
Data Access and Reproducibility
in Privacy Sensitive eScience Domains

Stefan Pröll
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Abstract—In privacy sensitive eScience domains, the data
forming the basis for investigations is attributable for example to
individuals. However, the disclosure of such data is often not al-
lowed or advised if it contains sensitive data about the individual.
Thus special attention needs to be paid when conducting eScience
experiments, so that such data is not accessed in unauthorised
ways. This affects the data in original or transformed forms, if the
latter still allows deduction of information on individuals. Such
concerns are opposing interests of repeatability and reproducibil-
ity, where the input data and traces of experiment executions
form an important aspect to enable such goals. In this paper, we
present a use case in the area of health policy planning, where
statistical and mathematical models are trained from routine data
health data, which contains privacy sensitive information. We thus
discuss requirements for protecting the privacy, with the goal of
still enabling repeatability and reproducibility.

I. INTRODUCTION AND MOTIVATION

Repeatability and reproducibility are corner stones of sound
research in science disciplines, including computational and
eScience domains. A thorough and detailed description of
the investigations performed is thus required to achieve these
goals. This includes description of the experiment design, that
is the computational steps that are performed to achieve the
final result, specifically including also the order of steps, and
how they are connected and invoked. Scientific workflows have
shown to be a useful concept to this end, for example utilis-
ing the Taverna Workflow Engine [1]. Further, descriptions
building on top of workflows and augmenting the metadata
on the experiments have been proposed, such as e.g. the
Research Object model [2]. Workflows structure the execution
of processes and allow the automation of computational tasks
to a high degree. It also facilitates automatic capturing of
provenance data, as the data flows between the process steps
are often explicitly defined and can thus be easily recorded and
stored. This provenance data can be well utilised for verifying
and analysing experiments.

The technical experiment setup, for example what software
and hardware is utilised, including details on the configuration
and dependencies, is also an important aspect, but often not
covered sufficiently by workflow systems [3]. Finally, the data
that is utilised in a specific execution of a workflow is vital
to be able to re-execute an experiment. With ever increasing
sizes of data sets, often stemming from a multitude of different
sources, this is a challenge that is tackled by data citation, and
more recently dynamical data citation approaches.

There are certain settings settings where all these efforts to

enable repeatability are, however, opposing basic principles
of privacy. This is the case when personally identifiable
information (PII) is involved, which can frequently be the
case especially in life sciences, but also other disciplines.
One specifically prominent domain is eHealth, where records
describing the medical history of patients are employed. This
can for example be in medical diagnosis, or for health care
planning purposes.

Privacy is of concern not only for the original input data,
but for also the provenance traces generated during experiment
runs, or even the experiment design and implementation. In this
paper, we therefore take a comprehensive look at the lifecycle
of an eScience experiment, starting from data provisioning, the
execution of the experiment, up to the output data generated.
We analyse in which phase measures to enhance repeatability
and reproducibility are needed, and what their relation to
privacy protecting mechanisms is. We therefore discuss in
this paper the effects and constraints that privacy sensitive
data has on data access, data citation, experiment execution,
and provenance data generation. We describe both existing
solutions, as well as illustrating areas where open research
questions are still to be tackled. For some areas, we also outline
possible approaches.

As a guidance during this analysis, we utilise our experi-
ence from a project we are currently running in the domain of
health policy planning in Austria 1, where we have access to a
real scenario, and are able to gather requirements and insights
from various stakeholders, starting from health insurance and
policy organisations, health data providers, to data scientists.

The remainder of this paper is organised as follows. Section
III gives and overview of the related work in the area. Section
II will then describe our framing use case from the eHealth
domain. Then, Section IV describes how data access needs
to be adapted for enabling privacy in sensitive applications.
Section V then shows how data citation provides evidence
for experiment runs, and which privacy concerns are to be
considered there. Further, we discuss how data citation can
alleviate same privacy concerns of data sharing. In Section VI,
we discuss what issues are to be considered when providing
meta-data on the execution platform, to enable the technical re-
execution of an experiment. Section VII provides a discussion
on provenance data, and then describes an adaptation of the
data citation model to allow for privacy-aware citation of
provenance data, without needing to release the data in the

1http://www.dexhelpp.at/



open. The paper closes with a conclusion in Section VIII.

