS Widget Building Block.

“Leaflet is a modern open-source JavaScript library for mobile-friendly interactive maps. It
is developed by Vladimir Agafonkin with a team of dedicated contributors. Weighing just

https://crisma-cat.ait.ac.at/component/Economic-Impact-Calculation-Results-Widget
https://crisma-cat.ait.ac.at/component/Economic-Impact-Calculation-Results-Widget
https://crisma-cat.ait.ac.at/component/cismap

28.2.2014 | 128

http://www.crismaproject.eu

about 31 KB of JS, it has all the features most developers ever need for online maps.”
(http://leafletjs.com)

Leaflet implements basic functionalities requested by the GIS Widget Building Block.
Manipulation of GIS data is currently not the scope of this lightweight mapping component.
However, as the first phase of WP34 does not require more than the most basic controls
Leaflet suits the needs of the first phase and is ready for integration out of the box.

CRISMA Catalogue URL:
https://crisma-cat.ait.ac.at/component/Leaflet.js

5.1.3.5. OpenLayers

Related Building Block: GIS Widget (section 4.3.3)

There exist several Software Components, both commercial and open source products
that cover large parts of the functionality of the GIS Widget Block. Currently, OpenLayers
is one of the open source products that have been selected for the implementation of the
GIS Widget Building Block.

OpenLayers is a JavaScript-based map application specialised to access OGC compliant
services like WFS and WMS for information from internal and external geospatial data
sets. Thereby, it provides powerful visualisation and editing functionalities for OGC
compliant geospatial information (e.g. GML). OpenLayers is a powerful mapping
component implementation that has grown over the years and thus provides a rather good
variety of supported standards and tools.

CRISMA Catalogue URL:
https://crisma-cat.ait.ac.at/component/OpenLayers

5.1.3.6. Object of interest management user interface component

Related Building Block: Object of Interest Management (section 4.3.4)

The OOI Management UI Component is implemented by CRISMA partner NICE, it is a
new software component that is developed from scratch. The OOI Management UI
Component is licensed under the GNU Lesser General Public License (LGPL) and can be
used free of charge during and beyond the project lifetime.

It is developed as standalone Web Application that can be hosted in a standard Webserver
or as Wirecloud widgets (Mashable Composite UI Module). It is implemented using
popular web technologies like Angular.js MVVM Platform, Twitter Bootstrap and
OpenLayers.

CRISMA Catalogue URL:
https://crisma-cat.ait.ac.at/component/OOI-Management-UI-Component

5.1.3.7. Preparedness plan

Related Building Block: Preparedness Plan (section 4.3.7)

http://leafletjs.com/
https://crisma-cat.ait.ac.at/component/Leaflet.js
https://crisma-cat.ait.ac.at/component/OpenLayers
https://crisma-cat.ait.ac.at/component/OOI-Management-UI-Component

28.2.2014 | 129

http://www.crismaproject.eu

The Preparedness Plan Building Block is implemented by CRISMA partner INSTA on
basis of Insta Preparedness Planner Software. The Insta Preparedness Planner is a
commercial software and can be used free of charge during the project lifetime.

Insta Preparedness Planner is a decision support mechanism, based on existing situation
assessment functionality of the Insta Response product. Insta Response is a networked,
integrated solution, which provides situation picture, resource management, integrated
communications, computer-aided situation assessment and dispatching and field support
for emergency response centres and other authorities, in the command centres, on the
field and for administrative users as well.

CRISMA Catalogue URL:
https://crisma-cat.ait.ac.at/component/Insta-Preparedness-Planner

5.1.3.8. Resource management tactical training

Related Building Block: Resource Management Tactical Training (section 4.3.8)

The Resource Management Tactical Training Building Block is implemented by CRISMA
partner NICE on basis of the NICE Situator Training System. The NICE Situator is licensed
under a proprietary license by CRISMA partner NICE and can be used free of charge
during the project lifetime.

Designed for the unique needs of Tactical Training, NICE Security Solutions for Training
and Simulation combine a powerful set of tools and technologies that merge all cameras,
sensors, communication systems, data sources and operating procedures into a single
unified platform to secure the entire transportation infrastructure. In the process, public
safety and security agencies not only gain valuable insight into everyday operational
issues, they can substantially optimize them for measurable and valuable improvements
and cost savings.

CRISMA Catalogue URL:
https://crisma-cat.ait.ac.at/component/Situator-Training-System

5.1.3.9. Resource management training dispatch and monitor wirecloud view

Related Building Block: Resource Management Training Dispatch and Monitor View
(section 4.3.9)

The Resource Management Training Dispatch and Monitor View Building Block is
implemented by CRISMA partner AIT as Mashup Application composed of different
Mashable Composite UI Modules (Wirecloud Widgets). It is licensed under an Open
Source licensing scheme and can be used free of charge during and beyond the project
lifetime.

This Software Component uses the JavaScript library OpenLayers, which is a freely
available library displaying map data (from sources such as Google, Bing, WMS,
OpenStreetMap, or any other, depending on the configuration) available under the
FreeBSD license.

CRISMA Catalogue URLs:
https://crisma-cat.ait.ac.at/components/wirecloud-ooi-gis-map
https://crisma-cat.ait.ac.at/components/wirecloud-worldstate-picker

https://crisma-cat.ait.ac.at/component/Insta-Preparedness-Planner
https://crisma-cat.ait.ac.at/component/Situator-Training-System
https://crisma-cat.ait.ac.at/components/wirecloud-ooi-gis-map
https://crisma-cat.ait.ac.at/components/wirecloud-worldstate-picker

28.2.2014 | 130

http://www.crismaproject.eu

https://crisma-cat.ait.ac.at/components/wirecloud-ooi-table
https://crisma-cat.ait.ac.at/components/wirecloud-simulation-picker
https://crisma-cat.ait.ac.at/components/wirecloud-ooi-commands

5.1.3.10. Resource management training indicators and statistics wirecloud view

Related Building Block: Resource Management Training Indicators and Statistics View
(section 4.3.10)

The Resource Management Training Indicators and Statistics View is implemented by
CRISMA partner AIT as Mashup Application composed of different Mashable Composite
UI Modules (Wirecloud Widgets). It is licensed under an Open Source licensing scheme
and can be used free of charge during and beyond the project lifetime.

The Software Component is mainly based on jqPlot (http://www.jqplot.com/), which is a
JavaScript and jQuery-based library available under MIT License (MIT, 1998) and GNU
General Public License (GPL, 2007). The dual-licensing allows for more flexibility
concerning how and where this library can be used. This charting library makes use of
HTML5's canvas features and thus works in any HTML5 compatible environment where
JavaScript is enabled (e.g. WebKit-based browsers) and should also extend to
contemporary mobile devices.

CRISMA Catalogue URLs:
https://crisma-cat.ait.ac.at/components/wirecloud-charts
https://crisma-cat.ait.ac.at/components/wirecloud-worldstate-picker
https://crisma-cat.ait.ac.at/components/wirecloud-simulation-picker

5.1.3.11. Resource management training simulation scenario setup wirecloud view

Related Building Block: Resource Management Training Simulation Scenario Setup View
(section 4.3.11)

The Resource Management Training Simulation Scenario Setup View Building Block is
implemented by CRISMA partner AIT as Mashup Application composed of different
Mashable Composite UI Modules (Wirecloud Widgets). It is licensed under an Open
Source licensing scheme and can be used free of charge during and beyond the project
lifetime.

This Building Block uses the JavaScript library OpenLayers, which is a freely available
library displaying map data (from sources such as Google, Bing, WMS, OpenStreetMap, or
any other, depending on the configuration) available under the FreeBSD license (BSD,
1998).

CRISMA Catalogue URLs:
https://crisma-cat.ait.ac.at/components/wirecloud-ooi-table
https://crisma-cat.ait.ac.at/components/wirecloud-simulation-picker

5.1.3.12. Simulation model interaction widget

Related Building Block: Simulation Model Interaction View (section 4.3.13)

The Simulation Model Interaction Widget Building Block is a Composite UI Module that lets
end users interact with the various Simulation Models exposed by a Simulation Model

https://crisma-cat.ait.ac.at/components/wirecloud-ooi-table
https://crisma-cat.ait.ac.at/components/wirecloud-simulation-picker
https://crisma-cat.ait.ac.at/components/wirecloud-ooi-commands
http://www.jqplot.com/
https://crisma-cat.ait.ac.at/components/wirecloud-charts
https://crisma-cat.ait.ac.at/components/wirecloud-worldstate-picker
https://crisma-cat.ait.ac.at/components/wirecloud-simulation-picker
https://crisma-cat.ait.ac.at/components/wirecloud-ooi-table
https://crisma-cat.ait.ac.at/components/wirecloud-simulation-picker

28.2.2014 | 131

http://www.crismaproject.eu

Integration Building Block. It is responsible for collecting Simulation Control Parameters
(SCP), launching the respective simulation model, showing status information and
retrieving simulation model.

Since the current model integration approach described in the CRISMA Framework
Architecture is based on OGC Web Processing Service, the Simulation Model Interaction
Widget is essentially a CRISMA-aware WPS client.

CRISMA Catalogue URL:
https://crisma-cat.ait.ac.at/component/Simulation%20Model%20Interaction%20Widget

5.1.3.13. Wirecloud

Related Building Block: UI Mashup Platform (section 4.3.14)

The Software Component selected to realise the UI Mashup Platform is the Wirecloud
application mashup platform. Wirecloud is developed by CoNWeT Lab (University of
Madrid) licensed under GNU Affero General Public License (AGPL, 2007). It can therefore
be used free of charge during and beyond the project lifetime. Widgets running on
Wirecloud are not affected by the licensing terms by a special clause.

Wirecloud is a web-based mashup platform that allows combining individual, usually
general purpose components (“widgets”) into a web application. The software features a
catalogue of widgets that can be published for other users of the system. Additionally, this
catalogue allows also the publication of entire mashup applications that can be re-used by
others.

CRISMA Catalogue URL:
https://crisma-cat.ait.ac.at/component/Wirecloud-Application-Mashup-Platform

5.1.3.14. Cids navigator

Related Building Block: UI Integration Platform (section 4.3.15)

There exist several pieces of software that are able to provide the key functionality of the
UI Integration Platform such as any modern Browser (Firefox, Opera, etc.) or platforms like
JavaFX.

Hence there is virtually no development effort needed when a CRISMA Application is also
at the same time a Mashup Application. However the situation is different when the user
interfaces of a CRISMA Application are only partially realized as Mashup Application. In
this case, HTML/JavaScript widgets may have to interact with other types of existing
legacy GUI code.

A Software Component for the realization of an UI Integration Platform that is able to
integrate other Composite UI Modules with existing Java GUIs is the cids navigator. The
cids navigator was used as one CRISMA Reference Application to demonstrate the
capabilities of the CRISMA Framework V1.

CRISMA Catalogue URL:
https://crisma-cat.ait.ac.at/component/cids-Navigator

https://crisma-cat.ait.ac.at/component/Simulation%20Model%20Interaction%20Widget
https://crisma-cat.ait.ac.at/component/Wirecloud-Application-Mashup-Platform
https://crisma-cat.ait.ac.at/component/cids-Navigator

28.2.2014 | 132

http://www.crismaproject.eu

5.1.3.15. Scenario evolution widget (java and JavaScript)

Related Building Block: World State View (section 4.3.16)

A java-based prototype of the Scenario Evolution Widget was implemented by CRISMA
partner CIS. The development of the Scenario Evolution Java Widget has been
discontinued in favour of the Scenario Evolution Wirecloud Widget which satisfies all
technological requirements of Mashable Composite UI Modules. The Scenario Evolution
Widgets are licensed under the GNU Lesser General Public License (LGPL, 2007) and
can be used free charge during and beyond the project lifetime

CRISMA Catalogue URLs:
https://crisma-cat.ait.ac.at/component/Scenario-Evolution-Widget-%28Java%29
https://crisma-cat.ait.ac.at/component/Scenario-Evolution-Widget-%28JavaScript%29

5.1.3.16. Scenario list widget (java and JavaScript)

Related Building Block: World State View (section 4.3.16)

A java-based prototype of the Scenario List Widget was implemented by CRISMA partner
CIS. The development of the Scenario List Java Widget has been discontinued in favour of
the Scenario List Wirecloud Widget which satisfies all technological requirements of
Mashable Composite UI Modules. The Scenario List Widgets are licensed under the GNU
Lesser General Public License (LGPL, 2007) and can be used free charge during and
beyond the project lifetime

CRISMA Catalogue URLs:
https://crisma-cat.ait.ac.at/component/Scenario-List-Widget-%28Java%29
https://crisma-cat.ait.ac.at/component/Scenario-List-Widget-%28JavaScript%29

5.1.3.17. World state tree widget (java and JavaScript)

Related Building Block: World State View (section 4.3.16)

A java-based prototype of the World State Tree Widget was implemented by CRISMA
partner CIS.

The development of the World State Tree Java Widget has been discontinued in favour of
the World State Tree Wirecloud Widget which satisfies all technological requirements of
Mashable Composite UI Modules. The World State Tree Widgets are licensed under the
GNU Lesser General Public License (LGPL, 2007) and can be used free charge during
and beyond the project lifetime

CRISMA Catalogue URLs:
https://crisma-cat.ait.ac.at/component/World State-Tree-Widget-%28Java%29
https://crisma-cat.ait.ac.at/component/World State-Tree-Widget-%28JavaScript%29

5.1.3.18. World state widget (java and JavaScript)

Related Building Block: World State View (section 4.3.16)

A java-based prototype of the World State Widget was implemented by CRISMA partner
CIS. The development of the World State Java Widget has been discontinued in favour of
the World State Wirecloud Widget which satisfies all technological requirements of

https://crisma-cat.ait.ac.at/component/Scenario-Evolution-Widget-%28Java%29
https://crisma-cat.ait.ac.at/component/Scenario-Evolution-Widget-%28JavaScript%29
https://crisma-cat.ait.ac.at/component/Scenario-List-Widget-%28Java%29
https://crisma-cat.ait.ac.at/component/Scenario-List-Widget-%28JavaScript%29
https://crisma-cat.ait.ac.at/component/Worldstate-Tree-Widget-%28Java%29
https://crisma-cat.ait.ac.at/component/Worldstate-Tree-Widget-%28JavaScript%29

28.2.2014 | 133

http://www.crismaproject.eu

Mashable Composite UI Modules. The World State Widgets are licensed under the GNU
Lesser General Public License (LGPL, 2007) and can be used free charge during and
beyond the project lifetime.

CRISMA Catalogue URL:
https://crisma-cat.ait.ac.at/component/World State-Widget-%28Java%29

5.2. Core control and communication information model

This part of the Implementation Architecture provides a specification of the Core Control
and Communication Information Model (Core CCIM) of the CRISMA Framework. This
information model is the basis for all application specific information models (Application
CCIMs). The Core CCIM defines the information classes of the Conceptual Business Logic
of CRISMA on an abstract and generic level.

The main purpose of the Core CCIM is to allow the management of World States and their
Transitions as defined by the Conceptual Business Logic in a uniform manner across all
CRISMA Federations. Thus, it leverages the development of generic Building Blocks that
can be used in any CRISMA Federation with minimal or no configuration and development
effort.

5.2.1. Classes of the core control and communication information model

The Core CCIM defines a minimal set of classes and relationships needed to realise the
Conceptual Business Logic of the CRISMA Framework. The Core CCIM can be seen as
the least common denominator on which all CRISMA Federations (Applications) have to
agree.

https://crisma-cat.ait.ac.at/component/Worldstate-Widget-%28Java%29

28.2.2014 | 134

http://www.crismaproject.eu

Figure 77: Core CCIM Classes and Relationships.

The Core CCIM can be subdivided into two parts: A static part and a dynamic part. The
static part has to be defined during the design phase of a CRISMA Application and
represents invariant domain information of this particular CRISMA Application. Once
defined, it is not supposed to change.

This part of the CCIM is also called the domain definition of the CRISMA Application. The
CCIM Classes of the domain definition are:

Categories
A class representing an arbitrary categories that can be used to categorise
scenarios, simulations, etc.

Classifications
A class that represents a classification of categories, e.g. scenario types, crisis
management phases, etc.

28.2.2014 | 135

http://www.crismaproject.eu

DataDescriptors
A DataDescriptor provides invariant meta-information about an arbitrary dataset
(World State data, simulation control parameters, ...).

IccFunctionDescriptors
IccFunctionDescriptors provide Information about the ICC Functions that are
executed after each World State Transition. ICC Functions Descriptors are
optional since most functions will be realised by the application logic of a specific
Building Block Implementation. Indicator Functions for example are implemented
by the Indicator Building Block Software Component.

InitialisationDescriptors
Initialisation descriptors describe user interfaces and business logic (e.g.
Composite UI Modules, Setup and Configuration Building Blocks) that are
needed to initialize the set of Simulation Models, the initial World State,
descriptors, etc.

ManipulationDescriptors
ManipulationDescriptors refer to World State Transitions and describe the user
interfaces and business logic (e.g. Composite UI Modules, World States Widget
Building Block and associated World State Views) to manipulate the changeable
parameters of a World State.

RenderingDescriptors
A Rendering Descriptor describes a User interfaces to visualize the World State
(World States Widget Building Block and related Viewer Widgets).

SimulationDescriptors
A SimulationDescriptor provides information about a Federated Simulation (a
simulation consisting of one or more Simulation Models wrapped as one WPS
service). It holds references (Generic Reference) to concrete descriptions on
how to execute the simulation (Simulation Model Integration Building Block) and
by which user interface (Simulation Model Interaction Building Block) to control
(e.g. parameterise, monitor) the simulation.

The dynamic part of the core CCIM represents the changeable parameters of the world
modelled as World States and Transitions. It is represented by the following classes:

DataItems
This class represent an actual data set (instance), e.g. World State data, ICC
data, simulation control parameters, etc.

Transitions
This class represents a concrete World State Transition. It contains information
on the performed manipulation or simulation, the actual Simulation Control
Parameters and further meta-information (e.g. which parts of the World State
were changed).

World States
This class represents a concrete World State. A snapshot of the World or World
State consists of all data related to a specific crisis simulation experiment.

