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Abstract—Automatic quality assessment is an essential step in
the professional audiovisual media production process. In this
paper we propose a novel sharpness metric taking the specific
properties of video into account, and having a higher robustness
against variations in image content, interlacing artifacts and
noise. Furthermore, a comprehensive user study is presented,
where we obtain subjective scores to validate the sharpness met-
ric. We ask 28 viewers for both absolute and relative judgments
of sharpness in two separate experiment settings, supported with
an eye tracker to obtain the locations used for judgements.
Experimental results show that the objective sharpness metric
under test is well correlated with human perception. Both results,
the absolute and relative subjective ratings confirm the good
correlation of the proposed metric with human perception. The
analysis of the eye tracking data highlights differences between
experts and consumers.

I. INTRODUCTION

Automatic quality metrics and visual quality assessment
(QA) is of fundamental importance for numerous video and
image processing applications. Typical applications for image
quality metrics are situated in the media production and deliv-
ery process, as described in [1] for content quality checking by
broadcasters being costly and time-consuming. It is obvious
that objective techniques are needed to predict visual quality
automatically. Substantial effort has been dedicated to the
development of new automatic machine vision based quality
estimators.

Our work investigates one of the most common distortion
types in digital image and video processing: blur. We propose
a novel, no-reference sharpness metric that measures to which
degree a video appears in focus. We consider sharpness as an
effect of blurring, being multiplicative inversely proportional
to image blur. The sharpness metric can act as an automatic
detector of production insufficiencies (e.g. lens out of focus)
or serve as decision maker in verifying the quality if material
can be played out for a specific target quality (reuse in new
productions, up scaling, etc.) [2].

Objective metrics only provide consistent and reliable re-
sults if they correlate well with subjective perception, i.e., if
they estimate the quality as perceived by an averaged viewer.
Thus the development of quality metrics is typically supported
by subjective studies in order to validate the results by experts’
or consumers’ mean opinion scores (MOS) [3]. We present
an extensive and thorough evaluation study, involving 28
volunteers. In order to get a deeper understanding of subjective
judgments and to detect possible variances of the perception
of viewers, half of all experiments were done with an eye
tracking system.

This paper is organized as follows: In the remainder of
this section we first give an overview of recent related work
regarding sharpness algorithms and the different approaches
that were done. Section II provides a description of the novel
sharpness metric based on local gradient feature analysis.
Section III presents the experiments, describing the evaluation
metrics and the experimental setup with the eye tracking
system and the procedure of the user study. Experimental
results are provided and discussed in Section IV and finally
conclusions are presented in Section V.

Objective quality metrics can be categorized by the re-
quirement of a distortion-free original image (sequence) for
comparison. Full-reference metrics need the distorted image
(sequence) and the original as input. An evaluation of several
full-reference QA algorithms, including sharpness, can be
found in [4]. Reduced-reference QA methods work with only
partial information of the original visual signal available.
Finally, no-reference QA methods measure the image or video
quality blindly. In many applications in media production and
archiving, the media item under analysis is the master, and
no reference is available. As many of these applications have
also real-time requirements, no-reference methods with low-
computational complexity are required. Thus we particularly
consider methods meeting this criteria in the following review.

Ferzli and Karam [5], and more recently, Narvekar and
Karam [6] propose spatial domain sharpness metrics, based
on the concept of just noticeable blur (JNB) or its extensions,
using the analysis of edges and adjacent regions in images
proposed by Marziliano et al. [7]. A transform based method,
proposed by Sheikh et al. [8], uses statistics of the discrete
wavelet transform (DWT) coefficients in natural images to
produce quality scores for JPEG2000 compressed images.
Wang et al. [9] demonstrate that local phase coherence (LPC)
changes and that precisely localized features, e.g. sharp edges,
cause a strong LPC in the complex wavelet transform domain.
A more recent sharpness metric, calculated in the wavelet
transform domain, analyzing the local phase coherence of
complex wavelet coefficients is proposed in [10], assuming
that blur causes a disruption of local phase near sharp image
features. Vu and Chandler [11] proposed a sharpness method
with low computational complexity, which measures the log-
energy in high frequency discrete wavelet transform sub-
bands.