II. USE CASE

The specific scenario we are investigating in this paper is in
the field of eHealth, specifically in the domain of health policy
and planning in Austria. The goal of research in this discipline
is to enable informed decisions on the future directions of
the health care system, by selecting the most appropriate
treatments and technologies. Contrary to empirical studies that
are limited in size, the aim is to use large volumes of routinely
collected health care data.

The Austrian health care system is characterised by a
mandatory health insurance, thus 98% of the population are
covered [4]. The Austrian National Health GAP-DRG database
is a database containing record of publicly reimbursed health
care events, e.g. from general practitioners, in- and out-
patients from hospitals, and pharmacies. As this data is mainly
collected for other tasks than for research, secondary utilisation
of data implies also disadvantages. Drawbacks involve mainly
restricted number of variables, missing details, inadequate
documentation, and data quality. For example, the data does
include only information on the health care service performed,
but not any disease or diagnoses information. Initially the
database contains information of two years, totalling almost
2.2 billion records. In a second iteration of the database, data
from the largest of Austria’s province (accounting for roughly
22% of the population) has been provided over a time-period
of 4 years.

In the course of the Austrian project DEXHELPP 2, this
data is combined with various data sources provided by other
project partners, e.g. census data. Also, routine data from the
health care system is periodically updated – additional data
for new periods of time is provided, and also corrections in
the data from previous periods might be provided. While the
data is pseudonymised in most data sources, record linkage ap-
proaches can be utilised to identify matches between different
data sources, as shown e.g. in [4].

The data is then made available to project partners for
investigating specific research questions – data access to the
involved partners is based on the definition and approval of
such a research project. However, not all data sources are going
to be available to all partners, as some of them have conflicting
interests and backgrounds. Especially access to the raw data
is often prohibited. As such, the issues of data access and
privacy are slightly different to settings found often in other
research settings, where a static export of the data is made
available to researchers. Here, we deal with a continuously
increasing data set, and the data that is allowed to be used
for each research project is potentially different, depending on
the project partners and specific type of investigation. We thus
rather face the scenario of ad-hoc needs for a specific subset
of the data bases.

III. RELATED WORK

In the recent years data driven science and in-silico exper-
imentation have produced remarkable results and constituted
e-Science as a completely new paradigm in many different
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disciplines [5]. With growing complexity of experiments it
becomes increasingly difficult to reproduce the results pub-
lished in scientific journals and papers [6], [7]. Nevertheless
reproducibility is the most important metric for valid research
[8] and requires thorough documentation of all steps [9],
[10]. Different approaches exist in order to preserve research
environments [11] and capturing whole scientific workflows
including all software dependencies and additional contextual
information of experiments [12], [13].

For understanding how an experiment processed research
data, transformed the data within a workflow and eventually
provides the results, we need to understand the lineage of the
data including all computational steps which were dependent
on it. Provenance data is metadata which describes the lineage
or evolution of data. It is used for denoting the sequences
of steps which have been proceeded and for providing addi-
tional information about execution details to a varying degree
depending on the environment and its requirements. For this
reason provenance data is an essential building block for
reproducible experiments [14] and constitutes evidence for
the execution of research workflows and their internal data
exchange.

The authors of [15] identify six key concepts fundamental
for assessing research data: quality, provenance, data extraction
and related errors, processing and related errors, traceability
of results and curation. These properties are interconnected
and influence each other. Provenance is at the core of these
principles as it allows increasing the quality by being able
to detect extraction and processing erros while providing the
knowledge how each record was used during a workflow. In
our work we will investigate how privacy concerns influence
the metadata collection and their usage. Finally the curation
concept enables peers to discover, access and interpret results
including the metadata how a result has been obtained. As
provenance data supports reproducible and verification of
research results, it is contributing to the long term preservation
of research experiments [16]. Provenance data can be captured
at several levels [17], ranging from low level file sytems
solutions to integrated solutions for sophisticated scientific
workbench applications [18] and semantic web applications.

