Federico Zenith Non-Technical Obstacles for Power-to-H₂ Hydrogen from Wind Power in Arctic Conditions

SINTEF Mathematics & Cybernetics

November 20, 2018 IEA-HIA Task 38 Workshop Aix-en-Provence, France

Project and Context

Open Problems

Open Challenges

Project and Context

Open Problems

Open Challenges

The HAEOLUS Project

- EU innovation action, budget 6.9 M€
- 2.5 MW electrolyser in wind park
 - 1 t/d of hydrogen

 $HA \exists \Im LUS$

- Multiple use cases, remote operation
- · Objective: enable more wind power

The HAEOLUS Project

- EU innovation action, budget 6.9 M€
- 2.5 MW electrolyser in wind park
 - 1 t/d of hydrogen
- Multiple use cases, remote operation
- · Objective: enable more wind power
- "Stranded wind"
 - Concession: 320 MW
 - Resources: 2000 MW
 - Export capacity: 95 MW
- Site at Berlevåg harbour

4

Previous Projects

- The Utsira demo project
- Multiple FCH JU projects:
 - Don Quichote (2011, H₂+renewables)
 - MegaStack (2013, MW-scale stacks)
 - HyBalance (2014, power-to-gas)
 - QualyGridS (2016, grid services)
 - Refhyne (2017, industrial scale)
 - Remote (2017, mini-grid)
- IEA-HIA Task 24: Wind Energy & Hydrogen Integration
- Key learnings:

ӉА҄҄҄҄҄З҄ℬ҄҄LUЅ

- Re-electrification is economically difficult
- Make hydrogen to sell hydrogen!

The Utsira, Norway, 50 kW / 215 kg_{H2} system (2004)

Project and Context

Open Problems

Open Challenges

Supply Chain

- Many system components are *not* off-the-shelf
- Risk of extensive downtime
- Example of Gaustad refuelling station:
 - Failure in early July
 - Delays due to holiday seasons
 - 2 months delay before repairs
- Wind power often in remote areas
- Reduce risk by:
 - Off-the-shelf components if possible
 - Redundant units
 - Backup units

HAIのLUS

- Supply-chain risk assessment

The H_2 station in Gaustad, Oslo, facing SINTEF HQ (now decommissioned)

7

Market Generation

- · Available applications do not consume enough
 - Too few cars, buses, etc.
- · Hydrogen export to Svalbard
- Maritime applications are promising
 - Fast passenger ships
 - Coastal express (Havila)
 - Aquaculture (fish farms)
- Industry
 - Ammonia production
 - Steel production (Hybrit, H2Future)
 - Mining, ore processing

Project and Context

Open Problems

Open Challenges

Interaction with the Grid

HAISLUS

•	Electrolysers can service all reserves	Hour	Price NOK/MW	Volume MW
	 Nearly immediate ramping 	1	180	33
	 Potentially attractive side-income 	2	139	34
		3	139	34
•	Saturation already by few electrolysers?	4	139	34
	 Energy generation context 	÷	÷	÷
•	Access to interruptible power tariffs	18	18	34
		19	18	25
	 Produce H₂ without wind if scheduled 	20	17	48
	 Power tariff in Norway: 36 €/kW/y 			
	 Interruptible tariff: 1.8€/kW/v 	:	:	:
	 Regional operators have their own 	Price for	· primary re	eserves on
		October	3, northern	n Norway.

10

Green Certification

- · Norwegian-Swedish scheme for new renewable capacity
 - Energy in *new* plants (like Raggovidda) is awarded a certificate
 - Certificates are traded in their own market
 - Power companies must buy a certain quota of certificates
- In practice: boost to kWh price, about 66 %
- Note: HAEOLUS is *inside the fence*
 - Certificates are lost, energy for hydrogen more expensive
 - Green hydrogen certificates to compensate? CertifHy?
- · Green energy certificates will be repealed
 - Plants built after 2021 are not eligible
 - Currently eligible plants will remain for 15 years

 $HA \exists \Im LUS$

Logistics Cost

- CH₂ containers are expensive
 - Can cost as much as energy
 - Need multiple ones in movement
 - » 1 at producer
 - » 1 at consumer
 - » 2 en route to each
- Deploy cheaper hydrogen spheres
- Bulk transport options: gas, liquid
- Chemicals (CH₃OH, NH₃, LOHC...)
- Inject in natural gas grid

Political-Level Involvement

- H₂ from wind requires large consumers
- · Politicians can be decisive in investments
- · Easier to work in small constituencies
 - Mayor of Berlevåg present at HAEOLUS meetings
 - Good contact with Finnmark county government
- Shorter decision chains
 - Decision on project participation in Finnmark: less than 23h
 - Same in Trøndelag: days/weeks

 $HA \equiv \Im L U S$

Project and Context

Open Problems

Open Challenges

- · Problems to solve:
 - Secure supply chain
 - Find large-scale consumers
- · Focus: maritime applications and Svalbard supply
- Further demo projects:
 - Coastal express
 - Fast passenger ferry Kirkenes-Vadsø
 - Svalbard CHP with hydrogen import

Conclusions

- · Problems to solve:
 - Secure supply chain
 - Find large-scale consumers
- · Focus: maritime applications and Svalbard supply
- Further demo projects:
 - Coastal express
 - Fast passenger ferry Kirkenes-Vadsø
 - Svalbard CHP with hydrogen import

Thank you for your attention!

 $HA \equiv \Im L U S$

Hydrogen-Aeolic Energy with Optimised eLectrolysers Upstream of Substation

This project has received funding from the Fuel Cells and Hydrogen 2 Joint Undertaking under the European Union's Horizon 2020 research and innovation programme under grant agreement № 779469.