The main shortcomings of existing no-reference sharpness
metrics are a low robustness to variations in image content
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and to other impairments present. The recent work of Fe-
ichtenhofer et al. [12] shows promising progress concerning
robustness to content variations. They demonstrate a very
good performance that is even competitive to full-reference
methods, however, limited to still images.

II. PROPOSED SHARPNESS METRIC

Since image blur is most noticeable at edges and their
slopes, as discussed in related work (e.g. [7], [12]), we
extend the idea of Feichtenhofer et al. [12] by considering
specific properties of video for our novel sharpness metric. The
proposed novel sharpness metric is designed to automatically
provide one global measure that determines to which degree
an image or image sequence appears in focus. We have chosen
this approach because of its simplicity and low computational
complexity, to make real-time sharpness estimation possible.

Basically, the sharpness algorithm measures the spread of
edges detected by a Sobel filter for both derivatives (x and y
direction), as originally proposed by Marziliano et al. [7]. The
edge width is defined by the intensity variation of all pixels
along the gradient, perpendicular to the edge. The overall
image sharpness is calculated by a block-based pooling of
local sharpness values of the most significant blocks. The
contributions of this work are extensions of the metric for
videos and the consideration of other impairments, i.e. noise
and interlacing artifacts, in order to minimize their influence to
the sharpness result. The measure is a predictor of perceived
image sharpness, with focus on only the sharpest areas in the
image, utilizing the fact that humans tend to rate sharpness
based on the sharpest image regions as well.

A. Robust sharpness metric

The algorithm is applied separately to both fields of the
video input images. Due to field sub-sampling, horizontal
edges may appear to be sharper. To avoid the influence
of very sharp horizontal edges only significant edges with
approximately vertical orientation, covering a tolerance angle,
are considered. As we operate on fields, interlacing artifacts
are avoided and do not impact the sharpness results. In order to
minimize the influence of noise (the initial detector result tends
to be higher at presence of noise) a median filter is applied to
the gray scale input image. The two sharpness values obtained
by applying the algorithm on both fields are combined by
averaging.

In order to extract edges from the input image, at each pixel
the image gradient magnitude is calculated and an adaptive
threshold is applied. The adaptive threshold is obtained by
using a 0.80 quantile of the gradient histogram Hx while
ensuring a minimum threshold τmin for extracted edges. To
get a binary edge image, a thinning process is performed by
using a second lower threshold, as fraction of the higher one.

A minimum threshold τmin of 55 is set in order to avoid
edge maps that are overfilled instead of returning only signifi-
cant ones. By combining the adaptive and absolute threshold,
using

IE(x, y) =

{
1, if |∇(x, y)| ≥ τ,
0 otherwise, (1)

where |∇(x, y)| defines the magnitude at each position and
τ = max(τmin, q0.8(Hx)), we obtain edge images that include
a well suited amount of edges independent of the content.

These obtained edge pixels are further used as measuring
points and are tested in order to fulfill some requirements. Due
to the fact that we operate on fields, horizontal edges could
be distorted and do not longer correspond with the original.
The gradient orientation of each edge pixel has to be vertical
and within a predefined angle tolerance αtol ∈ [0◦, 45◦]. Noise
tends to produce many short and sharp edges within an area,
which has an impact on the robustness of the metric. To avoid
that the metric is measuring noise edges instead of real edges,
each edge pixel has to be associated with an edge with a
minimum length (vertical extension), relatively to the actually
existing edge lengths lmin. Edges with a high contrast are
perceived sharper by observers while those with a low contrast
might not be even recognized. Therefore, at each edge pixel
the contrast of the appropriate edge is tested and has to exceed
a fixed predefined minimum value cmin.

At every measuring point where the previously mentioned
constraints are fulfilled, the edge width is defined by the
maximum intensity variation of all pixels along the gradient,
perpendicular to the edge. At each remaining edge pixel we
compute the edge width by using Equation 2. Since we have
applied a median filter at the beginning, the abortion criterion
to find the local extrema points has been adapted. If the sign
of the gradient is known, the direction, where to search for
minimum and maximum perpendicular to the edge is given.
For edges with a positive gradient a considerable minimum
or maximum of intensity is found by using

min(xM+i) =

 1, if |(|∇(xM+i−1, y)|−
|∇(xM+i, y)|)| < xM

4 ,
0 otherwise,

(2)

where i ∈ N+ and X is the intensity vector containing
all horizontally neighboring intensities of one edge pixel,
so only horizontal rows of the image are taken, xM =
argmaxxj∈X |∇(xj , y)| is the gradient at the edge pixel, so
the maximum gradient of the whole intensity vector X .
max(xM−i) is defined analogously by plugging −i into
Equation 2, and for edges having a negative gradient a local
minimum and maximum is found analogously.