A comparison of three views on provenance data is given
in [19] and a taxonomy of data provenance approaches in
eScience and workflows can be found in [20]. A provenance
bibliography has been compiled by [21].

As this data may include sensitive information about indi-
viduals, provenance data is considered a risk for disclosing
confidential data. For this reason, privacy issues in prove-
nance data have been studied extensively [22], [23]. For
increasing the reproducibility and reuse of the experiments
and their results, researchers need to share their workflows
and their datasets. It is essential for scientists to identify their
work for the later reference. This also includes datasets and
even workflows. As research is an iterative approach, several
versions of a dataset or a workflow may exist. Therefore,
researchers require data citation methods which allow them
assign persistent identifeirs to workflows and attach specific
subsets of data which are needed for verifying an experiment.

Data has gained more and more importance for orga-
nizations and therefore data leaks must be preventable and



detectable. Two methods are available which allows identifying
data and therefore detect the source of a leak: fingerprinting
and watermarking. Both methods are currently mainly used
for detecting pirated multimedia content [24]. Watermarks are
used for identifying the content owner, whereas fingerprints are
individualized watermarks [25]. As the importance and value
of data grew, both methods have also been applied to relational
databases [26], [27].

Strategies for privacy in i2b2 is analysed in [28]. A set
of privacy levels, which allow different detailed access to the
data sources, is advocated. Users are, based on personal trust,
granted access to a certain level.

IV. PRIVACY AWARE DATA HANDLING

While privacy laws are very different depending on the
country where the data is hosted, privacy is a fundamental
right e.g. in the United Nations “Universal Declaration of
Human Rights” (Article 12). A basic necessity, applicable in
most settings, is the need for removing the possibility for
identification of individuals. Further, this might be extended
to also include legal entities. Thus, a fundamental requirement
also for eScience research using privacy sensitive data is that
individuals can not be identified from the data utilised in the
experiments.

Anonymisation deals with either encryption or removal
of personally identifiable information, to hinder unintended
disclosure of information on individuals. Pseudonymisation
this provides a compromise between full anonymisation and
handling raw private data. As In contrast to anonymisation,
identifiers are not removed but replaced with a pseudonym,
which is an artificial identifier. Quasi identifiers [29], which
are pieces of information that by themselves are not uniquely
identifying a record, but might do so if combined with other
information, may still remain in the data set [29]–[31].

In this section therefore discuss basic requirements for
enabling privacy in our eHealth use case scenario, from
requirements for the actual data access, as well as concerns
of anonymity and watermarking.

A. Data Access

In our scenario, various different tasks are investigated by
the researchers, and thus, there is no single data set that is
once created and distributed to them. Instead, there is the need
for many customised and ad-hoc datasets that can specifically
target the research question. Further, the data base is con-
tinuously expanded by fresh transactional data covering new
periods of time. Further, as much as possible, the data shall
remain on the location of the central repository, and exports
shall not be distributed to users. Thus, it becomes rather
infeasible to provide periodic snapshots to the researchers.
Instead, ad-hoc queries to the data are a requirement. It has to
be noted that important information in the database is already
pseudonymised.

One can conceive settings where there is a data archivist
that performs data access on behalf of the researchers, trans-
lating their information needs into queries to the data storage.
This way, the access to individual records is limited to a certain
group of people, which in the same time could perform checks

that the data delivered to the researchers doesn’t allow any
deduction of privacy infringing information, by the methods
discussed below.

However, such settings are likely to be costly, and instead,
the researchers would be allowed to perform the data access
themselves. In such a scenario, it is thus important to ensure
basic requirements for keeping sensitive data protected. Instead
of directly granting researchers access to the data sources,
which in our example are in the form of a relational database,
the researcher shall be provided with a front-end that allows
control over the results of the queries. This further reduces the
complexity of interacting with the system. We can thus protect
privacy sensitive individual data records from unintentional
access by sanitising the query results in a way that the data
does not reveal information on individuals, instead of allowing
the researcher access directly query individual records.