Please note that TransitionPoints are not explicitly modelled in the Core CCIM since they
are implicitly defined of by the Simulation Cases which are part of the application logic of
the respective CRISMA Application. Thus, the application logic is responsible to create
appropriate Transitions that are valid in the scope of a specific Simulation Case Graph

28.2.2014 | 136

http://www.crismaproject.eu

(see section 3.1.4). A validation of scenarios (sequences of Transitions) as instances of a
Simulation Case Graph on the information model level is therefore not supported.

In summary, the Core CCIM leverages interoperability between Federates and
Federations within the whole CRISMA System (the sum of all CRISMA Federations) while
extensions leverage interoperability between Federates within one CRISMA Federation.
Further details and examples on the intended usage of the Core CCIM are given in the
Application Architecture Template in APPENDIX (B). A technical specification of the Core
CCIM in UML can be found in APPENDIX (A).

5.2.2. Relation to conceptual business logic

As explained in the previous section, the Core CCIM maps the Conceptual Business Logic
(see section 3.1) to classes of a modular information model.

Figure 78: Scenario expressed with help of the Core CCIM.

Figure 78 shows how a Simulated Crisis Management Scenario (see section 3.1) can be
expressed by instances of Core CCIM Classes and Figure 79 provides a more detailed
view on the relationships of the Core CCIM to the Conceptual Business Logic.

28.2.2014 | 137

http://www.crismaproject.eu

Criteria and Costs

World
State

Simulation
Model Control

Parameter

Criteria and Costs

World
State

Simulation
Model Control

Parameter

Criteria and Costs

World
State

Simulation
Model Control

Parameter

Criteria and Costs

World
State

Simulation
Model Control

Parameter

Indicators

Data

Simulation
Model Control

Parameter

M

User Interfaces
and Business Logic

User Interfaces
and Business Logic

Simulation Models

Functions
and Algorithms

f(x)

Figure 79: Mapping the Core CCIM to the Conceptual Business Logic (detailed).

5.2.3. Technical realisation

Technically, the Core CCIM is implemented as part of a generic and object-oriented
relational database model of the Software Component that implements the ICMM Building
Block (section 5.1.1.1). Thus, implementing a CCIM is a configuration task and does not
require any changes to the ICMM itself. Figure 80 shows an excerpt of the Core CCIM
implemented as database model of the ICMM.

28.2.2014 | 138

http://www.crismaproject.eu

Figure 80: Core CCIM Database Model (excerpt).

According to the rules for the specification of information models (section 5.4.4) a CCIM
modelled in UML has to be encoded in Java Script Object Notation Format (JSON).

28.2.2014 | 139

http://www.crismaproject.eu

Figure 81: Mapping UML Models to REST Models.

The relation between the UML and JSON models is shown in Figure 81. On the level of
the UML Model, an instance of a CCIM Class is called CCIM Entity. When the UML Model
is encoded in JSON, the CCIM Class becomes a Resource Type or Resource Class and
the CCIM Entity a Resource Object or Resource Instance.

The actual CCIM Resource Instances can be accessed via the REST APIs of the ICMM.
Figure 82 shows an example of such a Resource Instance.

Figure 82: DataItems Instance JSON.

5.2.4. Generic extension mechanisms

Since CRISMA Applications (Federations) are very heterogeneous in nature, the Core
CCIM is optimised for genericity and reusability and provides only rudimentary meta-
information about World States, Transitions, etc.

28.2.2014 | 140

http://www.crismaproject.eu

Figure 83: Core CCIM with extension points for Application CCIMs.

According to this, it does not define a concrete meta-information schema for data access,
the description of manipulation and simulations, etc. Therefore, each CRISMA Federation
has to define some federation-specific extensions of the Core CCIM.

For this purpose, the Core CCIM provides two extension mechanisms which are described
in the subsequent section: Extension by inheritance and predefined Extension Points.
Figure 83 below gives an overview on the generic extension points for Application CCIMs.

28.2.2014 | 141

http://www.crismaproject.eu

5.2.4.1. Extension by inheritance

The first possibility for extending the Core CCIM is to directly inherit from Core CCIM
Classes (Figure 84). In this way the extended CCIM Classes will become directly part of
the ICMM data model (see section 5.2.3). The main advantage of this approach is that
entities based on such classes can benefit from the built-in search, access control and
validation functionalities of the ICMM.

Figure 84: Extension by inheritance.

One disadvantage of this approach is that a data model has to be designed and installed
into an ICMM instance. Although this is an administrative task which is supported by
graphical tools, it requires a certain amount of expert knowledge about the ICMM internals.

5.2.4.2. Extension Points

A second, more convenient and easy to use mechanism for the extension of the Core
CCIM and CCIMs in general are predefined Extension Points. Extension Points are
realised in the Core CCIM by so called Generic References.

A Generic References in a CCIM is a reference to an entity which is not modelled as class
of the enclosing CCIM. Such a Generic Reference contains in general domain specific
information that may be used by (application specific) components. The actual content
type of the Generic Reference is determined by a dedicated content type attribute. Thus, a
Generic Reference may point e.g. to a JSON or XML document or even a link to a JSON
or XML document.

Interestingly, Generic References may point to arbitrary JSON objects including JSON
objects that comply with a CCIM Class. With help of this mechanism it is possible to
establish relations to CCIM Classes that are neither part of the Core CCIM nor known
during the design time of the Core CCIM. Therefore, although not required, it is

28.2.2014 | 142

http://www.crismaproject.eu

nevertheless good practice to model such entities that should be represented by Generic
References also compliant to CCIM Classes.

Figure 85: Extension Points of the Core CCIM.

In any case, it should be clear that it is always up to the designer of a concrete CRISMA
Application to define the actual structure and content of Generic References. Therefore, a
Generic Reference which may be suitable for a particular CRISMA Application may not be
usable in another Application.

Figure 85 shows the Extension Points of the Core CCIM, shown as yellow boxes. Each of
those Generic References is modelled in the Core CCIM as two String attributes: The
actual content of the reference and the content type of the reference.

The following types of Generic References are defined in the Core CCIM:

AccessInfo is the extension Point of the DataDescriptors and DataItems
Classes. It can be divided into defaultAccessInfo (relevant for DataDescriptors)
and actualAccessInfo (relevant for DataItems).

28.2.2014 | 143

http://www.crismaproject.eu

o defaultAccessInfo describes the actual data source, e.g. a link to an
external meta data document describing the data set or other types of
access information and credentials (e.g. WFS URI). It represents invariant
meta-information that stays the same for all DataItems that are described
by a DataDescriptor.

o actualAccessInfo is the actual information on how to access the data. In
rare cases or for very small and simple datasets (e.g. ICC Data) it may
contain also the data itself. In general, it provides information to indentify
an individual data item or a specific version of a data item (e.g. a specific
request parameter, a filename, etc.).

UIIntegrationInfo is the Extension Point of the Rendering-, Manipulation-,
Simulation- and InitialisationDescriptors. It provides the actual information on
how to instantiate and integrate the respective user interface (Composite UI
Module). Depending on the CRISMA Application it may contain an URI that
points to a Composite UI Module instance or more detailed information.

ExecutionInfo is the Extension Point of Simulation- and IccFunctionDescriptors.
It provides information on how to execute a federated simulation or an ICC
Function. In general, it contains information on the WPS that provides the
simulation (Simulation Model Integration Building Block).The concrete details
depend on the types of simulations available in a particular CRISMA Application.

StatusInfo is the Extension Point of the Transition Class. It provides detailed
Transition status information. It may be represented by an arbitrary CRISMA
JSON object that is defined for a specific Application CCIM and may be injected
dynamically, e.g. by the Simulation Model Integration or Interaction Building
Blocks (sections 4.2.4and 4.3.12). It may also point to the raw Transition status,
e.g. a log file, a link to a website with status messages, a WPS URL, etc.

Several domain-independent Generic References modelled as JSON entities are provided
in the Application Architecture Template in APPENDIX (B).

5.3. Application architecture template

The Application Architecture Template is a template for the technical specification of an
individual Application Architecture and thus acts as blueprint for the actual implementation
of a CRISMA Application.

While this section of the Implementation Architecture provides only a general description of
the Application Architecture Template and its related concepts, the actual template can be
found in APPENDIX (B).

An Application Architecture provides a specification of application-specific Simulation
Cases in accordance to the Integrated System Viewpoint of the Conceptual Business
Logic of the CRISMA Framework Architecture (section 3.1). Thereby, it describes the
Simulation Cases which are based on Pilot Use Cases (D23.1, 2013) and that shall be
supported by the CRISMA Application in terms of individual World States and Transitions.
Thus, it allows the development of a Crisis Management Simulation System as CRISMA
Application with help of the concepts and Building Blocks of the CRISMA Framework.

28.2.2014 | 144

http://www.crismaproject.eu

Figure 86: Input to Application Architecture.

As shown in Figure 86, specifying an Application Architecture according to the template
requires input from many different sources. Although most information for the development
of a CRISMA Application is currently available in the CRISMA project, this information is
scattered across many different documents and described in such a way that it is not
directly usable for the development.

Thus, the main intention of the Application Architecture is to leverage the development of
the CRISMA Framework and CRISMA Application in SP3 and SP5 by providing a
homogenous and consolidated view on the relevant material produced so far in the
CRISMA Project.

The Application Architecture Template provided in APPENDIX (B) of this document
consists of the following two main parts:

Initialisation and configuration information
Initialisation and configuration information has to be collected once for a
particular or CRISMA Application. It consists of a specification of all Data Slots,
Simulation Models and ICC Elements that are available for the Simulation Cases
of the Pilot Use Case as well as all possible Transition Points themselves.
Those elements are described in detail in the following:

28.2.2014 | 145

http://www.crismaproject.eu

o World State Data Slot Descriptions
All World State Data Slots of the whole Crisis Management Use Case (i.e.
Pilot use Case) have to be described in accordance to the Conceptual
Business Logic and the Core CCIM. The specification of World State Data
Slot is separated from the specification of Simulation Cases since a Pilot
Use Case usually consists of different Simulation Cases and not all World
State Data Slots may be relevant for each Simulation Case.

o ICC Descriptions
Like World State Data Slot Descriptions, ICC (Indicators, Criteria and
Costs) Descriptions are also defined once for the complete Pilot Use
Case. The specification of an Indicator Element is as bit different than the
specification of Data Slot, since the ICC Element describes in general a
simple numerical value rather than a complete data source.

o Simulation Model Descriptions
As third part of the initialisation and configuration information, a technical
description of the Simulation Models has to be provided. While such a
specification could be arbitrary complex, only the most import information
like input and output Data Slots and simulation control parameters is
collected by the template.

o Transition Point Descriptions
The last part of the initialisation and configuration information contains all
possible Transition Points available for the Simulation Cases and how
they affect the World State. It specifies furthermore a Transition Point
Graph that defines (coarsely) in which order Transitions can be executed.

Simulation Cases
This part of the template describes one Simulation Case of the overall Pilot Use
Case. It has to be repeated for each distinct Simulation Case. It consists of the
following elements:

o General Information
This section provides some general information about the Simulation
Case. This information may be used as descriptive meta-information in
the CRISMA Application or the CRISMA Catalogue.

o Initial World State Definitions
This section provides initial (static) definitions of the Data Slots that play a
role in the World State of the current Simulation Case.

o Simulation Case Specification
This section provides a description of the distinct steps of the Simulation
Case (Decisions, Analyses) performed by a decision maker in the
CRISMA Application and relates them to Transitions.

5.4. Rules and guidelines

The last part of the Implementation Architecture defines the guidelines, rules and
recommendations that have to be followed or considered when developing, adapting or
integrating Software Components for the CRISMA Framework and when developing
CRISMA Applications, respectively. This includes e.g. how APIs are specified and
implemented or which technologies are used for the development of Composite UI
Modules, how Composite UI Modules communicate and interact, etc. Several general

28.2.2014 | 146

http://www.crismaproject.eu

rules have already been formulated on a conceptual level in the Functional Architecture
section (chapter 3). The intention of this section is to provide a formalisation of those rules
under consideration of technological and implementation specific aspects.

5.4.1. Conventions

The keywords "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT", "SHOULD",
"SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this document are to be
interpreted as described in RFC 2119 (RFC2119, 1997).

The terms "JSON", "JSON text", "JSON value", "member", "element", "object", "array",
"number", "string", "boolean", "true", "false", and "null" in this document are to be
interpreted as defined in RFC 4627 (RFC4627, 2006).

5.4.2. General rules for federates

The following chapter provides a summary and a formalisation of rules for CRISMA
Federates that were introduced by the concept chapter of the Functional Architecture
(chapter 3).

5.4.2.1. Rules for federates

Those are the basic rules for CRISMA Federates that are needed to guarantee and
support interaction, interoperability and integration within CRISMA Federations and
CRISMA Applications.

1. A CRISMA Federate must be aware of the APIs of the CRISMA Middleware
Infrastructure (ICMM) and the related Core Control and Communication
Information Models (CCIM).

2. A CRISMA Federate may but does not have to expose a dedicated RESTful
CRISMA API that is aligned to the APIs of the ICMM.

3. Control and Communication Information that changes the status of a World
State Transition shall not be exchanged between Federates directly. It must be
transferred solely using the APIs provided by the Middleware Infrastructure
(ICMM) to ensure that the Middleware Infrastructure is always aware of the
current status of a World State Transition.

4. The mandatory communication protocol used in communication with the ICMM
is the hypertext transfer protocol (HTTP).

5. CRISMA Federates may exchange data with non-CRISMA components
(Integrated Components).

6. The preferred protocol for the exchange of data is HTTP.
7. The preferred method for direct data transfer is based upon open standards and

services of the Open Geospatial Consortium (OGC).
8. Integrated Components are not aware of the ICMM API but may take part in an

interaction of CRISMA Federates.
9. A CRISMA Federation must be composed of CRISMA Federates only.
10. An existing software component that wants to join a CRISMA Federation and

thus become a CRISMA Federate has to be aware of the ICMM API and thus

28.2.2014 | 147

http://www.crismaproject.eu

must be able to exchange Control and Communication Information with the
ICMM.

11. A CRISMA Application may be composed of CRISMA Federates, Integrated
Components, Integrated Simulation Models and Integrated Systems.

5.4.2.2. Rules for building blocks

In addition to the general rules for Federates, CRISMA Building Blocks have to adhere to
the following rules:

1. CRISMA Building Blocks are Federates that are provided by the CRISMA
Framework developed in SP3 of the CRISMA Project.

2. CRISMA Framework Building Blocks must be domain and location independent
and thus be usable in any CRISMA Application regardless of the concrete
Simulation Case or crisis management domain covered by the application.

3. CRISMA Framework Building Blocks must be composable and configurable, and
thus adaptable to the needs and requirements of the CRISMA Application (Pilot
Applications, respectively) to be built.

5.4.2.3. Rules for federated simulations and simulation models

The following rules apply to Federated Simulations and Federated or Integrated Simulation
Models.

Hazard
Model

Impact
Model

Losses
Model

Federated Simulation

Seismic
Model

Fire
Model

Incidence
ModelResponse

Model

Resource
Management

Model

Federated Simulation

Federated Simulation Federated Simulation

Figure 87: Examples for Federated Simulations.

28.2.2014 | 148

http://www.crismaproject.eu

1. According to the Simulation Model Integration Approach of the architecture
(section 3.14), any federated Simulation Model must be provided as OGC Web
Processing Service (WPS).

2. According to the Data Integration Approach of the architecture (section 3.13)
input and output data of federated Simulation Models should be provided via
OGC services such as SOS, WFS and WMS.

3. A Federated Simulation may be composed of one or more Federated or
Integrated Simulations models but appears itself as Federated Simulation Model
and thus is accessible via one OGC WPS interface.

4. Any Simulation Model shall be able to provide a human readable description of
its purpose.

5. Any Simulation Model shall be able to provide information about the supported,
required and optional parameters that have to be available in order to perform a
new model run. This includes information on how this data can be provided, e.g.
if it can be transmitted prior to the actual execution request and where it shall
reside, if it shall be part of the actual execution request, if the actual execution
request may contain links to the actual data. Additionally it must state what
formats and encodings are supported for each parameter as well as being able
to provide validity ranges if applicable.

6. Any Simulation Model shall be able to provide meta-information about its result
data. This includes information on supported data formats and means for
retrieving the data

7. Any Simulation Model shall be able to provide information about the status of a
specific execution (simulation run). Requesters may be informed at any time
whether an execution is scheduled, running, paused, failed, or finished.

8. Any Simulation Model shall be able to either indicate the expected execution
time for a certain run and the remaining execution time or at least provide an
indication of the actual status.

9. Any Simulation Model shall be able to provide detailed error messages e.g. in
case of a failed execution.

5.4.3. Rules for building block implementations

The following rules cover the adaptation of existing software components and the
implementation of new Building Blocks from scratch.

5.4.3.1. Rules for software candidates

Software Candidates are Software Components that are selected and adapted for the
realisation of a certain CRISMA Framework Building Block.

1. A candidate Software Component for a Building Block Implementation must be
made CRISMA-aware which means that it can exchanges events and Control
and Communication Information with the CRISMA Middleware Infrastructure
(ICMM).

2. The user interface(s) of a Software Component that is a candidate for Building
Block implementation should be exposed as Composite UI Modules that can
either be integrated into other GUIs (with help of the UI Integration Platform

28.2.2014 | 149

http://www.crismaproject.eu

Building Block) or put together with other Composite UI Modules to a rich
internet application (with help of the UI Mashup Platform Building Block).

3. If for technical reasons the user interface(s) of the candidate Software
Component cannot be provided as Composite UI Modules a mechanism must
be provided that allows the integration of other Composite UI Modules into the
native GUI of the Software Component (with help of the UI Integration Platform
Building Block).

4. A candidate Software Component should offer its programmatically accessible
functionality (functionality that can be accessed by other software components)
through a well-defined interface that must be realised as HTTP RESTful API.

5.4.3.2. Rules for building block implementation

Those are general rules for the implementation of Building Blocks of the CRISMA
Framework (see chapter 4). A concrete implementation of a Building Block is called
Software Component (see section 5.1).