This means, a local minimum or maximum is found, when
the descent of the edge slope is in/decreased by more than
25% of the maximum gradient of the actual edge. Finally, we
compute the edge width for each edge pixel as the distance
between minimum and maximum. In order to ensure accuracy
of the edge width, the width is corrected by the angle and
considering sub-pixel accuracy. Motivated by the observation



that the HVS perceives edges with high contrast as sharper
and vice versa, we have refined our metric by adapting the
measured edge width dependent on the contrast. This means,
edges with a high contrast will be reduced, which consequently
results in a higher sharpness and vice versa.

Finally, the field is divided into 32×32 pixel sized blocks to
deduce local sharpness values. For each block a representative
edge width is calculated statistically from the containing
values by requiring a minimum amount of containing edges
for robustness. In order to keep the influence of edge loca-
tions small we use overlapping blocks. We found that spatial
overlaps between 20% and 30% provide the best and most
robust results (for the final algorithm 25% has been chosen).
A predefined fraction of sharpest blocks is finally contributing
to the global image sharpness sk ∈ [0, 1], where k is the frame
number.

B. Computation of confidence

As stated, the sharpness sk is computed for each frame k
from a video segment of arbitrary length. In order to avoid
inappropriate sharpness values obtained by measuring black
frames, fade in/out and other frames that might impact the
global sharpness we introduce a confidence value confk ∈
[0, 1]. It provides the reliability of the sharpness measure
for each frame k, where a confidence of 1 indicates highest
reliability. In order to ensure robustness, only frames with high
confidences will contribute to the final global measure for a
video segment.

The value depends on the number of available, measurable
edges, the consistency of sharpness over the whole image
(represented by blocks) and the vertical extension of the edges.
The confidence confj is computed by using

confj = α
bmeas

ball
+ β(1− dblocks

dmax
) + γ

evmax

evactMax

(3)

where bmeas are all blocks containing enough edge pixel to
be measurable for our metric, ball are all possible blocks
including the overlap, dblocks is the difference of the ordered
measured block sharpness values between the first and the last
of the finally selected, dmax is the chosen maximal difference
of two block sharpness values, evmax

defines the actually
measured maximum edge length in vertical extension and
finally, evactMax

is the pre-defined maximum value depending
on the image resolution.

III. EVALUATION

A. Metrics

For our subjective QA we have chosen to use two of
the standard evaluation methods1 in a slightly adapted way.
Assessing individual video sequences in a continuous rating
scale is traditionally popular for subjective multimedia quality
evaluation. The setup of such an experiment is simple and
its evaluation and analysis is straight forward. Thus, we are
going to use the Absolute Category Rating (ACR) method

1For an extensive classification, review and comparison see [13].

in the first part of the experiment, by adapting the 5 to a
6 category scale. We decided to apply a second part to the
experiment: Paired comparison is appropriate and efficient as
well for the goal of our sharpness evaluation study. Minor
differences in sharpness of video sequences may be hard to
recognize and can be more effectively dealt with by a paired
comparison method. Thus, the subjects were confronted with a
Double Stimulus Continuous Quality Scale (DSCQS) method
in a second part. Since we wanted to keep the duration of the
experiment under 30 minutes and since we are interested in
testing a diverse set of videos, we could not show a whole
permutation of all possible pairs. Instead we just show each
video once, by randomly selecting a pair of videos until all
videos have been shown once. 28 volunteers with varying
expert level, ranging from age 20 to 60 participated in the
subjective two-part experiment. They watched 32 videos in
the first part and 28 videos in the second, comparative part.
For half of the subjects we make use of an eye tracking system,
as described later in this chapter.