In our application scenario, we realise the data access
approach by utilising the I2B2 software platform3 [32], [33]
(Informatics for Integrating Biology and the Bedside). I2B2 is
a data access system built specifically for the integration of
clinical data, and released as open source software. It is in
wide-spread use for research on clinical health data, as shown
e.g. in the SHRINE system [34], which aggregates queries over
the federation of several data sources. It allows the users to
build queries with assistance of a query builder. Plugins also
provide data-warehouse like functionality.

B. K-Anonymity

Even after removing information that uniquely identifies
individuals from a data set, de-anonymisation approaches,
which try to cross-reference information from multiple data
sets, might be successfully reveal the identify of individual data
records. For example, [30] showed that even after removing at-
tributes that uniquely identify persons (e.g., the social security
number) from medical data, it is possible to identify 87 percent
of all Americans based on combining quasi-identifiers [29],
such as date of birth, ZIP-code, sex, and combinations of quasi
identifiers with external data such as voter records [35]. Thus,
to prevent the identification of individuals, [30] introduced a
new concept called k-anonymity, which is a widely adopted
anonymisation technique in research nowadays.

K-anonymity ensures that for each subset taken from the
database, each record shares the same attributes with at least
k − 1 other data samples. Thus, it becomes impossible to
distinguish between these records, and linking them with other
databases becomes more difficult. This requires a modification
of the results of the query, by generalising attribute values to
achieve the k-anonymity desired, or by suppressing the value
altogether [31].

Generalisation is achieved by replacing a value with a more
general value that is still semantically correct. This is achieved
by defining a generalisation hierarchy. For the example of a
ZIP code, this might be by removing the last (least significant)
digit, for other numerical values it can be e.g. via a data bin-
ning. Suppression of a value can be modelled by introducing a
new maximal element in the hierarchy. For a specific relation,
a number of potential generalisations exist, the k-minimal

3https://www.i2b2.org/software/index.html



generalisation being the one that is the least generalised. If
multiple such generalisations exists, the minimal distortion of
a relation can be chosen as a preference criterion. Finding this
optimal k-anonymity generalisation is a NP-hard problem, but
several heuristics exists. A good overview can be found in [36]-

Besides k-anonymity, l-diversity [37] is an important as-
pect. Even if k-anonymity is achieved for a group of records,
i.e. there are at least k records that have the same values in
the quasi-identifiers, if these records then all have the same
values in another attribute, e.g. a prescribed pharmaceutical,
still information is revealed about a certain person (without the
need to identify the actual record). L-diversity aims at solving
that, by ensuring that there is enough diversity in these attribute
values.

These steps for protecting privacy have to be taken before
the researchers obtains the actual data export. This export is
generally a smaller subset of the original database, thus the
problem of finding the optimal k-anonymity generalisation is
easier. K-anonymity generalisation on subsets is thus ideally
integrated in the data access platform, such as I2B2. One fur-
ther requirement is that these procedure needs to be repeatable,
in case the study needs to be evaluated and re-executed. Thus,
the same procedures for enabling repeatability as with the
actual experiment computation need to be applied in the data
access and export step.

C. Watermarking

Data is crucial for many organizations as it constitutes
an intellectual asset of unique value. This is especially true
when sensitive data is processed and the disclosure of datasets
can have serious consequences for individuals. Therefore data
leaks must be detectable and the source of a leakage must
be identifiable and be made accountable. A watermark in-
troduces controlled but meaningless change into a database
and therefore allows those in possession of this knowledge
to detect data leaks. Naturally, there exists a trade-off between
the strength of the watermark and the quality of data [38]. The
more records need to be changed, the higher is the probability
of the watermark to be detectable.

Watermarking provides several benefits if applied to the
data stored in the relational database system. A watermark for
relational databases has the following applications: claim au-
thorship, fingerprinting and content validation. [26] introduced
a watermarking scheme based on bit patterns to numerical
database tuples. The concept has been developed further and
several approaches have been identified in [25]. Based on
these schemes the dataset can be detected, but not all schemes
are resilient to a change in ordering or sub-set generation. An
overview of database watermarking and the available schemes
is given in [39].