1. Software Components implementing a Building Block of the CRISMA
Framework shall be generic but nevertheless adaptable to needs of a specific
CRISMA Application. Thus, they should provide convenient configuration
mechanisms and well-defined extension points.

2. Software Components implementing a Building Block of the CRISMA
Framework must implement the functionalities that are marked as mandatory in
the functional descriptions and specifications of the respective Functional
Building Blocks.

3. Software Components implementing a Building Block of the CRISMA
Framework should implement the functionalities that are marked as optional in
the functional descriptions and specifications of the respective Functional
Building Blocks.

4. Software Components implementing a Building Block of the CRISMA
Framework that are implemented from scratch and thus not based on an
existing Software Candidates must provide their user interface(s) as composite
UI Modules.

5.4.4. Rules for information models

Those are rules for the specification of Control and Communication Information Models
(CCIMs).

1. All CCIMs must be modelled and formally specified in Unified Modelling
Language (UML). The UML specification of CCIMs serves as formal
documentation for the Implementation Architecture as well as reference for API
developers.

2. The actual CCIM data (CCIM Entities) that is exposed through a RESTful API
has to be encoded in the JavaScript Object Notation (JSON) (RFC4627, 2006)
data format.

3. The UML to JSON mapping is not supported by mapping tools but has to be
performed by API developers during the specification and design of the RESTful
API. Apart from a few rules, this mapping is subject to interpretation of the API
developer.

28.2.2014 | 150

http://www.crismaproject.eu

4. The RESTful APIs as well as the REST (JSON) models that are based on the
CCIM UML models must be formally specified using the Swagger API
Documentation Toolkit as described in Rules and Best Practices for API
Specifications (5.4.5).

5. Besides the mandatory JSON encoding other optional representations of CCIM
Entities, e.g. in XML, may be supported by a specific implementation of an
REST API.

5.4.4.1. Rules for control and communication information models

The following rules and recommendations for CCIM modelling apply both to UML models
as well as to JSON models. As already mentioned before, the JSON models are another
representation of the UML models for a specific data encoding format. A CCIM class
defines the schema of a CCIM Entity, thus a CCIM Entity is an instance of a CCIM Class.

1. A CCIM may consist of several CCIM Classes.
2. All CCIM classes should be derived from one base class which defines the

common properties id, domain, name and description.
3. Properties of a CCIM class must consist of atomic types (integer, string,

boolean, …), arrays and other CCIM Classes only.
4. Collections of CCIM entities must be represented by simple arrays, associative

arrays (maps) are not supported.
5. Complex relationship like many to many relationships or cyclic relationship

between classes should be avoided.
6. camelCase should be used when naming properties, underscores shall be

omitted.
7. When defining CCIM Classes the plural form shall be used, e.g. World States

instead of World State.
8. The ISO 8601 standard should be used to encode date and time. UTC should

be used for dates.

5.4.4.2. Rules for JSON models

There are also a few rules and recommendations which are specific to the JSON
representation (REST Model) of CCIMS Entities. Since this JSON representation is related
to the resource oriented architecture (ROA) and REST APIs, respectively, the terminology
of the ROA is used to describe classes and instances. A CCIM Class in the context of a
REST (JSON) Model is therefore called Resource Type or Resource Class and a CCIM
Entity is called Resource Object, Resource Instance or just Resource.

The following rules and recommendations apply to REST (JSON) Models:
1. Supplemental properties which are not part of the originating UML Model but are

added to a Resource Type of the REST Model must be prefixed with a dollar
sign, e.g. $ref, $self, etc. The properties shall be in the following order: First
come $ref or $self properties, then any other $-prefixed properties and at last all
properties defined by the originating UML Model in the order they were specified
in the UML Model.

28.2.2014 | 151

http://www.crismaproject.eu

2. Many-to-Many relationships between two Resource Types (classes) should be
represented by a dedicated Resource Type that models those relationships.

3. In addition to the properties defined by a CCIM Class, a resource instance has
an additional and mandatory $self property which contains the relative URI of
the resource instance (self reference). The contents of the $self property must
match the API path component of the location HTTP header file, e.g.
location=http://someserver.com:8118/crsima/ICMM/v2/classes/earthquake.Worl
d State/31337, $self=”/classes/earthquake.World State/31337”

4. References to other resources have to be expressed with help of the $ref
property which contains an URI (RFC3986), that identifies the location of the
JSON object being referenced. The $ref property is also a relative URI.

5. Collection resources (collections of complex resources) have to be represented
by an array of JSON values that either contain resource instances or references
to resource instances. Links to resource instances have to be represented by
$ref properties. Additionally, a collection resource object has to define the
properties $offset, $limit, $first, $previous, $next and $last to navigate through
paginated collection resources.
a. $offset defines the actual offset in a paginated collection
b. $limit defines the maximum number of distinct entries in a paginated

collection
c. $first provides a relative URI to the first page of a paginated collection, e.g.

"$first": "/my.persons?offest=0&limit=100". $first must always be specified.
d. $last provides a relative URI to the last page of a paginated collection, e.g.

"$last": "/my.persons?offest=300&limit=100". $last must always be specified.
e. $prev provides a relative URI to the previous page of a paginated collection.

$prev must not be specified if the current page is identical to $first.
f. $next provides a relative URI to the next page of a paginated collection.

$next must not be specified if the current page is identical to $last.

5.4.5. Rules for RESTful API specifications

Those are rules for the specification and implementation of RESTful APIs.

For the formal specification of REST APIs the Swagger API Documentation Toolkit shall
be used: "Swagger is a specification and complete framework implementation for
describing, producing, consuming, and visualizing RESTful web services. With Swagger's
declarative resource specification, clients can understand and consume services without
knowledge of server implementation or access to the server code. The Swagger UI
framework allows both developers and non-developers to interact with the API in a
sandbox UI that gives clear insight into how the API responds to parameters and options."

https://developers.helloreverb.com/swagger/

REST APIs documented and visualised with the Swagger Framework can be easily tested
by client developers and even by end users or pilot partners who want to learn about the
technical details and capabilities of the Building Block Software Component exposing the
API. Usage of the Swagger Framework is mandatory for all new REST APIs developed for
the CRISMA Framework.

http://someserver.com:8118/crsima/imms/v2/classes/earthquake.worldstate/31337
http://someserver.com:8118/crsima/imms/v2/classes/earthquake.worldstate/31337
https://developers.helloreverb.com/swagger/

28.2.2014 | 152

http://www.crismaproject.eu

There are many best practices to be followed when designing and implementing REST
APIs. Describing them all in detail would go beyond the scope of this document.
Nevertheless, those are the most important rules and recommendations for the
specification of RESTful APIs in CRISMA:

1. Each resource has a global lifetime unique ID. Resource types (classes) which
represent the schema of a resource are uniquely indentified by their canonical
name which consists of the name of the application domain (e.g. earthquake,
laquila, nordicpilot, etc.) and the name of the resource class (e.g. World States)
separated by a dot (e.g. earthquake.World States). Resource instances (objects)
are uniquely identified by the id of their class (domain. class) and a key that is
defined by the underlying service implementation (e.g. table key, UUID, ...). This
unique id is also part of the URI of the resource. Therefore it has to be present in
the location header of the server response and in $self property of the resource
object or class.

2. The server response shall always provide the HTTP Header field 'Location'
containing the absolute URI (with host) of the resource. Each resource object
returned by the API shall provide a "$self" property containing the relative URI of
the resource. Further rules for mandatory properties of resource objects are
defined by the rules and guidelines for CCIMs (section 5.4.4.1).

3. If the API supports different output formats (content encoding) of the same
resource (e.g. JSON, XML, CSV), the resource format that shall be returned by
the API shall be determined by the order of HTTP accept headers provided by
the client. Alternatively, the API should support resource name extensions to
determine the format requested by the client. E.g. /resource.json returns the
JSON representation of the resource while /resource.csv returns the CSV
representation of the resource. The mandatory resource format to be supported
by any CRISMA API is JSON. Thus, the default behaviour of the API when no
accept header and no resource name extensions is provided is to return the
JSON representation of the resource.
The API documentation shall inform about the output formats supported by the
API.

4. We distinguish between collection resources and instance resources. Collection
and instance resources are referenced by the canonical name of their resource
type. /$domain.$class/ shall be used for access to a collection of all resources of
this type and /$domain.$class/$key shall be used for access to a specific
instance resource, e.g. GET /earthquake.World States/ returns all World State
resource objects of the earthquake domain while GET/ earthquake.World
States/aabb returns just the World State object 'aabb'.

5. HTTP operations are mapped to CRUD (create, read, update delete) in the
following way:
a. GET shall be used for read operations. The HTTP header of a GET response

should optionally contain a Link header field with relation type "describedBy"
that points to the type definition (class) of a resource instance, e.g.
<http://example.com/ICMM/v2/classes/earthquake.World States>;
rel="describedBy".

b. DELETE shall be used for delete operations.
c. PUT and POST shall be used for update and create operations.

28.2.2014 | 153

http://www.crismaproject.eu

i. PUT can be used for create whereby the unique id of the resource
must be known by the client beforehand (e.g. PUT /earthquake.World
States/aabbc).

ii. POST can be used for create whereby the unique id of the resource
does not have to be known beforehand (e.g. POST /earthquake.World
States/).The id of the newly created resource instance must be part of
the server response (location header field).

iii. PUT and POST can be used for full update operations. In case of a
full update the complete resource object must be send to the server
regardless how many properties have changed. Update operations
have to be executed against the URI of a particular resource instance,
e.g. /earthquake.World States/aabbc.

iv. PUT and POST can also be used for partial updates. A partial
update may send a JSON object containing only changed resource
properties.

6. Deleting specific properties of a resource is considered as a special case of a
partial update. It has to be realised by a PUT or POST request whereby the
properties to be deleted are set to NULL.

7. GET, DELETE and PUT are idempotent operations, thus repeated calls shall
result in the same server state, especially if PUT is used for full or partial
updates.

8. A full or partial update or a create issued via PUT or POST method may return
the complete modified or created resource object because the server could alter
timestamps, version numbers, etc. of the resource object; therefore always the
freshest instance of the modified resource should be made available to the
client. This behaviour can be controlled by the optional query parameter
requestResultingInstance {true|false}.
The API documentation shall inform about the default behaviour when no
requestResultingInstance parameter is provided.

9. For all GET, POST, PUT, DELTE operations, the server shall always return
d. correct and verbose HTTP Status codes in the HTTP header, e.g. 201

created;
e. the location header which contains the full URI of the resource; and
f. the correct media type, e.g. application/json for JSON resources.

10. APIs should be versioned and backwards compatible to previous versions.
Major versions should become part of the API URI (e.g. /api/v2/). Optionally, the
client may append the requested version to the media-type property in the HTTP
header, e.g. application/json;application&v=1.
The API documentation shall provide information about the current version and
backwards compatibility to previous versions.

11. When the API is queried to return complex resource objects (that are resources
containing nested resources), the complex resource object may contain only the
references of the nested resources. A resource reference is defined as "$ref"
property that contains the relative URI of the resource. It is up to the client to
resolve those linked resources. The same behaviour applies also to collection
resources, e.g. a request to /earthquake.World States/ may return the stubs of

28.2.2014 | 154

http://www.crismaproject.eu

all World State objects of the earthquake domain.
The API documentation shall inform about the default behaviour whether
complete or lightweight complex resource objects are returned.

12. A client may also control the behaviour of the API whether complete complex
resource objects or lightweight complex resource objects consisting of
references to nested resource objects shall be provided. This behaviour can be
controlled by the optional expand and level query parameters which are
appended to the GET resource request.
g. The expand parameter has as value a list of comma separated resource

property names. If a property points to a complex resource, the resource
shall be expanded by the server.

h. The level parameter has as value a positive integer that determines the
lowest level to which resources are expanded.

i. Expand and level parameters can be combined.
j. If the expand parameter is provided and the level parameter is omitted,

resources matching the expand properties are expanded to the lowest level.
k. If the level parameter is provided and the expand parameter is omitted, any

resources are expanded up to the level specified by the level parameter.
l. If the expand parameter is omitted and the level parameter is set to -1, the

API shall return a fully expanded resource.

The API documentation shall inform whether those parameters are supported or not
and what the default behaviour of the API regarding resource expansion is when
those parameters are not supported or not provided.
13. The client may also request the API to return partial resource objects. Therefore,

the client appends the fields request parameter to the GET resource request
and specifies in a comma separated list only those properties (fields) of the
resource the client is interested in. Please note, that this mechanisms is only
supported for top-level resource objects and the reduction is not applied on
nested resources. The fields request parameter can be used in combination with
the expand request parameter, though. This mechanism shall not be applied to
the $self field which is mandatory for all resource objects.
The API documentation shall inform whether the API supports the provision of
partial resource objects.

14. The representation of resource objects containing null values should be
controllable by the omitNullProperties parameter that can be used in a GET
request. If the parameter is set to true, properties that have a null value shall not
be present in the returned resource object.
The API documentation shall inform whether this parameter is supported or not.

15. The amount of resource objects returned by queries to collection resources
should be controllable by the offset and limit query parameters. Thereby, limit
specifies the maximum number of resources returned by one GET resource
request to the collection resources and offset the offset in the entire list
resources available in the particular collection. In addition to the array of
resource objects or resource links collection resources shall contain a set of
specific fields which provide links to navigate through the collection. (see also
rules and guidelines for CCIMs, section 5.4.4.1).

28.2.2014 | 155

http://www.crismaproject.eu

The API documentation shall inform whether those parameters are supported or
not and what their default values are.

16. Error messages should be as descriptive as possible and should provide as
much information as possible to trace back the error. Besides the correct HTTP
status codes (404, 409, 500, ...) in the HTTP header, in case of an error the API
shall also return a specific error resource object which contains detailed
information on the cause of the error. Thereby, the error message must not
contain security sensitive information like password, etc.

5.4.6. Rules for user interface integration and development

The following rules apply to the development of Composite UI Modules and the related UI
Integration and UI Mashup Platform.

1. Each Composite UI Module shall be realised as distinct HTML Widget which
consists of a static part (HTML/CSS + other static resources) defining layout and
structure of the user interface and a dynamic part (JavaScript) providing
dynamic content and interaction functionalities.

2. Composite UI Modules must be implemented in HTML5, CSS3 and JavaScript
(ECMA 262).

3. Composite UI Modules must not rely on any type of external plug-ins like Oracle
Java, Adobe Flash, Microsoft Silverlight, and others.

4. Composite UI Modules shall be realised as purely client-side and server-
agnostic solution that does not require any specific server-side infrastructure
(e.g. enterprise application server, servlet container, portal server, ...) apart from
the Infrastructure Building Blocks provided by the CRISMA Framework (e.g.
ICMM, UI Mashup Platform for Mashable Composite UI Modules, etc.).

5. Composite UI Modules should not rely on proprietary APIs or services that pose
the risk of exposing security and privacy sensitive information to third parties.

6. Composite UI Modules shall expose their programmatically accessible
functionality via a JavaScript API.

7. As any other Federates, Composite UI Modules shall support bidirectional
communication with the ICMM. Specifically, Composite UI Modules must be able
to receive action requests or event notifications dispatched by the ICMM and the
Pub/Sub context Broker Building Block, respectively. Thereby, appropriate
transport techniques like WebSockets, Server-sent Events or long-polling shall
be supported by Composite UI Module.

8. A Composite UI Module must provide a self-description that informs about its
capabilities. Specifically, this self-description has to be provided as JSON-
encoded CCIM and has to contain general descriptive and technical meta-
information as well as a description of the Composite UI Modules’ JavaScript
API.

9. The UI Integration Platform must be able to render and execute Composite UI
Modules. Thus, it must support HTML5, CSS3 and JavaScript.

10. A Mashable Composite UI Module must be able to interact with the UI Mashup
Platform or other Mashable Composite UI Modules through the Mashup
JavaScript API which is provided by the UI Mashup Platform.

28.2.2014 | 156

http://www.crismaproject.eu

11. The UI Mashup Platform shall support to interactively compose Mashable
Composite UI Modules and Integrated Widgets to rich internet applications.

12. Mashable Composite UI Modules should be based upon Composite UI Modules
which can be used independently of a particular UI Mashup Platform in a
CRISMA Application.

13. Communication and Interaction between Mashable Composite UI Modules
among each other and between the UI Mashup Platform should be based upon
functions exposed by the JavaScript API of wrapped Composite UI Modules.

14. The UI Integration Platform should be able to interact with Composite UI
Modules via their JavaScript API.

15. The UI Integration Platform should be able to interact with Mashable Composite
UI Modules that are assembled in a UI Mashup Platform. This interaction should
either be performed via the JavaScript API of the Composite UI Modules that
have been wrapped into Mashable Composite UI Modules or via APIs of the
respective UI Mashup Platform.

16. The business logic of Composite UI Modules that need to perform demanding
and long-running processes should be encapsulated in a dedicated server-side
component.

5.4.7. Rules for JavaScript APIs

As described in the previous chapter, Composite UI Modules shall expose a JavaScript
API that can be accessed by the UI Integration Platform, possibly also by other Composite
UI Modules. There are currently no specific rules for the design of such an API apart from
the general rule that the Google JavaScript Language Rules and the JavaScript Style
Guide9 (ref) shall be followed when developing JavaScript APIs and Composite UI
Modules in general. Especially the rules for documentation of functions with JSDoc10 and
exception handling are important.

9 https://google-styleguide.googlecode.com/svn/trunk/javascriptguide.xml
10 https://google-styleguide.googlecode.com/svn/trunk/javascriptguide.xml?showone=Comments#Comments

https://google-styleguide.googlecode.com/svn/trunk/javascriptguide.xml
https://google-styleguide.googlecode.com/svn/trunk/javascriptguide.xml?showone=Comments#Comments

28.2.2014 | 157

http://www.crismaproject.eu

6. Conclusions
The WP32 team had the task of describing the cohesive element of the CRISMA project –
the CRISMA Framework Architecture and the Building Blocks pertinent to this framework.