B. Creation of test material

Since, to the best of our knowledge, there are no ground
truth databases publicly available containing MOS for varying
blurred videos (in contrast to still images), as well as contain-
ing other impairments such as noise or interlacing artifacts,
we were forced to establish our own reference database. For
the subjective sharpness experiment we have considered high
definition (HD) video sequences that are of interest in today’s
production systems, kindly provided by the Flemish public
broadcasting organization VRT.

We have created video clips that all had lengths of approx-
imately 8 seconds each. Subjects only need 7-8 seconds of
video for forming their quality decision [14]. We have chosen
video clips consisting of mainly one single scene, and in
general showing constant sharpness over the whole scene. 15
video clips were chosen in order to evenly span a full range of
available sharpness. The videos did not contain audio tracks.

The various levels of sharpness were artificially produced
by scaling the original videos down to the respective technical
resolution, e.g. 50% of 720p resolution (640x360 pixels),
followed by an upscaling to the target resolution 720p (an
analogously for sharpness levels 33% and 25%). This results
in a reference database of 60 videos of 4 different sharpness
levels (25 fps frame rate), 32 for the first and 28 videos for
the second part. Both datasets spanned the same range of
sharpness levels (100%, 50%, 33% and 25% of full resolution).

C. Setup of the experiment

The evaluation tool provides the ability to view the videos
in randomized order and accepts discrete or continuous user
ratings dependent on the configuration. The tool is used for
both parts of the experiment. For the first part, we used a 6
category scale and instead of a moving slider we compromised
to provide only one discrete scale for each shown video. Thus
only one rating is obtained for a whole video clip. In the
second part a pair of videos is shown where each subject



makes a comparative rating on a discrete 5 point scale. The
ratings of each subject are collected and for each of the 60
videos a mean opinion score is obtained by computing the
mean of all scores. The scales of part 1 and 2 are linearly
transformed to be comparable to the sharpness value of the
sharpness metric.

All 28 volunteers had near-perfect or corrected to normal
vision, and were naive for the purposes of the experiment.
Before the experiment they had to complete a questionnaire,
where we asked for their age group, their eye defects and their
expert level in terms of experience with QA tasks of images
and videos. Due to their answers the subjects were classified
by their expert level in two groups, experts and consumers.
Prior to the first part we have presented two video clips of
the same content, but with two different levels of sharpness.
The first one was raw full HD content and the second was
blurred corresponding to a resolution of 25% of the first.
After watching these two video clips the viewers were asked
to place them in a range from 0 to 100 without having any
instructions or reference for the measure. The reason for this
prior assessment was to get an idea of the personal sharpness
range of each subject. We get two values on a continuous
scale, which can be used for normalizing and rescaling further
ratings in order to alleviate the issues of single stimulus testing
methods. The subjects were placed approximately 0.75 meters
away from the display as proposed in [15]. The environment
illumination was dimmed and controlled, and we provided
a silent environment with as little environmental effects as
possible. The subjects had no time limit for giving their rating;
however, the majority of the subjects needed 15-25 minutes
for completing the entire test. The video clips were shown
on a 32 inch Samsung LED TV series 6 screen with a native
resolution of 1920×1080 pixels.

D. Eye tracking

As already mentioned earlier, half of all subjects judged
the sharpness of the video clips while an eye tracking system
was applied. For this experiment a SensoMotoric Instruments
(SMI) RED500 static eye tracker with a 500hz sampling rate
was used. The eye tracker marks regions that have attracted the
viewers’ attention, since they have focused them for a certain
time (gazing points). Consequently, we capture not only the
human perception of sharpness of HD videos, but also their
regions of attention during deciding about the sharpness score.
Within this experiment, the obtained eye tracking data can be
used for validating the novel sharpness metric (in terms of
correlation of regions selected for judgment by the automatic
metric) and on the other hand we know about the regions of
attention, that subject use for judging.