In order to provide a solid ground for the architecture, the initial WP32 work was to agree
on a consistent set of questions that need to be answered before designing the
architecture (section 1.7.1), assuring each of the questions is answered in a way
acceptable to the whole consortium and transforming the answers into high-level
architectural design decisions (D32.1, 2013). These decisions were then materialized in
the technology-independent (“functional”) and technology-dependent (“implementation”)
architecture, following the methodology described in section 1.7.2.

As a result, this document offers comprehensive answers to “Mission” (Section 2),
“Concepts” (Section 3), “Realisation” (Section 4) and “Implementation” (Section 5) of the
CRISMA Framework and will be useful within the project on several levels:

 First, the inherent traceability introduced by this process makes it easy to follow
the line of argumentation from requirements to Building Blocks and understand
the consequences of any changes that may be requested by various
stakeholders in the future.

 Second, the discussion of the (consequences of) various architectural concepts
presented in section 3 makes it easier for application builders to define their
Application Architecture – possibly exposing gaps which can be mended in the
second development cycle.

 Third, the document presents a solid base for implementation and integration
work in SP3 and SP4.

 Finally, the Implementation Architecture of the CRISMA Framework guides and
supports the development of Pilot Applications in SP5.

Some important findings of the architecture team are summarized below:

 The CRISMA Framework shall facilitate building of the crisis-management
planning and training applications. It will be implemented as a software
framework which offers a set of defined functionalities represented by Software
Components (Building Blocks - BBs).

 Aspects of transferability and integration with legacy systems have been
incorporated into the architectural design process and thus also into the
resulting software framework.

 At the heart of the framework are ICMM “middleware” components essentially
managing Control and Communication Information on available world State Data
Slots and Simulation Models, Transitions, etc. The ICMM provides furthermore
common auxiliary functionality like access control, versioning, discovery, etc.

 Any Software Component that is capable to interact with the Middleware
Infrastructure is considered a CRISMA Federate. The Federates developed in
the scope of SP3 are called “Building Blocks” and, as a rule, expose a well-
defined RESTful API aligned with the ICMM APIs.

 Any other component, model or system that is not aware of the ICMM APIs but
takes part in an interaction of CRISMA Federates is called “Integrated
Component”. Integrated components aren’t bound by the rules of the CRISMA
Framework Architecture.

28.2.2014 | 158

http://www.crismaproject.eu

 All Federates must exchange the Control and Communication Information
through the ICMM. However, they can exchange the data directly (for instance,
the data resulting from one Simulation Model can be directly used by next model
in processing chain).

 In addition to the integration at service level, the CRISMA Framework
Architecture foresees integration on the GUI level, by means of functional GUI
widgets (Composite UI Modules) linked to Building Blocks. These widgets can
be combined in ad-hoc web mashup applications as needed. The result can be
either used stand-alone or embedded in existing applications.

 Functionalities provided by CRISMA Building Blocks include support for the
integration of data and Simulation Models required by CRISMA applications,
interaction of users with these models, as well as the visualisation and support
for evaluation of the effects of specific mitigation measures (Crisis Management
Scenario Analysis).

 The architecture does not directly support exchange of data between two
models during the model run (“tight binding”). If needed, the tightly bound
models can be realized independent of CRISMA (e.g. using OpenMI), and
exposed as a single “composite” model within the framework. As a
consequence, the architecture also does not support elaborate interaction of
models during the run.

 The “decision making” related to possible “what if”-scenarios within the CRISMA
framework corresponds to changing of the parameters exposed by the
Simulation Case. This can be performed at specific Transition Points. Users will
be able to navigate a simulated crisis scenario (over time), try out different crisis
management actions and eventually compare the results. On top of this an
indicator based decision support concept is defined that even ranks the outcome
of a specific action according to a number of criteria (Multi-Criteria-Analysis).

The feedback on D32.1 architecture document and lessons learned from the first
development cycle have been taken into account. The document is well-organised and
provides essential information for the follow-up activities in related CRISMA work
packages, especially at the level of the implementation and integration of the respective
Software Components in WPs 34 and 35 and the specification and implementation of the
Pilot Applications in SP5.

Nevertheless, the realisation (chapter 4) and implementation (chapter 5) parts of the
architecture should not be understood as “cast in stone”. To a large extent, the current
specification of Functional Building Blocks and related Software Components is an offer for
developers and integrators in sub projects three, four and five and will be adapted and
extended in the future through the CRISMA Catalogue.

28.2.2014 | 159

http://www.crismaproject.eu

7. References
AGPL. 2007. GNU Affero General Public License, Version 3. Free Software Foundation, Inc. 19
November 2007. https://www.gnu.org/licenses/agpl-3.0.html.

Beyer, U., Cohnitz, S., Stachowiak, J., Usov, A., Rome, E., Beyel, C. & Börding, J. 2010. DIESIS –
Design of an Interoperable European Federated Simulation network for critical InfraStructures,
Deliverable D4.1b Final Architectural Design, Collaborative Project, Specifically Targeted Research
Project (STReP), FP7 RI Grant Agreement N° 212830.

BSD 1998. The BSD 2-Clause License. http://opensource.org/licenses/bsd-license.php.

Carson, J.S. 2005. Introduction to Modeling and Simulation. In Proceedings of the 2005 Winter
Simulation Conference, 28/02/2012.

D11.1. 2012. Frings, S. (Ed.). Initial consolidation report of the internal workshops. Deliverable
D11.1 of the European Integrated Project CRISMA, FP7-SECURITY- 284552.

D21.1. 2012. Aubrecht, C. (Ed.). Technology Inventory for Crisis Management Tools & Models.
Deliverable D21.1 of the European Integrated Project CRISMA, FP7-SECURITY- 284552.

D23.1. 2011. Leone, M. (Ed.). Requirements and Use Cases. Deliverable D23.1 of the European
Integrated Project CRISMA, FP7-SECURITY- 284552.

D25.1. 2014. Engelbach, W. (Ed.). Updated technology inventory, requirements, scenarios, criteria
and key performance indicators. Deliverable D25.1 of the European Integrated Project CRISMA,
FP7-SECURITY- 284552.

D31.1. 2012. Taveter, K. (Ed.). Technology, Concepts & Technical Requirements Report V1.
Deliverable D31.1 of the European Integrated Project CRISMA, FP7-SECURITY- 284552.

D31.2. 2013. Taveter, K. (Ed.). Technology, Concepts & Technical Requirements Report V2.
Deliverable D32.1 of the European Integrated Project CRISMA, FP7-SECURITY- 284552.

D32.1. 2013. Dihé, P. (Ed.). ICMS Functional Architecture Document v1. Deliverable D32.1 of the
European Integrated Project CRISMA, FP7-SECURITY- 284552.

D34.1. 2013. Dihé, P. (Ed.). ICMS Building Blocks V1. Deliverable D34.1 of the European
Integrated Project CRISMA, FP7-SECURITY- 284552.

D35.1. 2014. Kutschera, P. (Ed.). ICMS Framework V1. Deliverable D35.1 of the European
Integrated Project CRISMA, FP7-SECURITY- 284552.

D42.1. 2013. Garcia-Aristizabal, A. (Ed.). Multi-risk analysis; scenarios of cascading effects;
concept model of dynamic scenario assessment. Deliverable D42.1 of the European Integrated
Project CRISMA, FP7-SECURITY- 284552.

D43.1. 2013. Zuccaro, G. (Ed.). Version 1 of Dynamic vulnerability functions, Systemic
vulnerability, and Social vulnerability . Deliverable D43.1 of the European Integrated Project
CRISMA, FP7-SECURITY- 284552.

D44.1. 2013. Broas, P. (Ed.). Version 1 of Model for decision-making assessment, Economic
impacts and consequences, and Simulation. Deliverable D44.1 of the European Integrated Project
CRISMA, FP7-SECURITY- 284552.

D51.1. 2013. Erlich, M., Cabal, A. (Eds.). Site Status. Deliverable D51.1 of the European
Integrated Project CRISMA, FP7-SECURITY- 284552.

https://www.gnu.org/licenses/agpl-3.0.html
http://opensource.org/licenses/bsd-license.php

28.2.2014 | 160

http://www.crismaproject.eu

D51.2. 2013. Erlich, M., Cabal, A. (Eds.). Pilot user guide. Deliverable D51.2 of the European
Integrated Project CRISMA, FP7-SECURITY- 284552.

D63.1. 2013. Stevenot, B. (Ed.). Report on market analysis. Deliverable D63.1 of the European
Integrated Project CRISMA, FP7-SECURITY- 284552.

David, O., Carlson, J.R., Leavesley, G., Ascough II, J., Geter, F., Rojas, K. & Ahuja, L. 2010.
Object Modeling System v3.0 Developer and User Handbook, Aug 10, 2010.

Denzer, R., Güttler, R., Schlobinski, S. & Williams, J. 2003. A Decision Support System for Marine
Applications. Environmental Informatics Group, Saarbrücken, Germany, Marine Tech South,
Southampton, United Kingdom.

DoW. 2013. Heikkilä, A-M (Ed.). GRANT Agreement Part B (Description of Work) of the European
Integrated Project CRISMA, FP7-SECURITY- 284552.

Dublin Core. 2013. Dublin Core. https://en.wikipedia.org/wiki/Dublin_Core.

ECMA. 2011. ECMAScript® Language Specification. Ecma International, Geneva.
http://www.ecma-international.org/publications/files/ECMA-ST/Ecma-262.pdf.

FI-WARE. 2011. FUTURE INTERNET Core Platform. http://www.fi-ware.eu/.

GML. 2012. Geography Markup Language. http://www.opengeospatial.org/standards/gml.

IEEE. 2010. IEEE 1516-2010 IEEE Standard for Modeling And Simulation (M&S) High Level
Architecture (HLA). New York, NY: Institute of Electrical and Electronics Engineers.

IEEE. 2011. IEEE 1516E-2011 IEEE Standard for Modeling And Simulation (M&S) High Level
Architecture (HLA). New York, NY: Institute of Electrical and Electronics Engineers.

IETF. 2013. Internet Engineering Task Force. http://www.ietf.org/.

ISO/IEC. 1998. ISO/IEC 10746-1:1998 (E). Information technology – Open Distributed Processing
– Reference model.

ISO_19115. 2003. ISO 19115:2003 GEOGRAPHIC INFORMATION - METADATA.
http://www.isotc211.org/Outreach/ISO_TC_211_Standards_Guide.pdf.

ISO_19119. 2003. ISO 19119:2005 GEOGRAPHIC INFORMATION – SERVICES .
http://www.isotc211.org/Outreach/ISO_TC_211_Standards_Guide.pdf.

Lee, Y.T. 1999. Information modelling from design to implementation. National Institute of
Standards and Technology.

Moore, R. 2010. OpenMI Standard 2 Specification. The OpenMI Association Technical Committee
(OATC), 30/11/2010.

NGSI. 2010. NGSI Context Management. Candidate Version 1.0 – 03 Aug 2010. Open Mobile
Alliance. http://technical.openmobilealliance.org/Technical/release_program/docs/NGSI/V1_0-
20101207-C/OMA-TS-NGSI_Context_Management-V1_0-20100803-C.pdf

NetCDF. 2011. OGC network Common Data Form (netCDF) standards suite.
http://www.opengeospatial.org/standards/netcdf

O&M. 2011. Observations and Measurements. http://www.opengeospatial.org/standards/om.

OAuth. 2012. OAuth 2.0 Specification - RFC 6749. http://tools.ietf.org/html/rfc6749.

OGC. 2013. The Open Geospatial Consortium (OGC).http://www.opengeospatial.org/ogc.

https://en.wikipedia.org/wiki/Dublin_Core
http://www.ecma-international.org/publications/files/ECMA-ST/Ecma-262.pdf
http://www.fi-ware.eu/
http://www.opengeospatial.org/standards/gml
http://www.ietf.org/
http://www.isotc211.org/Outreach/ISO_TC_211_Standards_Guide.pdf
http://www.isotc211.org/Outreach/ISO_TC_211_Standards_Guide.pdf
http://technical.openmobilealliance.org/Technical/release_program/docs/NGSI/V1_0-20101207-C/OMA-TS-NGSI_Context_Management-V1_0-20100803-C.pdf
http://technical.openmobilealliance.org/Technical/release_program/docs/NGSI/V1_0-20101207-C/OMA-TS-NGSI_Context_Management-V1_0-20100803-C.pdf
http://www.opengeospatial.org/standards/netcdf
http://www.opengeospatial.org/standards/om
http://tools.ietf.org/html/rfc6749
http://www.opengeospatial.org/ogc

28.2.2014 | 161

http://www.crismaproject.eu

OpenID. 2007. OpenID Authentication 2.0. http://openid.net/specs/openid-authentication-2_0.html.

Paulheim, H. 2010. Integration of User Interface Components based on Ontologies and Rules.
SAP Research Center Darmstadt, Germany.

Plantenga, T. & Friedman-Hill, E. 2010. Integrated Modelling, Mapping, and Simulation (IMMS)
Framework for Planning Exercises, Sandia National Laboratories.

Powell, E. & Noseworthy, J. 2012. The Test and Training Enabling Architecture (TENA), SAIC, Inc,
US Government Contracts 1435-04-01-CT-31085, DASG60-02-D-0006-40, and DASG60-02-D-
0006-122.

Probst, F. & Paulheim, H. 2010. Application Integration on the User Interface Level: an Ontology-
Based Approach. SAP Research Center Darmstadt.

REST. 2013. Representational state transfer.
https://en.wikipedia.org/wiki/Representational_state_transfer.

RFC. 2013. Request for Comments. https://en.wikipedia.org/wiki/Request_for_Comments.

RFC_1945. 1996. Hypertext Transfer Protocol – HTTP/1.0. http://www.ietf.org/rfc/rfc1945.txt.

RFC_2119. 1997. Key words for use in RFCs to Indicate Requirement Levels.
https://www.ietf.org/rfc/rfc2119.txt.

RFC_2616. 1999. Hypertext Transfer Protocol – HTTP/1.1. http://www.ietf.org/rfc/rfc2616.txt.

RFC_3986. 2005. Uniform Resource Identifier (URI): Generic Syntax.
http://www.ietf.org/rfc/rfc3986.txt.

RFC_4627. 2006. The application/json Media Type for JavaScript Object Notation (JSON).
https://www.ietf.org/rfc/rfc4627.txt.

RFC_4918. 1999. HTTP Extensions for Web Distributed Authoring and Versioning - WebDAV.
https://tools.ietf.org/html/rfc4918.

RM-OA. 2007. Usländer, T. (Ed.). Reference Model for the ORCHESTRA Architecture Version 2
(Rev. 2.1). OGC Best Practices Document 07-097, 2007.

Rome, E., Bologna, S., Gelenbe, E., Luiijf, E. & Masucci, V. 2009. DIESIS: An Interoperable
European Federated Simulation Network for Critical Infrastructures. In Proceedings of the 2009
SISO European Simulation Interoperability Workshop (ESIW’09), Istanbul, Turkey, July 13–16, pp.
139–146. San Diego, CA: Simulation Councils, Inc.

SANY-SA. 2009. SANY Consortium, Specification of the Sensor Service Architecture V3, SANY
public deliverable, http://www.sany-ip.eu, November 2009.

Schmidt, J., Matcham, I., Reese, S., King, A., Bell, R., Henderson, R., Smart, G., Cousins, J.,
Smith, W. & Heron, D. 2011. Quantitative multi-risk analysis for natural hazards: a framework for
multi-risk modelling. Springer Science+Business Media B.V. 2011.

Semantic Web. 2013. Semantic Web. World Wide Web Consortium.
http://www.w3.org/standards/semanticweb/

SensorML. 2007. Open Geospatial Consortium. Sensor Model Language.
http://www.opengeospatial.org/standards/sensorml

SOA-RM. 2006. OASIS Reference Model for Service Oriented Architecture 1.0. Committee
Specification 1, 2 August 2006.

http://openid.net/specs/openid-authentication-2_0.html
https://en.wikipedia.org/wiki/Representational_state_transfer
https://en.wikipedia.org/wiki/Request_for_Comments
http://www.ietf.org/rfc/rfc1945.txt
https://www.ietf.org/rfc/rfc2119.txt
http://www.ietf.org/rfc/rfc2616.txt
http://www.ietf.org/rfc/rfc3986.txt
https://www.ietf.org/rfc/rfc4627.txt
https://tools.ietf.org/html/rfc4918
http://www.sany-ip.eu/
http://www.w3.org/standards/semanticweb/
http://www.opengeospatial.org/standards/sensorml

28.2.2014 | 162

http://www.crismaproject.eu

SOS. 2012. Sensor Observation Service. Open Geospatial Consortium.
http://www.opengeospatial.org/standards/sos.

SPS. 2011. Sensor Planning Service. Open Geospatial Consortium.
http://www.opengeospatial.org/standards/sps.

Stachowiak, H. 1973. Allgemeine Modelltheorie. Wien-New York.

SWEdata. 2011. SWE Common Data Model Encoding Standard. Open Geospatial Consortium.
http://www.opengeospatial.org/standards/swecommon.

SWEservice. 2011. SWE Service Model Implementation Standard. Open Geospatial Consortium.
http://www.opengeospatial.org/standards/swes.

TOGAF. 2011. The Open Group Architecture Framework, Open Group Standard, Version 9.1,
Enterprise Edition.

UML. 2013. Unified Modelling Language. http://en.wikipedia.org/wiki/Unified_Modeling_Language.

W3C. 2012. World Wide Web Consortium. http://www.w3.org/Consortium/.

WCPS. 2009. Web Coverage Processing Service. Open Geospatial Consortium.
http://www.opengeospatial.org/standards/wcps.

WCS. 2010. Web Coverage Service. Open Geospatial Consortium.
http://www.opengeospatial.org/standards/wcs.

Web Design. 2013. Web Design and Applications. World Wide Web Consortium.
http://www.w3.org/standards/webdesign/.

WFS. 2010. Web Feature Service. Open Geospatial Consortium.
http://www.opengeospatial.org/standards/wfs.

WMS. 2006. Web Map Service. Open Geospatial Consortium.
http://www.opengeospatial.org/standards/wms.

WNS. 2003. Web Notification Service. Open Geospatial Consortium.
http://portal.opengeospatial.org/files/?artifact_id=1367.

WPS. 2007. Web Processing Service. Open Geospatial Consortium.
http://www.opengeospatial.org/standards/wps.

WSN. 2006. Web Services Notification. Open Geospatial Consortium.
https://www.oasis-open.org/standards#wsnv1.3.

XML. 2010. XML Technology. World Wide Web Consortium. http://www.w3.org/standards/xml/.

http://www.opengeospatial.org/standards/sos
http://www.opengeospatial.org/standards/sps
http://www.opengeospatial.org/standards/swecommon
http://www.opengeospatial.org/standards/swes
http://en.wikipedia.org/wiki/Unified_Modeling_Language
http://www.w3.org/Consortium/
http://www.opengeospatial.org/standards/wcps
http://www.opengeospatial.org/standards/wcs
http://www.w3.org/standards/webdesign/
http://www.opengeospatial.org/standards/wfs
http://www.opengeospatial.org/standards/wms
http://portal.opengeospatial.org/files/?artifact_id=1367
http://www.opengeospatial.org/standards/wps
https://www.oasis-open.org/standards#wsnv1.3
http://www.w3.org/standards/xml/

28.2.2014 | 163

http://www.crismaproject.eu

APPENDIX (A) Core CCIM formal specification

This appendix provides a complete overview of all element details of the Core Control and
Communication Information Model of the CRISMA Framework Architecture. The following
class diagram gives a complete overview of the current Core CCIM of CRISMA (Figure
88).

cd Complete

Classifications

- key: String

BaseEntity
DataDescriptors

- categories: Categories [1..*]
- metadata: String
- defaultAccessInfoContentType: String
GenericReference
- defaultAccessInfo: String

BaseEntity
DataItems

- lastModified: timestamp
- temporalCoverageFrom: timestamp
- temporalCoverageTo: timestamp
- spatialCoverage: geom
- dataDescriptor: DataDescriptors*
- actualAccessInfoContentType: String
GenericResource
- actualAccessInfo: String

BaseEntity
ManipulationDescriptors

- categories: Categories [1..*]
- uiIntegrationInfoContentType: String
GenericReference
- uiIntegrationInfo: String

BaseEntity
RenderingDescriptors

- categories: Categories [1..*]
- uiIntegrationInfoContentType: String
GenericReference
- uiIntegrationInfo: String

BaseEntity
SimulationDescriptors

- categories: Categories [1..*]
- simulationControlParameterDescription: DataDescriptors*
- executionInfoContentType: String
- uiIntegrationInfoContentType: String
GenericReference
- executionInfo: String
- uiIntegrationInfo: String

BaseEntity
Transitions

- performedManipulation: ManipulationDescriptors*
- performedSimulation: SimulationDescriptors*
- simulationControlParameter: DataItems
- transitionStatusContentType: String
GenericReference
- transitionStatus: String

BaseEntity
Worldstates

- categories: Categories [1..*]
- creator: String
- created: timestamp
- originTransition: T ransition* [0..1]
- parentWorldstate: Worldstates* [0..1]
- childWorldstates: Worldstates* [0..*]
- worldstateData: DataItems* [1..*]
- iccData: DataItems* [1..3] {ordered}

BaseEntity
IccFunctionDescriptors

- executionInfoContentType: String
GenericReference
- executionInfo: String

Categories

- key: String
- classification: Classifications

BaseEntity
InitialisationDescriptors

- categories: Categories [1..*]
- uiIntegrationInfoContentType: String
GenericReference
- uiIntegrationInfo: String

+id

1

+originTransition

0..1

+id 0..*

+performedSimulation 0..1

+key 0..*

+categories 0..*

+key 0..*

+categories 0..*

+key

0..*

+categories

0..*

+worldstateData 1..*

+id

0..1

+key 0..*

+categories

0..*

+key 0..*

+categories 0..* +simulationControlParameter 1

+id 0..1

+id 0..1

+simulationControlParameterDescription 0..*

+categories 0..*

+key 0..*

+performedManipulation 0..*

+id

0..*

+id 1..*

+classification 1

+parentWorldstate
0..1

+id 0..* +id 1..*

+iccData 1

+worldstateDataDescriptor

1

+id

0..*

Figure 88: Core CCIM Class Diagram with Relationships.

BaseEntity

A Base Class that defines common properties needed by all classes. All classes should be
derived from this class.

28.2.2014 | 164

http://www.crismaproject.eu

Table 3: Specification of Base Entity Attributes.

Attribute Notes
id String
Private

Unique id of the entity.

domain String
Private

Name of the domain the entity belongs to.

name String
Private

Optional name of the entity.

description String
Private

Optional description of the entity.

cd Complete

BaseEntity
InitialisationDescriptors

- categories: Categories [1..*]
- uiIntegrationInfoContentType: String
GenericReference
- uiIntegrationInfo: String

Figure 89: BaseEntity Class Diagram.

Categories

A class representing an arbitrary category that can be used to categorise scenarios,
simulations, etc. Categories are furthermore used to categorise World States, data items
and descriptors, transitions, etc. They can be used for search and filtering, e.g. to filter for
all data descriptors that represent World State data, for all transitions that represent a
manipulation, etc.

Table 4: Specification of Categories Attributes.

Attribute Notes
key String
Private

A static key of the category that can be referenced in
applications. In contrast to the name property, it will not be
changed (e.g. depending on the language of the application).

classification Classifications
Private

Further classification of the category, e.g. scenario types,
crisis management phases, etc.

cd Categories

Categories

- key: String
- classification: Classifications

Classifications

- key: String+id

1..*

+classification

1

Figure 90: Categories Class Diagram with Relationships.

28.2.2014 | 165

http://www.crismaproject.eu

Classifications

A class that represents a classification of categories, e.g. scenario types, crisis
management phases, etc.

Table 5: Specification of Classifications Attributes.

Attribute Notes
key String
Private

A static key that can be referenced in applications. In contrast
to the name property, it will not be changed (e.g. depending on
the language of the application).

DataDescriptors

A DataDescriptor provides invariant meta-information about an arbitrary dataset (World
State Data, Simulation Control Parameters, ICC Data). A DataItem is associated with a
DataDescriptor. The DataDescriptor contains thereby static information like the URI of a
data source (Data Integration Building Block – data access service, e.g. OGC WFS) while
the DataItem provides information to identify an individual DataItem or a specific version of
a DataItem (e.g. a specific request parameter, a filename, etc.). A DataDescriptor can also
be considered as describing the type or source of the data and the DataItem as
representing a concrete data set of this type.

Table 6: Specification of DataDescriptors Attributes.

Attribute Notes
categories Categories
Private Collection [1..*]

Categories that describe the Data Descriptors, e.g. World
State Data, Simulation Control Parameter data, etc.

metadata String
Private

This field contains either a link to an external INSPIRE
metadata document describing the data set (e.g. the URL of
an XLS file, a metadata catalogue entry, a website, etc.) or the
INSPIRE metadata itself (XML, JSON, TEXT, ...). This is
descriptive information about the data source, thus it is not
required that the contents of this field are machine-
processable. Nevertheless, it is recommended to provide the
INSPIRE metadata in JSON format so that it can easily be
processed by web-based clients.

defaultAccessInfoContentType String
Private

Content Type of the specific access info for this Data
Descriptor.

defaultAccessInfo String
Private GenericReference

A GenericReference that describes the technical access
information of the actual data source, e.g. URI and credentials
(e.g. WFS URI). This is invariant meta-information that stays
the same for all DataItems that are described with this
DataDescriptor.

28.2.2014 | 166

http://www.crismaproject.eu

cd Complete

BaseEntity
DataDescriptors

- categories: Categories [1..*]
- metadata: String
- defaul tAccessInfoContentType: String
GenericReference
- defaul tAccessInfo: String

Figure 91: DataDescriptors Class Diagram.

DataItems

This class represents an actual data set (instance), e.g. World State Data, ICC Data,
Simulation Control Parameters, etc.

Table 7: Specification of DataItems Attributes.

Attribute Notes
lastModified timestamp
Private

Last modification timestamp of the data item.

temporalCoverageFrom timestamp
Private

The temporal coverage of the data (start date).

temporalCoverageTo timestamp
Private

The temporal coverage of the data (end date).

spatialCoverage geom
Private

The spatial coverage (geometry) of the data.

dataDescriptor DataDescriptors
Private

Reference to a DataDescriptor object containing invariant
control and meta-information about the World State Data, e.g.
access information (URI) for a Data Integration Building
Block.

actualAccessInfoContentType String
Private

Content Type of the actual access info of the DataItem.

actualAccessInfo String
Private GenericResource

This is the actual information on how to access the data or for
very small and simple datasets (e.g. ICC Data) it may contain
also the data itself. In general it provides information to
indentify an individual DataItem or a specific version of a
DataItem (e.g. a specific request parameter, a filename, etc.). It
is also related to a DataDescriptor whereby the
DataDescriptor may provide invariant and general access
information (base URI, database name, table name, ...) and the
actual access information to indentify a data set may consist
of request parameters, table names, filenames, etc. Like any
GenericReference, actual access information may be
described by an Application CCIM.

28.2.2014 | 167

http://www.crismaproject.eu

cd Complete

BaseEntity
DataItems

- lastModified: timestamp
- temporalCoverageFrom: timestamp
- temporalCoverageTo: timestamp
- spatialCoverage: geom
- dataDescriptor: DataDescriptors*
- actualAccessInfoContentType: String
GenericResource
- actualAccessInfo: String

Figure 92: DataItems Class Diagram.

ExternalResource

This metaclass represents an external resource that is referenced by a
GenericReference. The External Resource may be defined by another application specific
CCIM. Thus, External Resource is a defined extension point of the Core CCIM. The actual
content of the External Resource is described by a contentType property.

GenericReference

This stereotype represents a generic reference to an external resource, e.g. a JSON or
XML document, a link to a JSON or XML document, etc. In general domain specific
information that may be used by (application specific) components. The content of a
generic reference is identified by a content type attribute. Generic References of type
CCIM Reference describe a reference to an arbitrary CCIM JSON object (CCIM entity).
The CCIM Reference is used to establish relations to CCIM entities that are not known
during the design time of the Core CCIM. Generic References provide an extension point
where application specific CCIMs can be plugged-in. CCIM Reference is not an
instantiable Class but a stereotype of a string attribute. The value of the attribute contains
either a complete CCIM JSON object or a link to a CCIM JSON object (an object with one
$ref property).

IccFunctionDescriptors

IccFunctionDescriptors provide Information about the ICC Functions that are executed
after each World State transition.

Table 8: Specification of IccFunctionDescriptors Attributes.

Attribute Notes
executionInfoContentType String
Private

Content Type of the specific execution info for this
IccFunctionDescriptor.

executionInfo String
Private GenericReference

Information on how to execute the ICC Function, may include
an execute command, a service URL, an API call, etc. The
concrete details depend on the types of ICC functions
available in a particular CRISMA Application.

28.2.2014 | 168

http://www.crismaproject.eu

cd ICC Descriptions

BaseEntity
IccFunctionDescriptors

- executionInfoContentType: String
GenericReference
- executionInfo: String

BaseEntity
DataItems

- lastModified: timestamp
- temporalCoverageFrom: timestamp
- temporalCoverageTo: timestamp
- spatialCoverage: geom
- dataDescriptor: DataDescriptors*
- actualAccessInfoContentType: String
GenericResource
- actualAccessInfo: String

BaseEnti ty
DataDescriptors

- categories: Categories [1..*]
- metadata: String
- defaultAccessInfoContentType: String
GenericReference
- defaultAccessInfo: String

+worldstateDataDescriptor 1

+id 0..*

Figure 93: IccFunctionDescriptors Class Diagram with Relationships.

InitialisationDescriptors

Initialisation descriptors describe user interfaces and business logic (e.g. Composite UI
Modules, Setup and Configuration Building Blocks) that are needed to initialize the set of
simulation models, the initial World State, descriptors, etc. This refers to the initial setup
and configuration of the CRISMA Application.

Table 9: Specification of InitialisationDescriptors Attributes.

Attribute Notes
categories Categories
Private Collection [1..*]

Categories that describe the Initialisation Descriptors.

uiIntegrationInfoContentType String
Private

Content Type of the specific UI integration info for this
Initialisation Descriptor.

uiIntegrationInfo String
Private GenericReference

This is the actual information on how to instantiate and
integrate the respective initialisation user interface
(Composite UI Module), depending on the CRISMA
Application, this field may contain an URI that points to a
Composite UI Module instance..

28.2.2014 | 169

http://www.crismaproject.eu

cd Complete

BaseEntity
InitialisationDescriptors

- categories: Categories [1..*]
- uiIntegrationInfoContentType: String
GenericReference
- uiIntegrationInfo: String

Figure 94: InitialisationDescriptors Class Diagram.

ManipulationDescriptors

ManipulationDescriptors refer to World State Transitions and describe the user interfaces
and business logic (e.g. Composite UI Modules, World States Widget Building View and
associated Widgets) to manipulate the changeable parameters of a World State.

Table 10: Specification of ManipulationDescriptors Attributes.

Attribute Notes
categories Categories
Private Collection [1..*]

Categories that describe the Initialisation Descriptors.

uiIntegrationInfoContentType String
Private

Content Type of the specific UI integration info for this
Initialisation Descriptor.

uiIntegrationInfo String
Private GenericReference

This is the actual information on how to instantiate and
integrate the respective initialisation user interface
(Composite UI Module), depending on the CRISMA
Application, this field may contain an URI that points to a
Composite UI Module instance.

cd Complete

BaseEntity
ManipulationDescriptors

- categories: Categories [1..*]
- uiIntegrationInfoContentType: String
GenericReference
- uiIntegrationInfo: String

Figure 95: ManipulationDescriptors Class Diagram.

RenderingDescriptors

A Rendering Descriptor describes a User Interfaces to visualize the World State (World
State View Building Block and related Widgets).

Table 11: Specification of RenderingDescriptors Attributes.

Attribute Notes
categories Categories
Private Collection [1..*]

Categories that describe the Rendering Descriptors

uiIntegrationInfoContentType String Content Type of the UI integration info for the Rendering

28.2.2014 | 170

http://www.crismaproject.eu

Attribute Notes
Private Descriptor.
uiIntegrationInfo String
Private GenericReference

This is the actual information on how to instantiate and
integrate the respective (World State) user interface
(Composite UI Module, World States Widget Building Block).
Depending on the CRISMA Application, this field may contain
an URI that points to a Composite UI Module.

cd Complete

BaseEntity
RenderingDescriptors

- categories: Categories [1..*]
- uiIntegrationInfoContentType: String
GenericReference
- uiIntegrationInfo: String

Figure 96: RenderingDescriptorsClass Diagram.

SimulationDescriptors

A SimulationDescriptor provides information about a Federated Simulation (a simulation
consisting of one or more simulation models wrapped as one WPS service). It holds
references (Generic Reference) to concrete descriptions on how to execute the simulation
(Simulation Model Integration Building Block) and by which user interface (Simulation
Model Interaction Building Block) to control (e.g. parameterise, monitor) the simulation.

Table 12: Specification of SimulationDescriptors Attributes.

Attribute Notes
categories Categories
Private Collection [1..*]

Categories that describe the Simulation Descriptors, e.g.
the type of the simulation (impact scenario, ...)

simulationControlParameterDescription
DataDescriptors
Private

A description of the simulation model control parameters.

executionInfoContentType String
Private

Content Type of the specific execution info for this
Simulation Descriptor.

uiIntegrationInfoContentType String
Private

Content Type of the specific UI integration info for this
Simulation Descriptor.

executionInfo String
Private GenericReference

Information on how to execute the federated simulation. In
general it will contain information on the WPS that provides
the simulation (Simulation Model Integration Building
Block).The concrete details depend on the types of
simulations available in a particular CRISMA Application.

uiIntegrationInfo String
Private GenericReference

This is the actual information on how to instantiate and
integrate the respective simulation control user interface
(Composite UI Module, Simulation Model Interaction
Building Block). Depending on the CRISMA Application, this
field may contain an URI that points to a Composite UI
Module instance which is able to configure a simulation,
monitor its progress, etc..

28.2.2014 | 171

http://www.crismaproject.eu

cd Simulation Model Descriptor

SimulationDescriptors

- categories: Categories [1..*]
- simulationControlParameterDescription: DataDescriptors*
- executionInfoContentType: String
- uiIntegrationInfoContentType: String
GenericReference
- executionInfo: String
- uiIntegrationInfo: String

DataDescriptors

- categories: Categories [1..*]
- metadata: String
- defaultAccessInfoContentType: String
GenericReference
- defaultAccessInfo: String

BaseEntity

- id: String
- domain: String
- name: String
- description: String

+id

0..1

+simulationControlParameterDescription

0..*

Figure 97: SimulationDescriptors Class Diagram with Relationships.

The class diagram shown in Figure 97 visualises all classes of the Core CCIM that form a
Simulation Case, that is, a concrete setup of a CRISIS Management Application.

Transitions

This class represents a concrete World State Transition. It contains information on the
performed manipulation or simulation, the actual simulation control parameters and further
meta-information (e.g. which parts of the World State were changed).

Table 13: Specification of Transitions Attributes.

Attribute Notes
performedManipulation
ManipulationDescriptors
Private

This property will contain information about the type of
manipulations that have been performed.

performedSimulation
SimulationDescriptors
Private

This property will contain information about the type of
simulation that has been performed.

simulationControlParameter
DataItems
Private

This property will contain the actual simulation control
parameter data.

transitionStatusContentType String
Private

Content Type of the specific transition status of this
transition.

transitionStatus String
Private GenericReference

This Generic Reference provides the detailed transition status
information. It may be represented by an arbitrary CRISMA
JSON object that is defined for a specific Application CCIM
and may be injected dynamically, e.g. by the actual simulation
execution building block. It may also point to the raw
transition status, e.g. a logfile, a link to a website with status
messages, a WPS url, etc.