IV. RESULTS

A. Single stimulus results

As mentioned in Section III-B, we have established our
own test videos by blurring HD videos with different filter
kernel sizes. Thus, the ground truth sharpness is available.
Before comparing with the MOS, we have tested our novel

Fig. 1. Comparison of MOS given by 28 subjects and obtained in the single
stimulus part of the experiment.

sharpness metric for accuracy and consistency by comparing
the sharpness results with the ground truth, grouped into 4
different levels of sharpness. The objective sharpness metric
is robust and clearly distinguishes between the sharpness
levels. The standard deviations of the results separated by the
level of sharpness are relatively small and, most importantly,
the ranges do not overlap with each other. The results are
highly correlated with the ground truth, since we achieved a
Pearson correlation coefficient of 0.856 and a Spearman rank
correlation coefficient of even 0.926.

For the ACR, which was used in the first part of the
experiment, we can easily compare the subjective perception
of all participants with the sharpness metric results. The
MOS were obtained by averaging the scores of all 28 users,
resulting in a range from 1 to 6. By mapping the MOS to the
automatically generated sharpness metric results we obtain the
illustration in Figure 1 presenting the evaluation of the first part
of the experiment. On the x axis, the results of the automatic
sharpness metric is shown and on the y axis the corresponding
MOS are listed. The sharpness metric additionally calculates
a confidence value, which was introduced in Section II-B.
The more edges are present and the more blocks can be used
for measuring the sharpness, the higher the confidence. The
confidence is visualized by the size of the data points and by
the color using the given color bar. The comparison shows,
that the sharpness metric is well correlated with subjective
perception, resulting in a Pearson correlation coefficient of
0.738 and a Spearman rank correlation coefficient of 0.786.

B. Double stimulus results

In the second part of the experiment, the subjects judged
the perceived difference of two subsequently presented video
clips. Instead of showing all possible permutations of pairs
of the second pool of videos, we just show each video
once, in random pairs, until all videos have been shown.
Since we had 28 videos for the second part, several of the
randomly connected pairs were only shown to one viewer,
so that for some of the pairs only one score is available.
Since comparative MOS were required, the ratings on the 5



Fig. 2. Comparison of double stimulus MOS to sharpness.

point scale were linearly mapped to the possible changes of
sharpness and scaled to a range from -6 to 6. For example, if
the first clip was less sharp than the second the subject’s rating
is negative and vice versa. All ratings given for the same video
pairs are averaged.

In order to test if the comparative MOS correlates with
the performance of the sharpness metric, those values were
transformed in the same way. In Figure 2 the results of the DS
part are given, where each point corresponds to one specific
pair of videos. The confidence is computed by the number
of available user ratings and is visualized again by the colors
and size of the data points. For the comparative judgments
we report a Pearson correlation coefficient of 0.683 and a
Spearman rank correlation coefficient of 0.721.

Several single scores have outlier character. Since many
points have a very low confidence we investigated only the
sharpness changes of the videos independent of the content.
All video pairs with equal change of sharpness level are
summarized. Since we have investigated the robustness and
consistency of the sharpness metric and showing that the
results are well correlated with the ground truth, we compare
these values with the effective sharpness change, computed by
using the ground truth. The resulting Person correlation coef-
ficient of the summarized MOS by sharpness difference with
the ground truth is 0.920 and the Spearman rank correlation
coefficient is 0.936.

Using a DS method for QA is not well studied and the
evaluation process has to be carefully designed when setting
up the experiment. The selection of pairs to be shown cannot
be random, or the number of allowed video clips is limited.
However, with using the DS method, we could show, that the
subjects on average were able to distinguish between different
levels of sharpness.

C. Analysis of MOS using eye tracking

The eye tracking system has tracked the subjects’ eyes and
consequently their fixations over the whole experiment. Thus,
for each frame of each shown video the fixations can be
visualized by a colored circle. In this way, all fixations are
easily assignable to the subjects and the information obtained

Fig. 3. Comparison of MOS obtained in the single stimulus part of the
experiment and grouped in experts and consumers.

by the questionnaire (as described in III-C). Some observations
are quite general and intuitively expected, such as that moving
objects and objects entering the scene naturally attract the
attention of viewers. The regions of interest are mainly related
to the central parts of the frame and, very importantly for us,
they do not change significantly for varying sharpness levels.

From the gazing points differences between subjects can
be recognized. For example, some subjects focus on faces,
while others do not. We can find that viewers with higher
expert level tend to focus not on objects relevant for the
scene, but rather on highly textured areas, that make it easier
to judge sharpness. This lead us to the idea of evaluating
the data separately by two groups, experts and consumers.
Viewers with less experience in quality tasks may not be able
to distinguish between minor differences in sharpness levels,
while more experienced viewers do have the ability.