28.2.2014 | 172

http://www.crismaproject.eu

cd Transitions

BaseEnti ty
Transitions

- performedManipulation: ManipulationDescriptors*
- performedSimulation: SimulationDescriptors*
- simulationControlParameter: DataItems
- transi tionStatusContentType: String
GenericReference
- transi tionStatus: String

BaseEnti ty
Worldstates

- categories: Categories [1..*]
- creator: String
- created: timestamp
- originTransition: Transi tion* [0..1]
- parentWorldstate: Worldstates* [0..1]
- childWorldstates: Worldstates* [0..*]
- worldstateData: DataItems* [1..*]
- iccData: DataItems* [1..3] {ordered}

BaseEntity
ManipulationDescriptors

- categories: Categories [1..*]
- ui IntegrationInfoContentType: String
GenericReference
- ui IntegrationInfo: String

BaseEnti ty
DataItems

- lastModified: timestamp
- temporalCoverageFrom: timestamp
- temporalCoverageTo: timestamp
- spatialCoverage: geom
- dataDescriptor: DataDescriptors*
- actualAccessInfoContentType: String
GenericResource
- actualAccessInfo: String

BaseEnti ty
SimulationDescriptors

- categories: Categories [1..*]
- simulationControlParameterDescription: DataDescriptors*
- executionInfoContentType: String
- uiIntegrationInfoContentType: String
GenericReference
- executionInfo: String
- uiIntegrationInfo: String

+simulationControlParameter

1

+id 0..1

+id 1..*

+iccData 1

+parentWorldstate
0..1

+id 0..*

+performedManipulation 0..*

+id

0..*

+id

1

+originTransition 0..1

+worldstateData 1..*

+id 0..1

+id 0..*

+performedSimulation 0..1

Figure 93: Transitions Class Diagram with Relationships.

28.2.2014 | 173

http://www.crismaproject.eu

WorldStates

This class represents a concrete World State. A snapshot of the World or World State
consists of all data related to a specific crisis simulation experiment.

Table 14: Specification of World States Attributes.

Attribute Notes
categories Categories
Private Collection [1..*]

Categories of the World State, e.g. to relate the World State to
a specific scenario or a crisis management phase.

creator String
Private

User or process that created the World State.

created timestamp
Private

Creation Timestamp of the World State.

originTransition Transition
Private [0..1]

Reference to the transition that created the World State, e.g. a
manipulation or a simulation.

parentWorld State World States
Private [0..1]

Reference to the parent World State in the World States tree.

childWorld States World States
Private Collection [0..*]

Reference to all child World States of this World State.

World StateData DataItems
Private Collection [1..*]

An array of data items that represent the actual World State
data.

iccData DataItems
Private [1..3]

A three-dimensional array of data items that represents the
Indicator, Criteria and Cost data that has been produced by a
Indicator Function (in case of Indicatior data) or other
services (in case of Cost and Criteria data).

cd Worldstate

BaseEnti ty
Worldstates

- categories: Categories [1..*]
- creator: String
- created: timestamp
- originTransition: Transition* [0..1]
- parentWorldstate: Worldstates* [0..1]
- chi ldWorldstates: Worldstates* [0..*]
- worldstateData: DataItems* [1..*]
- iccData: DataItems* [1..3] {ordered}

BaseEntity
DataItems

- lastModified: timestamp
- temporalCoverageFrom: timestamp
- temporalCoverageTo: timestamp
- spatialCoverage: geom
- dataDescriptor: DataDescriptors*
- actualAccessInfoContentType: String
GenericResource
- actualAccessInfo: String

BaseEnti ty
DataDescriptors

- categories: Categories [1..*]
- metadata: String
- defaultAccessInfoContentType: String
GenericReference
- defaultAccessInfo: String

BaseEntity
Transitions

- performedManipulation: ManipulationDescriptors*
- performedSimulation: SimulationDescriptors*
- simulationControlParameter: DataItems
- transitionStatusContentType: String
GenericReference
- transitionStatus: String

+simulationControlParameter

1

+id 0..1

+id 1..*

+iccData 1

+id 1

+originTransi tion 0..1

+worldstateDataDescriptor 1

+id

0..*

+worldstateData 1..*

+id 0..1

Figure 93: World States Class Diagram with Relationships.

28.2.2014 | 174

http://www.crismaproject.eu

APPENDIX (B) Application architecture template

This annex contains the Application Architecture Template of the CRISMA Framework
which has been introduced in section 5.3.

The Application Architecture Template is used to describe one particular Crisis
Management Scenario. Thereby, World State Data Slots, ICC Elements, Simulation
Models and Transition Points are at first specified independently of a particular Simulation
Case. This allows not only to reuse the same Transition Points throughout different
Simulation Cases but also to consolidate Transition Points from different Pilot Use Cases
into reusable Building Blocks of the CRISMA Framework.

The relationship between the different elements of the template which are in most cases
represented by tables that have to be filled in by the architect of the CRISMA Application
are illustrated in Figure 98.

cd Application Architecture

Simulation Case

Transition Point

Data Slot

World State Crisis
Management

Scenario

Simulation Model

ICC Element

Transition

1..*

0..*

1..*

0..*

1..*

0..*

0..* 0..*

0..*

1..*

«realize»

«real ize»

1..*

1

0..*

1..*

1.. 1

Figure 98: Relationship between Elements of the Template.

The information entered in this template will directly be used to populate the application-
specific Control and Communication Information Model (CCIM) which is an essential
cornerstone of each CRISMA Application.

28.2.2014 | 175

http://www.crismaproject.eu

Some of the fields of the tables expect the information to be entered in JSON (Java Script
Object Notation) format. The reason is that JSON is the default encoding format of the
Core CCIM and expected and served by the ICMM. Please note that this technical
information is optional as it is not needed for the description of Reference Scenarios. But it
is nevertheless required for the actual implementation.

To reduce the effort for providing a first draft specification of the Application Architecture
that is both useful for WP25 and WP35, some fields of the tables are optional for a certain
purpose of use of the template. Fields with green background contain information that can
simply be copied & pasted from other documents. Although this information has eventually
to be entered into a CCIM by a developer / integrator of the CRISMA Application, it is not
required but it is nevertheless recommended to provide this information. Fields with orange
background contain information that is not relevant for the specification of Reference
Scenarios (WP25). This mostly technical information is nevertheless highly relevant for the
integration of the CIRMSA Framework (WP35) and in most cases required for the
development of the CRISMA Application.

Initialisation and configuration information

Initialisation and configuration information has to be collected once for a particular
CRISMA Application. It consists of a specification of all Data Slots, Simulation Models and
ICC Elements that are available for the Simulation Cases of the Pilot Use Case as well as
all possible Transition Points themselves. Since those specifications must also contain
information on the relationships between Data Slots (blue), Simulation Models (red) and
ICC Elements (green), a diagram as shown in Figure 99 should be provided. Please note,
that the diagram in Figure 99 shows a preliminary example of the situation at the Italian
Pilot.

28.2.2014 | 176

http://www.crismaproject.eu

Figure 99: Relationship between Data Slots, Simulation Models and ICC Elements (Example).

28.2.2014 | 177

http://www.crismaproject.eu

World state data slot descriptions

In this section all World State Data Slots of the whole Crisis Management Use Case (i.e.
Pilot Use Case) are described in accordance to the Conceptual Business Logic and the
Core CCIM. The specification of World State Data Slots is separated from the specification
of Simulation Cases since a Pilot Use Case usually consists of different Simulation Cases
and not all World State Data Slots may be relevant for each Simulation Case. Thus it is
possible to define individual World States for each Simulation Case without the need to
repeat the specification of Data Slots. In particular, the same is also true for Transition
Points which are also specified independently of Simulation Cases.

The information about the Data Slots can be taken from the SP5 deliverables D51.1 “Site
Status“ (D51.1, 2013) and D51.2 “Pilot User Guide” (D51.2, 2013), respectively.

The goal of this section of the Application Architecture Template is to prepare and
enhance this information in such a way that it can be used for the description of Reference
Scenarios, the integration of the CIRSMA Framework and the development of CRISMA
Applications.

cd World State Data Slots

DataDescriptors

- categories: Categories[]
- metadata: String
- defaul tAccessInfoContentType: String
GenericReference
- defaul tAccessInfo: String

BaseEntity

- id: String
- domain: String
- name: String
- description: String

Figure 100: Representation of World State Data Slot Descriptions in the Core CCIM.

The information entered in the tables below map directly to the respective classes of the
Core CCIM shown in Figure 100. This means, by collecting the information on Data Slots
in the format suggested by the template already a large part of the essential CCIM of the
CRISMA Application is provided. It is important to note and essential for the understanding
of the World States concepts that a World State Data Slot Description does not represent
an actual Data Slot (instance) but just a description of this Data Slot (class). Accordingly,
the Core CCIM defines a distinct class to represent instances of Data Slots, Data Items
(Figure 101).

28.2.2014 | 178

http://www.crismaproject.eu

cd World State Data Slots

BaseEntity
DataDescriptors

- categories: Categories[]
- metadata: String
- defaultAccessInfoContentType: String
GenericReference
- defaultAccessInfo: String

BaseEntity
DataItems

- lastModified: timestamp
- temporalCoverageFrom: timestamp
- temporalCoverageTo: timestamp
- spatialCoverage: geom
- dataDescriptor: DataDescriptors*
- actualAccessInfoContentType: String
GenericResource
- actualAccessInfo: String

+worldstateDataDescriptor

1

+id

0..*

Figure 101: Representation of World State Data Slots in the Core CCIM.

For each Data Slot, one of the following tables has to be filled in. If the information which
has been collected in Appendix I – IV of D51.2 on the different data to be used in the
respective Pilot Use Case is still complete and up to data, table rows with a green
background may be left blank. Nevertheless, it is highly recommended to copy those fields
into the table since it makes the Application Architecture specification a self contained
document and supports developers that have to enter this information into the CCIM.

It should also be noted that a Data Slot is a mean for organising and categorising World
State Data rather than an accurate representation of a (physical) data source. Therefore
one data source or data access service may cover multiple Data Slots. E.g. the same
GeoServer (Data Integration Building Block) instance may serve both shake maps and
population distribution maps which are modelled as two distinct Data Slots of the World
State. In a first attempt to indentify and describe all Data Slots relevant for the World
State(s) of a Pilot Use Case the information on pilot data from D51.2 and the Pilot World
State Description from D51.1 can be taken into consideration.

For better readability, the fields of the World State Data Slot Descriptions table are
explained in the bullet list below while the table itself contains some representative
examples from the Italian Pilot.

Data Slot #
This field contains the consecutive number and a unique id (e.g. name) of the
Data Slot.

 Title
This field contains the title of the Data Slot as it may appear in a CRISMA GUI,
e.g. for selecting a map layer, specifying model input data, etc.

 Description
Provides human readable description of the Data Slot as it may appear in a
CRISMA GUI, e.g. as descriptive information. This field may be left blank if a
reference to the metadata tables of D51.2 can be given.
Categories
The categories of the Data Slot. They may be used as labels or tags in a
CRISMA GUI or to allow discovery of specific types of Data Slots. Mandatory
category types (classifications) and example of possible values are:

o Data Slot Category:
e.g. “World Description”, “Assets”, “Expert Data Sets”, “Hazard Outputs”,
“Impacted Objects”, “Vulnerability Classes Distribution”, “Impact and
Losses”, ...

28.2.2014 | 179

http://www.crismaproject.eu

o Data Category:
e.g. “Exposure”, ”Inventory Database”, “Hazard”, “Vulnerability”, “Assets”,
“World Description”, “Expert Data”, ….

o IO Category:
e.g. “Model Input”, “Model Output”, “Analysis Input”, “Indicator Input”, ...

o DataDescriptor Category:
always fixed: “World State Data Slot“

Metadata
Contains detailed metadata describing the Data Slot. If available, INSPIRE
metadata encoded in JSON format should be provided as this is the default
encoding format of the CCIM. For this purpose, the example JSON document
presented in the table can be used. Thereby, “property” represents the name of
the metadata element and “value” its respective value. In the JSON document
presented in the table “value” is populated with the description of the metadata
element and has of course to be replaced. Although this field may be left blank if
a reference to the metadata tables of D51.2 can be given it must be noted that a
transformation of the tabular description to JSON format is recommended when
it comes to the implementation of the CRISMA Application and the metadata has
to be put into the CCIM of the Application.

 Default Access Information
This is technical information encoded in JSON format on how to access the
actual data source of this Data Slot. Please note that this information does not
necessarily indentify the actual data itself since the data may change after each
World State Transition. Thus, this field contains only static information about the
data source which stays the same for each Transition / change to the World
State. As an example consider a database for storing OOIs. The Default Access
Information would describe the data base connection (URL) and probably also
tables where the individual OOIs are stored (e.g. “Ambulances”, “Hospitals”,
etc.) but not ids (rows in the table) of individual OOIs.
Since a wide variety of data source types and data access mechanisms may be
used within one CRISMA Application is not possible to define one universal
schema in the Core CCIM that is applicable to all potential data sources.
Therefore, the format of Default Access Information is always application-
specific and may possibly also be different between Data Slots. Nevertheless,
this information is needed for application developers or integrators that need to
know how to (technically) get access to the data.
Furthermore, data of a CRISMA Application may have different representations
and different access mechanisms for different purposes. While a WPS-wrapped
Simulation Model (Simulation Model Integration Building Block) might need
direct access to a database (e.g. a PostGIS database) or to the file system (e.g.
Shape Files) to store its results, a client visualising those model results (GIS
Widget Building Block) would probably access the same data via a WMS or
WFS (Data Integration Building Block). Therefore, different Building Blocks
might need different types of access information.
Please note that this data access information is not relevant for the Reference
Scenarios (WP25), it might however be very helpful for Integration of the
CRISMA Framework and is required for the development of a CRISMA
Application.
This field may be left blank if the data provided by this data source is not
relevant for World State Transitions, Indicator Functions or managing snapshots
of the world (e.g. the data is immutable) and/or the data is not relevant for

28.2.2014 | 180

http://www.crismaproject.eu

development or integration of the CRISMA Application. This might for example
be the case when interfaces for data exchange between the data source and
Simulation Models are already implemented in the core of the Simulation Models
and thus the CRISMA Application or any Building Block it is not required to
directly access the data source.
A simple default schema which describes the data access possibilities on the
level of Building Blocks or other CRISMA Federates is provided in the World
State Data Slot Descriptions table and is furthermore explained in the following:

o crismaFederateName
Name of the CRISMA Federate (Building Block) accessing the data
source.

o crismaFederateRole
Role of the CRISMA Federate accessing the data source, allowed values
are client or server. A Data Integration Building Block (e.g. GeoServer)
might for example act as a server of a non-OGC compliant data source
and expose it as WMS, WFS, etc. A GIS Widget Building Block (e.g.
OpenLayers) might act as a client of same data source accessing it
through the WMS interface of the Data Integration Building Block.

o accessURI
URI of the data source. The actual URI schema depends on the data
source type and the role of the Building Block accessing the data source.
Referring to the previous example of Data Integration and GIS Widget
Building Block, the URI may either point to the file system (directory
where Shape files are stored) or to a getMap or getCapabitities request of
a WMS. Since the URI identifies only the data source and not the actual
data it may contain wildcards that can be substituted e.g. with a concrete
filename, a WMS layer name, a bounding box, the IDs of OOIs, etc.

o accessMethod
A data source may support different methods for reading or updating
data, for obtaining metadata, etc. The field access method is used to
further describe data source specific access methods that can be used by
the respective Building Block. Examples for such access methods are
getMap and GetCapabilities requests of WMS data sources.

Comments
Comments must give information on the availability and status of a Data Slot,
e.g. whether the data is already available at the pilot site, whether it has already
been integrated with a Data Access Building Block, etc. Comments should
furthermore provide additional information for developers or integrators, e.g.
whether and how Simulation Models have to be coupled with a data sources,
etc.

Table 15: World State Data Slot Overview.

ID Name Title

1 Example: “POWER_TOWER” Example:”Electricity distribution power lines towers”

2

3

...

28.2.2014 | 181

http://www.crismaproject.eu

Table 16: World State Data Slot Description Table.

Data Slot # Example: “POWER_TOWER”

Title Example: “Electricity distribution power lines towers”

Description Example: “Points elements that georeference the position of power lines towers.”

Categories Example: “Data Slot Category: World Description; Data Category: Inventory
Database; IO Category: Analysis Input, Model Input; DataDescriptor Category:
World State Data Slot

Metadata This is the structure of the JSON document for describing metadata:
{

 "Resource title": "This a characteristic, and often unique, name by which

the resource is known.",

 "Resource abstract": "This is a brief narrative summary of the content of

the resource.",

 "Resource type": "This is the type of resource being described by the

metadata.",

 "Resource locator": "The resource locator defines the link(s) to the

resource and/or the link to additional information about the resource.",

 "Unique resource identifier": "A value uniquely identifying the

resource.",

 "Format of data": null,

 "Software to read the data format": null,

 "Topic category": "The topic category is a high-level classification

scheme to assist in the grouping and topic-based search of available spatial

data resources.",

 "Keyword value": "The keyword value is a commonly used word, formalised

word or phrase used to describe the subject. While the topic category is too

coarse for detailed queries, keywords help narrowing a full text search and

they allow for structured keyword search.",

 "Related risk domain ": null,

 "Geographic bounding box": "This is the extent of the resource in the

geographic space, given as a bounding box.",

 "Temporal extent": "The temporal extent defines the time period covered

by the content of the resource.",

 "Date of publication": "This is the date of publication of the resource

when available, or the date of entry into force. There may be more than one

date of publication.",

 "Date of last revision": "This is the date of last revision of the

resource, if the resource has been revised. There shall not be more than one

date of last revision.",

 "Date of creation": "This is the date of creation of the resource. There

shall not be more than one date of creation.",

 "Lineage": "This is a statement on process history and/or overall quality

of the spatial data set. Where appropriate it may include a statement whether

the data set has been validated or quality assured, whether it is the

official version (if multiple versions exist), and whether it has legal

validity.",

 "Spatial resolution": "Spatial resolution refers to the level of detail

of the data set. It shall be expressed as a set of zero to many resolution

distances (typically for gridded data and imagery-derived products) or

equivalent scales (typically for maps or map-derived products).",

 "Conditions applying to access and use": "This metadata element defines

the conditions for access and use of spatial data sets and services, and

where applicable, corresponding fees as required by Article 5(2)(b) and

Article 11(2)(f) of Directive 2007/2/EC.",

 "Limitations on public access": "When Member States limit public access

28.2.2014 | 182

http://www.crismaproject.eu

to spatial data sets and spatial data services under Article 13 of Directive

2007/2/EC, this metadata element shall provide information on the limitations

and the reasons for them."

}

Next comes an example of a JSON document describing metadata of a data source
of Pilot D. This information was taken from respective metadata table in D51.2 and
has been converted into JSON.

{

 "Resource title": "Administrative Region Limits",

 "Resource abstract": "Administrative limits of Abruzzo Region",

 "Resource type": "Spatial data set (dataset)",

 "Resource locator": "https://workspace.vtt.fi/sites/eu_crisma/Shared

Documents/Sub-Projects/SP5/WP55/04_PilotD_doc",

 "Unique resource identifier": "aquila.regione",

 "Format of data": "PostGIS geometry table",

 "Software to read the data format": "PostgreSQL, ArcGIS, QGIS, …",

 "Topic category": "3. Boundaries (boundaries)",

 "Keyword value": "geography",

 "Related risk domain ": "Geophysical hazard",

 "Geographic bounding box": "4 values ",

 "Temporal extent": "2 date YY/MM/DD or 2 dates (time interval) ",

 "Date of publication": "date YY/MM/DD",

 "Date of last revision": "date YY/MM/DD",

 "Date of creation": "date YY/MM/DD",

 "Lineage": "Dummy data sets created for demonstration purposes of CRISMA

project",

 "Spatial resolution": null,

 "Conditions applying to access and use": "no conditions apply",

 "Limitations on public access": "PU (public)"

}

Default Access
Information

This is the structure of the JSON document for describing default (static) access
information to the data source:
defaultAccessInformation =

[{

 "crismaFederateName": "Name of the CRISMA Federate (Building Block)

accessing the data source."

 "crismaFederateRole": "Role of the CRISMA Federate, allowed values are

client or service.",

 "defaultAccessURI": "URI of the data source. The actual URI schema

depends on the data source type and the role of the Building Block accessing

the data source. Referring to the previous example of Data Integration and

GIS Widget Building Block, the URI may either point to the file system

(directory where Shape files are stored) or to a getMap or getCapabitities

request of WMS. Since the URI identifies only the data source and to the

actual data it may contain wildcards that can e.g. be substituted with a

concrete filename, WMS layer name, bounding box, IDs of OOIs, etc.",

 "accessMethod": "A data source may support different methods for reading

or updating data, for obtaining metadata, etc. The field access method can

uses to further describe data source specific access methods that can be used

by the respective Building Block. Examples for such access methods are getMap

and GetCapabilities requests of WMS data sources."

}]

Example of a JSON document for describing default access information of a data
source of Pilot D:

28.2.2014 | 183

http://www.crismaproject.eu

defaultAccessInformation =

[{

 "crismaFederateName": "GIS Widget Building Block (cismap)"

 "crismaFederateRole": "client",

 "defaultAccessURI":

"http://127.0.0.1/geoserver/ows?service=wms&version=1.1.1&request=GetCapabili

ties",

 "accessMethod": "getCapabilities"

},

{

 "crismaFederateName": "GIS Widget Building Block (cismap)"

 "crismaFederateRole": "client",

 "defaultAccessURI":

"http://143.225.105.70/geoserver/crismatest/wms?service=WMS&version=1.1.0&req

uest=GetMap&layers=crismatest:regione&styles=&bbox=<boundingBox>&width=<width

>&height=<height>&srs=EPSG:32633&format=image/png&transparent=true",

 "accessMethod": "getMap"

}]

Note: The part of the getMap URI in red shows a possible usage of wildcards.

Comments Example: “The data of this Data Slot is available at PLINUS centre and is already
served via OGC WMS, not further integration with Data Integration Building Block is
needed. The data of this Data Slot is static; it doesn’t change during the analysis or
Transition (IO Category: Immutable).”

Instructions: Copy and/or fill in the overview and details tables above for each distinct
Data Slot

ICC descriptions

Like World State Data Slot Descriptions, IC (Indicators and Criteria) Descriptions are also
defined once for the complete Pilot Use Case. The specification of an Indicator Element is
a bit different than the specification of Data Slot, since the IC Element describes in general
a simple numerical value rather than a complete data source. Indicators are currently
defined in D25.1 “Updated technology inventory, requirements, scenarios, criteria and key
performance indicators” (D25.1, 2014).

The goal of the technical specification of IC Elements provided in the tables below is to
allow a developer of the Indicators Building Block to implement the respective IC Functions
and store the results of the functions in the CCIM. For this purpose, both the algorithm to
derive Indicators from the World State as well as the structure of the IC data has to be
provided.

http://127.0.0.1/geoserver/ows?service=wms&version=1.1.1&request=GetCapabilities
http://127.0.0.1/geoserver/ows?service=wms&version=1.1.1&request=GetCapabilities

28.2.2014 | 184

http://www.crismaproject.eu

 cd ICC Descriptions

BaseEntity
IccFunctionDescriptors

- executionInfoContentType: String
GenericReference
- executionInfo: String

BaseEnti ty
DataItems

- lastModified: timestamp
- temporalCoverageFrom: timestamp
- temporalCoverageTo: timestamp
- spatialCoverage: geom
- dataDescriptor: DataDescriptors*
- actualAccessInfoContentType: String
GenericResource
- actualAccessInfo: String

BaseEntity
DataDescriptors

- categories: Categories[]
- metadata: String
- defaultAccessInfoContentType: String
GenericReference
- defaultAccessInfo: String

+worldstateDataDescriptor 1

+id 0..*

Figure 102: Representation of ICC Descriptions in the Core CCIM.

As shown in Figure 102 in the Core CCIM, the Elements of the ICC Vector of a World
State are also represented by the DataDescriptors class and a concrete ICC Vector
instance by an array of DataItems classes in the World States class. Thereby, the attribute
defaultAccessInfo of the DataDescriptors Class maps to the field schema specification and
the attribute executionInfo to the field ICC Function in Table 18.

For better readability, the fields of the World State Data Slot Descriptions table are
explained in the bullet list below while Table 18 contains some representative examples
from Pilot D.

ICC Element #
This field contains the consecutive number and a unique id (e.g. name) of the
ICC Element.

 Title
This field contains the title of the ICC Element as it may appear in a CRISMA
GUI. It may be left blank if a reference to the Indicator tables of D24.1 can be
given.

 Description
Provides a human readable description of the ICC Element as it may appear in a
CRISMA GUI, e.g. as descriptive information.

 Categories
The categories of the ICC Element. They may be used as labels or tags in a
CRISMA GUI or to allow discovery of specific types of ICC Elements. In the

28.2.2014 | 185

http://www.crismaproject.eu

CCIM mandatory category types (classifications) and example of possible
values are:

o ICC Category:
“Unsafe Viability”, “Evacuate Population”, “Sheltering Options”, “Physical
Damage”, “Mitigation Measures”, “Impact and Losses”, ...

o IO Category:
always fixed for ICC Element: “ICC Output”;

o DataDescriptor Category:
always fixed for ICC Element: “ICC Element“;

Data Slots
Comma separated names of the Data Slots that are used as input for the
calculation of this ICC Element.
ICC Function Algorithm / ICC Function Description
This filed should provide a specification of the actual algorithm (ICC Function) to
derive the indicator values from the World State Data Slot(s). However, it must
be admitted that since there are so many disparate data sources and even more
possibilities to calculate related indicators, it is not possible to define one
universally valid method or format for specifying executable ICC Functions.
Therefore, this field may only provide some hints for the developers of the
Indicators Building Blocks rather than an implementable or executable algorithm.
(PL/SQL function, JavaScript function, etc.)
Please note this information is not relevant for the Reference Scenarios (WP25),
it is however be very helpful for Integration of the CRISMA Framework
(especially for the Indicators Building Block) and required for the development of
a CRISMA Application.
Default Access Information / Schema Information
Like in Default Access Information of the Data Slot Descriptors this field
specifies also how the data source that stores the ICC data can be accessed.
However, ICC data does not necessarily have to be stored in a dedicated data
source. In general, it is represented by a single (e.g. numeric) value or a simple
object consisting of several values. Therefore it can directly be put into the CCIM
and thus be stored by the ICMM. If this is the case, the field Default Access
Information is used differently as in the specification Data Slot Descriptor.
Instead of specifying an URI of the ICC data source (which would only point to
the ICMM itself), the field shall contain the data type definition provided in JSON
Schema11 or alternatively an example JSON Document. JSON Schema is
preferred over a JSON example document as it provides also data type
information, value ranges, etc.
Please note that a formal schema specification might not be relevant for the
Reference Scenarios (WP25), it is however very helpful for the integration of the
CRISMA Framework (WP35) and required for the development of a CRISMA
Application. Instead of a formal specification in JSON Schema, for the
preparation of Reference Scenarios a simple list of properties and their types
would be sufficient.
Comments
Optional comments that provide e.g. additional information for developers or
integrators, e.g. whether the ICC Functions have already been implemented on
the level of the data source (as PL/SQL Function), etc.

11 http://json-schema.org

http://json-schema.org/

28.2.2014 | 186

http://www.crismaproject.eu

Table 17: ICC Elements Overview.

ID Name Title

1 Example: “DAMAGED_BUILDINGS” Example: “Damaged Buildings Indicators”

2

3

...

Table 18: ICC Element Description Table.

ICC Element # Example: “DAMAGED_BUILDINGS”

Title Example: “Damaged Buildings Indicators”

Description Example: “This ICC Element covers two Indicators: Number of collapsed buildings
and unsafe buildings. See D24.1, Table 12 for more details.”

Categories Example:
“ICC Category: Impact and Losses, Impact on Buildings;
IO Category: ICC Output;
DataDescriptor Category: ICC Element;”

Data Slots Example: “BUILDING_DAMAGE”

Default Access
Information / Schema
Information

Example:
“This simple ICC Element can be stored directly in the ICMM (as part of the
DataDescriptor Element of the CCIM). The JSON Schema of the data to be stored
is:

{

 "properties" : {

 "lostBuildings" : {

 "description" : "Number of collapsed buildings",

 "minimum" : 0,

 "type" : "integer"

 },

 "unsafeBuildings" : {

 "description" : "Number of unsafe buildings ",

 "minimum" : 0,

 "type" : "integer"

 }

 },

 "required" : ["lostBuildings", "unsafeBuildings"],

 "title" : "Building Damage Indicators",

 "type" : "object"

} “

An example JSON Document is (as part of the DataItems Element of the CCIM)
stored in the ICMM is:
{

 "lostBuildings" :4711,

 "unsafeBuildings" :31337

}

28.2.2014 | 187

http://www.crismaproject.eu

ICC Function Example: “lostBuildings: Sum of all damaged buildings with damage class = D in
BUILDING_DAMAGE database.
unsafeBuildings: Sum of all damaged buildings with damage class < D in
BUILDING_DAMAGE database.”

Comments Example: “Implementation of the ICC Function by Indicators Building Block is not
necessary since the algorithm is implemented directly in BUILDING_DAMAGE
PostGIS database as PL/SQL Function. Storing of the calculated Indicator values in
the ICMM has yet to be implemented.”

Instructions: Copy and/or fill in the overview and details tables above for each distinct
ICC Element.

Please note that according to the specification of the Conceptual Business Logic the
calculation of the current values of the ICC Elements is initiated after each Transition.
Furthermore, it is up to the service that implements the ICC algorithm (e.g. Indicators
Building Block) to retrieve and process the current World State Data and to store the
calculated Indicator value in the ICMM.

Simulation model descriptions

As third part of the common specification of the Pilot Use Case, a technical description of
the Simulation Models has to be provided. While such a specification could be arbitrary
complex, only the most import information required for the specification of Transition
Points is collected by the template. Those are:

Model #
This field contains the consecutive number and a unique id (e.g. name) of the
Simulation Model.

 Title
This field contains the title of the Simulation Model as it may appear in a
CRISMA GUI.

 Description
Provides human readable description of the Simulation Model as it may appear
in a CRISMA GUI, e.g. as descriptive information. This field may be left blank if
a reference to a description or technical specification of the model can be
provided (e.g. in the D4.x or D51.x deliverables or the CRISMA Catalogue).If
already available, the WPS URL under which the model can be invoked (only
relevant for WP35 and SP5) could also be provided.

 Categories
The categories of the Simulation Model. They may be used as labels or tags in a
CRISMA GUI or to allow discovery of specific types of Simulation Models. In the
CCIM Mandatory category types (classifications) and example of possible
values are:

o Model Category: “Economic”, “Cascading”, “Impact”, “Behaviour”,
“Vulnerability”, etc.

Input
Provides the names of World State Data Slots and other Simulation Models that
serve as Input for this Model.

 Output
Provides the names of World State Data Slots and other Simulation Models that
serve as Input for this Model.

28.2.2014 | 188

http://www.crismaproject.eu

 Parameters
Technical Specification of the Simulation Model control parameters that are not
part of a specific Data Slot which serves as model input. Examples are “EQ
Magnitude, “Epicentre Coordinates, etc.” Similar to the Default Access
Information / Schema Information field of the ICC Element Descriptions this field
should contain a complete specification of the parameters in JSON Schema
Format.
Please note that a formal specification of Simulation Model Parameters might
not be relevant for the Reference Scenarios (WP25), it is however be very
helpful for the integration of the CRISMA Framework (WP35) and required for
the development of a CRISMA Application.
Comments
Comments must give information on the availability and status of the Simulation
Model, e.g. whether the model is already available at the pilot site, whether it
has already been integrated with the Simulation Model Integration Building Block
or whether it has yet to be developed and by whom. Comments should
furthermore provide additional information for developers or integrators, e.g. how
the model can be wrapped technically (e.g. need to invoke a Windows .exe.).

 Optional comments that provide e.g. additional information for developers or
integrators, e.g. whether and how Simulation Models have to be coupled with
data sources, etc.

cd Simulation Model Descriptor

SimulationDescriptors

- categories: Categories[]
- simulationControlParameterDescription: DataDescriptors*
- executionInfoContentType: String
- uiIntegrationInfoContentType: String
GenericReference
- executionInfo: String
- uiIntegrationInfo: String

DataDescriptors

- categories: Categories[]
- metadata: String
- defaultAccessInfoContentType: String
GenericReference
- defaultAccessInfo: String

BaseEntity

- id: String
- domain: String
- name: String
- description: String

+id

0..1

+simulationControlParameterDescription

0..*

Figure 103: Representation of Simulation Model Descriptions in the Core CCIM.

Figure 103 shows how the information on Simulation Models collected in Table 20 is
represented in Core CCIM of the CRISMA Framework. Currently, executionInfo (referring
to the Simulation Model Integration Building Block) and uiIntegrationInfo (referring to the
Simulation Model Interaction Building Block) are not collected by this template. This
information is nevertheless required for the implementation of a CRISMA Application.

28.2.2014 | 189

http://www.crismaproject.eu

Table 19: Simulation Models Overview.

ID Name Title

1 HPDM Earthquake Model

2

3

...

Table 20: Simulation Model Table.

Model # Example: “EARTHQUAKE_MODEL”

Title Example: “Earthquake Model” (Hybrid probabilistic-deterministic model)

Description Expected number of collapsed building per class faced on the roads

Categories Example:
“Model Category: Hazard, Exposure;”

Input Example: “n/a (see comment)”

Output Example: “EQ_CHAR”

Parameters Example:
“The Simulation Model has three configurable parameters that have to be provided
by the user through a GUI (Simulation Model Interaction Widget). The parameters
are: EPICENTER COORDINATES, MAGNITUDE, DEPTH.
The formal specification JSON Schema is:
{

 "properties" : {

 "depth" : {

 "description" : "Depth of the Earthquake",

 "type" : "integer"

 },

 "epicenter" : {

 "description" : "Coordinates of the Epicenter",

 "type" : "text"

 },

 "magnitude" : {

 "description" : "Magnitude of the Earthquake",

 "type" : "float"

 }

 },

 "required" : ["epicenter", "magnitude", "depth"],

 "title" : "Simulation Model Parameters",

 "type" : "object"

}”

Comments Example: “The input of this Simulation Model (identification of fault geometry and
the computation of the recurrence periods) is not part of the World State as it is not
required for Analysis nor for World State Visualisation.”

28.2.2014 | 190

http://www.crismaproject.eu

Additional, the I/O flows of the Simulation Models (red) to and from Data Slots (blue) and
their relation to ICC Elements (green) should be visualised as shown in the diagram in
Figure 104.

Figure 104: Simulation Model I/O Flows (Example).

Instructions: Copy and/or fill in the overview and details tables above for each distinct
Simulation Model and provide diagrams of I/O flows.

Transition point descriptions

The last section of the initial specification describes all possible Transition Points available
for the Simulation Cases and how they affect the World State. It specifies furthermore a
Transition Point Graph that defines (coarsely) in which order Transitions can be executed.

As shown in Figure 105, in the Core CCIM, TransitionPoints aren’t currently explicitly
defined. Instead, the information model foresees SimulationDescriptors and
ManipulationDescriptors which provide information on the possible manipulation or
simulation performed within a Transition. Additionally, the Core CCIM defines a Transition
class which represents a concrete Transition (instance of a Transition Point). Concrete
Simulation Parameters are represented as DataItem of the Transition class. The schema
of the Simulation Parameters is represented by the DataDescriptor class.