In Figure 3 the ratings of the first part of the experiment
are visualized slightly different from Figure 1, by focusing
on the expert level of each subject. When comparing the
sharpness metric results with the experts’ MOS only, the
correlation increases (Pearson: 0.779, Spearman: 0.807), while
for the consumer group, the correlation decreases (Pearson:
0.663, Spearman: 0.691). The hypothesis about significant
differences between subjects of different expert level could not
be confirmed from the ratings. However, some of the outliers
are related to the consumer group, which supports our assump-
tion, that subjects with less experience in quality tasks have
difficulties in distinguishing minor differences of sharpness. In
particular, it seems to be difficult for consumers to distinguish
higher sharpness levels. Note that experienced subjects tend to
rate video clips with a lower sharpness level more critically,
while their ratings for sharper material are more accurate, since
obviously, they are able to recognize minor differences. The
comparative ratings of the DS part were grouped into experts
and consumers as well. Again, the correlation for experts
increases to a Pearson correlation coefficient of 0.954 and
a Spearman rank correlation coefficient of 0.973, in contrast
to a decreasing consumers’ correlation (Person: 0.839 and
Spearman: 0.900). Compared to the initial (not grouped by



expert level) values (Pearson: 0.920, Spearman: 0.936), this
indicates a better ability to distinguish between several levels
of sharpness for the experts.

Similarly to the gazing regions used by the expert group, our
sharpness metric is designed to measure the sharpness at edges
and textures. Furthermore it identifies the sharpest regions,
since focusing on the sharpest blocks is necessary for content
with e.g. out of focus regions. We have tested the overlap
of regions selected by the sharpness metric and fixations of
the subjects. We have visualized all blocks that are used by
the objective sharpness metric for computing the sharpness of
an image. The algorithm selects those blocks that contain the
sharpest edges, assuming that humans focus on the sharpest
regions. The hypothesis can mostly be confirmed since experts
truly focus on sharp edges and textures.

D. Discussion of results

According to these results the accuracy of the MOS can be
interpreted as dependent on the expert level, which was also
supported by the analysis of the eye tracking data. A small
classification error needs to be considered since the expert
level is a matter of self-assessment and subjects may have
been misplaced. Asking subjects for a calibration judgement
on two sequences in the beginning did not allow scaling of
the scores in the first part of the experiment, but confirmed the
assumption that the single stimulus method presents suscepti-
bility to range effects as reported as drawbacks of this method
in literature. The rating procedure of paired comparison is
simple so that training of subjects can be performed easily.
In addition, the reliability of each subjects’ ratings can be
judged independently in our methodology, while other sub-
jective data is required for outlier detection in MOS-based
methodologies. Diverging user scores may be investigated
separately instead of combining them to overall MOS. How-
ever, obtaining confidence information in paired comparison-
based tests has not been sufficiently studied. Overall, the
paired comparison method has potential for subjective tests
but (in contrast to other test methodologies) its theoretical and
practical frameworks have not been investigated sufficiently in
the field of multimedia QA [16]. However, we could show that
the comparative rating were better done by the experts rather
than by the consumers.

V. CONCLUSION

We have presented an improved no-reference sharpness
metric for video, designed to correlate well with human
perception. It shows state-of-the-art performance and resolves
some well known issues in existing objective QA metrics. Its
major advantages are a more accurate sharpness prediction
and a lower susceptibility to diverging image content, as well
as more robustness under presence of noise and interlacing.
A subjective experiment was performed using two common
methodologies, ACR and DSCQS, where subjects had to
judge two sets of videos varying in their level of sharpness,
down sampled from content originally in HD. The evaluation
confirmed a high correlation between the algorithm and the

subjects’ sharpness assessments. Based on eye tracking data,
we assume that the selected edges and further the perceived
sharpness mainly correspond with those that humans would
select. The gazing locations are clearly dependent on the
viewer’s experience level. Consumers tend to focus on typical
high-saliency areas, such as faces or motion areas, while
experts select textured regions and edges, which enable them
to perceive sharpness degradations more clearly.
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