28.2.2014 | 191

http://www.crismaproject.eu

cd Transition Points

BaseEntity
Transitions

- performedManipulations: ManipulationDescriptors*
- performedSimulation: SimulationDescriptors*
- simulationControlParameter: DataItems
- transitionStatusContentType: String
GenericReference
- transitionStatus: String

BaseEntity
Worldstates

- categories: Categories[]
- creator: String
- created: timestamp
- originTransition: Transition*
- parentWorldstate: Worldstates*
- childWorldstates: Worldstates[]*
- worldstateData: DataItems[]*
- iccData: DataItems*

BaseEntity
ManipulationDescriptors

- categories: Categories[]
- uiIntegrationInfoContentType: String
GenericReference
- uiIntegrationInfo: String

BaseEntity
DataItems

- lastModified: timestamp
- temporalCoverageFrom: timestamp
- temporalCoverageTo: timestamp
- spatialCoverage: geom
- dataDescriptor: DataDescriptors*
- actualAccessInfoContentType: String
GenericResource
- actualAccessInfo: String

BaseEntity
SimulationDescriptors

- categories: Categories[]
- simulationControlParameterDescription: DataDescriptors*
- executionInfoContentType: String
- uiIntegrationInfoContentType: String
GenericReference
- executionInfo: String
- uiIntegrationInfo: String

+parentWorldstate
0..1

+id 0..*

+id

1

+originTransition 0..1

+performedManipulation 0..*

+id

0..*

+simulationControlParameter

1

+id 0..1

+id 1..*

+iccData 1+worldstateData 1..*

+id 0..1

+id 0..*

+performedSimulation 0..1

Figure 105: Representation of Transitions in the Core CCIM.

The decision which and how many Transition Points should be created depends on how
the Crisis Management Scenarios should be analyzed. World States shall represent an
actual snapshot of the world (as defined). They shall not represent continuous evolvement
e.g. the movement of resources (calculated by some Simulation Model). This shall be
handled by the corresponding Simulation Model if it is able (and wants) to visualise this (or
store the data for later analysis). However, in such a case it will e.g. represent an
individual Data Slot within a result World State and not a series of World States.

The World States are directly connected to the analysis. This means that there shall be a
snapshot of the world whenever it is feasible for the actual crisis analysis or when an
important decision or event shall be recorded.

Instructions: Create a Transition Point Graph of the Simulation Case.

28.2.2014 | 192

http://www.crismaproject.eu

Figure 106: Transition Point Graph (Example).

The Transition Point Graph as well as the description of predecessor and successor
Transitions specified in the Transition Point Tables should give only a coarse overview on
the meaningful order of Transitions. It does not resent a formal specification that can be
mapped 1:1 to the implementation of the CRISMA Application. However, together with the
information on crisis evolution (relation to timeline) in the description field of the Transition
Point Tables it provides important hints to developers of the application, e.g. how to design
the user interaction flows, arrange the order of use interface elements, etc.

Figure 107 shows an example of the (draft) Transition Point Graph of the Italian Pilot. The
order of some of these Transitions is directly related to the evolution of a crisis (black
arrows). Additionally, there are many alternative paths (blue arrows) that heavily depend
on the actual Simulation Case, e.g. whether mitigation options are performed before or
after the crisis, whether cascading effects and/or Time-Dependent Vulnerability have to be
taken into account, etc.

The difference between the Transition Point Graph (Figure 106) and a Simulation Case
Graph (Figure 109) is, that the Transition Point Graph visualises all possible paths of
analyses that the CRISMA Application must support while the Simulation Case Graph
visualises only the possible paths of analyses that make sense for a particular Simulation
Case.

Although this information might not be easy to collect, it is very useful for the overall design
of the CRISMA Application as it helps the developer to get an understanding which flows
of user interactions must be supported.

28.2.2014 | 193

http://www.crismaproject.eu

Figure 107: Transition Point Graph (Pilot D).

The individual Transition Points are specified in the following tables.

Transition Point #
This field contains the consecutive number and a unique id (e.g. name) of the
Transition Point.

 Title
This field contains the title of the Transition Point as it may appear in a CRISMA
GUI.

 Description
Provides a human readable description of the Transition Point, i.e. what is
supposed to happen at this specific point in the CRISIS Management Scenario.
In case of a Manipulation, it describes of the actions performed by the user of
the CRISMA Application. It should also provide information on the position of the
Transition Point in the timeline of a Crisis Scenario.

 Categories
The categories of the Transition. They may be used as labels or tags in a
CRISMA GUI or to allow discovery of specific types of Simulation Model. In the

28.2.2014 | 194

http://www.crismaproject.eu

CCIM mandatory category types (classifications) and example of possible
values are:

o Transition Type Category: either “Simulation” or “Manipulation”;
o Transition Category: “Mitigation”, “Incident”, “Hazard”, “Exposure”, etc.

 Predecessor
The names of possible or reasonable predecessor Transition Points.

 Successor
The names of possible or reasonable successor Transition Points.

 Data Slots Precondition:
The Data Slots required by this Transition. Describes the status of the World
State Data Slots before the Transition, i.e. which Data Slots are required to
initiate the Transition and possible also their current values. Required only if the
current status of Data Slots hasn’t already been clearly defined by the preceding
Transition Points.

 Data Slots Postcondition:
The Data Slots affected by this Transition. Describes the status of the World
State Data Slots after the Transition, i.e. how the Data Slot is changed by the
Transition.

 Simulation Models
Name(s) of Simulation Models if the Transition is a simulation.

 Building Blocks / User Interfaces
Related Building Block Software Components that are used to perform the
Transition and a description of their role during the Transition. A description of
the user interface to perform the Transition and optional screenshots or
mockups.
Please note that this information might not be relevant for the Reference
Scenarios (WP25), it is however be very helpful for the integration of the
CRISMA Framework (WP35) and required for the development of a CRISMA
Application.

 Comments
Optional comments that provide e.g. additional information for developers or
integrators.

Table 21: ICC Transition Points Overview.

ID Name Title

1 Example:
“DEFINE_BUILDING_VU
LNERABILITY”

Example: “Define Building Vulnerability”

2

3

...

28.2.2014 | 195

http://www.crismaproject.eu

Table 22: Transition Points Description Tables.

Transition Point 2 Example: “DEFINE_BUILDING_VULNERABILITY”

Title Example: “Define Building Vulnerability”

Description Example: “Vulnerability Classes (EQV_BUILDINGS) of the Buildings can
manipulated by the user, e.g. to simulate mitigation measures (increasing building
resistance). Thus, for subsequent impact simulations, the changed vulnerability
classes are now used.”

Categories Example: “Transition Type Category: Manipulation;
Transition Category: Vulnerability; Building Vulnerability, Mitigation”

Predecessors Example: “*” (it could be the first Transition performed in a mitigation Simulation
Case)

Successors Example: “SIMULATE_BUILDING_IMPACT”

Data Slots
Precondition

Example: “REGIONE, PROVINCE, COMUNE_AQ, GRID, EDIFICI and
ISTAT_2001_B are shown in the GUI.”

Data Slots
Postcondition

Example: “EQV_BUILDINGS are updated”

Simulation Models Example: “n/a” (no Simulation Models involved)

Building Blocks /
User Interfaces

Example: “The user selects a Grid Cell in the GIS Widget Building Block, a simple
dialog pops up where can change resistance (vulnerability class) of the buildings in
the selected cell (see Mockup in Figure 108). The Data Integration Building Block
takes care to store a new version of the modified EQV_BUILDINGS Data Slot.”

Comments Example: “Manipulation GUI has to be provided as extension of the GIS Widget
Building Block (popup)”

Figure 108: Transition Point GUI Mockup.

Simulation cases

This part of the template describes one Simulation Case of the overall Pilot Use Case. It
has to be repeated for each distinct Simulation Case.

28.2.2014 | 196

http://www.crismaproject.eu

General information

This section provides some general information about the Simulation Case. This
information may be used as descriptive meta-information in the CRISMA Application or the
CRISMA Catalogue.

Name Please enter a name

Category Category of the Simulation Case, e.g. "Operational Training", "Long Term
Planning", "Incident Evolvement Planning", "Resource Planning", "Command
and Control Training ", "Exercise Support View", "Operational Training".

Description Please provide a short description of the Simulation Case. E.g. refer to the
respective Pilot Use Case covered by this Simulation Case.

Initial world state definitions

This section provides initial (static) definitions of the Data Slots that play a role in the World
State of the current Simulation Case.

To be able to formally specify a Simulation Case in accordance to the Conceptual
Business Logic, at first the initial World State Definition has to be described. The initial
World State Definition is an immutable set of World State Data Slots. Immutable means,
that a Transition may change the contents of a Data Slot but not the structure of the World
State Definition. Thus, a Transition Point defines how the actual data of a Data Slot is
changed by the Transition.

World State Data Slot Descriptions as well as ICC Elements that are relevant for this
Simulation Case are referenced in the World State Description Table (Table 23).

Besides the unique names of the Data Slot and ICC Elements, additional information on
the initial values or further comments for the developer of the respective CRISMA
Application should be provided.

Table 23: World State Description Table.

World State of Simulation Case #

Data Slots

Name Initial Values / Comments

ICC Vector

Name Comments

28.2.2014 | 197

http://www.crismaproject.eu

Simulation case specification

This section provides a description of the distinct steps of the Simulation Case (Decisions,
Analyses) performed by a decision maker in the CRISMA Application and relates them to
Transitions. If, for some reasons, the changes to the World State in a particular step of the
Simulation Case are different than initially defined in the associated Transition, this has to
be explicitly stated in the description of the Simulation Case Description Table (Table 24).

For better readability, the fields of the Simulation Case Description table are explained in
the bullet list below while the table itself contains a representative example from the Italian
Pilot.

#
The number of the step of the Simulation Case performed by the user in the GUI
of the CRISMA Application.

 Transition Points
The name(s) of the Transition Points related to this step of the Simulation Case.

 Description
A detailed description of the actions and possible analyses that are performed
by the use of the CRISMA Application in this particular step of the Simulation
Case.

Table 24: Simulation Case Description Table.

Transition Points Detailed Description

1 Example: “SELECT_SHAKEMAP
or
SIMULATE_
EARTHQUAKE”

Example: “The user chooses the kind of hazard input and the
event characterization (e.g. shake maps or values of epicentre,
magnitude and depth if shake maps are not available; event
characterization includes time- e.g. daytime, night time).”

2

3

4

The steps of the Simulation Case specified in Table 24 should be visualised in a
Simulation Case Graph (Figure 109) taking also the temporal aspect of the Simulation
Case into account.

28.2.2014 | 198

http://www.crismaproject.eu

Figure 109: Simulation Case Graph (Example).

Furthermore, examples of concrete Crisis Management Scenarios based on the previously
defined Simulation Case should be provided. Figure 110 shows two Crisis Management
Scenarios with different alternatives chosen.

Figure 110: Example Scenarios.

	CRISMA_D322_final
	1. Introduction
	1.1. Purpose of this document
	1.2. Intended audience
	1.3. Structure of the document
	1.4. Changes to this document
	1.5. Relation to other deliverables
	1.5.1. Relations of the architecture specification V1
	1.5.2. Relations of the architecture specification V2

	1.6. Relation to SP4 and SP5
	1.7. Architectural approach
	1.7.1. Preliminary considerations
	1.7.2. Approach and methodology
	1.7.3. Functional and implementation architecture

	2. Mission
	2.1. Preliminary considerations
	2.2. Architectural goals
	2.3. Architectural properties
	2.4. Architectural constraints

	3. Concepts
	3.1. Conceptual business logic
	3.1.1. Analysis viewpoint
	3.1.2. Central concepts for crisis management simulation
	3.1.2.1. World state space and world state elements
	3.1.2.2. World state transition and world state completeness
	3.1.2.3. Indicators and indicator functions
	3.1.2.4. Simulation objective, simulation case, transition point, alternatives and path of analysis

	3.1.3. Central concepts for crisis management simulation analysis
	3.1.3.1. Crisis management simulation analysis
	3.1.3.2. Indicator, indicator vector, indicator space and indicator function
	3.1.3.3. Criteria, criteria vector and criteria function
	3.1.3.4. Algebraic comparison, multi-criteria analysis and ranking

	3.1.4. Simulation case graph
	3.1.5. Relevance of the conceptual business logic

	3.2. Reference architecture
	3.3. CRISMA federations, applications and scenario orientation
	3.4. Communication paradigms and spatial distribution
	3.5. Middleware infrastructure
	3.6. Modular control and communication information model
	3.7. Federates and integrated components
	3.8. CRISMA federates
	3.9. CRISMA building blocks
	3.10. The federation concept
	3.10.1. Federated components and federated systems
	3.10.2. Federated simulation models and federated simulations
	3.10.3. Integrated components, simulation models and systems
	3.10.4. CRISMA federations and applications

	3.11. Separation of data and control and communication information flows
	3.12. GUI integration approach
	3.13. Data integration approach
	3.14. Simulation model integration approach
	3.15. Compatibility with legacy systems
	3.16. Transferability
	3.17. Training
	3.18. Resource management
	3.19. Relation to models for multi-sectoral consequences
	3.19.1. Crisis management strategies and planned action
	3.19.2. Economic impacts and consequences
	3.19.3. Multi-criteria decision analyses
	3.19.4. Cascade events and time-dependent vulnerability

	3.20. Access control
	3.21. Administration

	4. Realisation
	4.1. Infrastructure building blocks
	4.1.1. Integrated crisis management middleware
	4.1.2. Object of interest world state repository
	4.1.3. Publish/subscribe context broker

	4.2. Integration building blocks
	4.2.1. Agent-oriented simulation models
	4.2.2. Data integration
	4.2.3. Indicators building block
	4.2.4. Simulation model integration

	4.3. User interaction building blocks
	4.3.1. Cascade events configuration and interaction view
	4.3.2. Economic impact calculation view
	4.3.3. GIS widget
	4.3.4. Integrated planning view
	4.3.5. Multi-criteria analysis and decision support view
	4.3.6. Object of interest management
	4.3.7. Preparedness plan
	4.3.8. Resource management tactical training
	4.3.9. resource management training dispatch and monitor view
	4.3.10. Resource management training indicators and statistics view
	4.3.11. Resource management training simulation scenario setup view
	4.3.12. Scenario analysis and comparison view
	4.3.13. Simulation model interaction view
	4.3.14. UI mashup platform
	4.3.15. UI integration platform
	4.3.16. World state view

	4.4. Interoperability standards
	4.4.1. Open geospatial consortium and opengis standards
	4.4.1.1. SWE common data model encoding standard
	4.4.1.2. SWE service model implementation standard
	4.4.1.3. Sensor model language encoding standard
	4.4.1.4. Web map service
	4.4.1.5. Web coverage service
	4.4.1.6. Web coverage processing service
	4.4.1.7. Web feature service
	4.4.1.8. Sensor observation service
	4.4.1.9. Observations & measurements
	4.4.1.10. Web processing service
	4.4.1.11. Geography markup language
	4.4.1.12. ISO 19115
	4.4.1.13. ISO 19119

	4.4.2. W3C standards
	4.4.2.1. Extensible markup language
	4.4.2.2. Web design and applications

	4.4.3. Other standards
	4.4.3.1. RFC 1945 – hypertext transfer protocol 1.0
	4.4.3.2. RFC 2616 – hypertext transfer protocol 1.1
	4.4.3.3. RFC 4918 – web distributed authoring and versioning
	4.4.3.4. Dublin core
	4.4.3.5. JavaScript object notation
	4.4.3.6. Representational state transfer
	4.4.3.7. OpenId
	4.4.3.8. OAuth
	4.4.3.9. OpenMI
	4.4.3.10. NGSI content management

	5. Implementation
	5.1. Software components
	5.1.1. Infrastructure software components
	5.1.1.1. Cids system
	5.1.1.2. Object of interest world state repository
	5.1.1.3. Orion context broker

	5.1.2. Integration software components
	5.1.2.1. Agent-oriented simulation models
	5.1.2.2. MapServer
	5.1.2.3. GeoServer
	5.1.2.4. PyWPS

	5.1.3. User interaction software components
	5.1.3.1. Economic impact calculation results widget
	5.1.3.2. Economic impact calculation setup widget
	5.1.3.3. Cismap
	5.1.3.4. Leaflet.js
	5.1.3.5. OpenLayers
	5.1.3.6. Object of interest management user interface component
	5.1.3.7. Preparedness plan
	5.1.3.8. Resource management tactical training
	5.1.3.9. Resource management training dispatch and monitor wirecloud view
	5.1.3.10. Resource management training indicators and statistics wirecloud view
	5.1.3.11. Resource management training simulation scenario setup wirecloud view
	5.1.3.12. Simulation model interaction widget
	5.1.3.13. Wirecloud
	5.1.3.14. Cids navigator
	5.1.3.15. Scenario evolution widget (java and JavaScript)
	5.1.3.16. Scenario list widget (java and JavaScript)
	5.1.3.17. World state tree widget (java and JavaScript)
	5.1.3.18. World state widget (java and JavaScript)

	5.2. Core control and communication information model
	5.2.1. Classes of the core control and communication information model
	5.2.2. Relation to conceptual business logic
	5.2.3. Technical realisation
	5.2.4. Generic extension mechanisms
	5.2.4.1. Extension by inheritance
	5.2.4.2. Extension Points

	5.3. Application architecture template
	5.4. Rules and guidelines
	5.4.1. Conventions
	5.4.2. General rules for federates
	5.4.2.1. Rules for federates
	5.4.2.2. Rules for building blocks
	5.4.2.3. Rules for federated simulations and simulation models

	5.4.3. Rules for building block implementations
	5.4.3.1. Rules for software candidates
	5.4.3.2. Rules for building block implementation

	5.4.4. Rules for information models
	5.4.4.1. Rules for control and communication information models
	5.4.4.2. Rules for JSON models

	5.4.5. Rules for RESTful API specifications
	5.4.6. Rules for user interface integration and development
	5.4.7. Rules for JavaScript APIs

	6. Conclusions
	7. References
	BaseEntity
	Categories
	Classifications
	DataDescriptors
	DataItems
	ExternalResource
	GenericReference
	IccFunctionDescriptors
	InitialisationDescriptors
	ManipulationDescriptors
	RenderingDescriptors
	SimulationDescriptors
	Transitions
	WorldStates
	Initialisation and configuration information
	World state data slot descriptions
	ICC descriptions
	Simulation model descriptions
	Transition point descriptions
	Simulation cases
	General information
	Initial world state definitions
	Simulation case specification

	Crisma_deliverables_cover_280214