In our scenario, we need to watermark individual subsets
for detecting data leaks and have proof that the data was ille-
gally retrieved from a malicious source. The eHealth database
we consider in this work utilises various data types, mainly
numerical and categorical data. As mentioned before, water-
marking changes existing data in order to hide the detection
information. For numerical data, the deviation the changes
introduce to numbers can be controlled and remain within
the specified boundaries. Introducing changes into textual data

is more difficult, as the meaning will be completely lost if
single letters are flipped. The same is true for categorical data,
where flipping one value from a given domain can falsify
results. The authors of [38] introduce a scheme where the
watermark gets inserted by exchanging non-numerical values
from a valid domain. Thus the scheme does not introduce
meaningless random data but from the domain of the record.

Fingerprints are an extension to watermarking [40] and
several approaches exist [41]. A fingerprint can be generated
individually for users downloading a dataset via the application
interface. Therefore the change which is introduced into a
dataset is again minimal, but can be varied in order to
distinguish between the different users and fingerprints respec-
tively. In practice, a hash function is applied which can be
recomputed. Therefore the introduced changes is meaningful,
which contrasts the fingerprinting approach from watermarks
[25].

Obviously the application of watermarking and finger-
printing schemes to sensitive eHealth data which is used
for statistical analysis is not a trivial task. Care has to be
taken which specific columns of a record may be utilized for
applying a categorical watermark, depending on the questions
the researcher aims to answer. As the users only may work with
the application interface, the data selections can be analysed
in advance. Domain experts can define which columns do not
allow alteration and which columns can be used for applying
the watermarking scheme. Therefore the system may decide
on demand which data can be utilized for watermarking in
a dataset. We are currently in the process of developing a
modification to the I2B2 system that allows for inserting
individual fingerprints into the exported data sets.

V. DYNAMIC DATA CITATION FOR REPRODUCIBLE
RESEARCH

As the name suggests, data citation is primarily used for
referencing research data and provide long term access via
persistent identifiers and institutionalized data retention. As
research has become data driven in recent years, data sources
require the same attention as publication references did so
far. Data citation follows the century old tradition of making
the sources of knowledge known to peers and therefore allow
constructive critique. This does not necessarily imply that the
data has to be open and accessible for all users [42], although
there are efforts for promoting open access in many scientific
areas. Disciplines which handle sensitive data have obviously
different requirements which will be described later in this
section.

Data citation has evolved by passing three stages [43]:
provide descriptions, support access and enable verification
and reproducibility. Being able to identify results in an unam-
biguous way, data citation offers several methods how datasets
can be accessed. Researchers would upload one specific dataset
to a repository and link the dataset in their publication with
a persistent identifier. Peers can then resolve the link and
usually are referred to a landing page, which contains metadata
about the dataset and the possibility to retrieve the data for
inspection. At its core, data citation provides access to evidence
by utilizing persistent and unique identifiers supported by



verification and attribution metadata4.

So far, data citation has considered mostly static files which
reside in a repository and can be identified for later reference.
The growing size and complexity of datasets created a demand
for a more flexible data citation approach. For this reason, the
concept of dynamic data citation5 was created which allows to
reference user specific datasets and retrieve the data on demand
at a later point in time.

A. Citable Subsets of Dynamic Data

In our earlier work we developed a data citation frame-
work [44] based on relational database management systems
(RDBMS) and demonstrated how it can be applied to existing
infrastructures [45]. The framework we presented allows to at-
tach persistent identifiers to the queries instead of the exported
data set. We store the queries with additional metadata in the
so called query store. Each query store record provides timing
information about the query execution and hash keys for later
result set verification. By applying versioning to the data by
adding timestamp and event metadata, the result set valid at
the time of the query execution can be retrieved at a later point
in time. Therefore, there is no need to store each and every
version of an exported dataset separately, as each query gets
persisted and can be used for retrieving the data again. The
approach is not limited to relational databases, but can also
be applied to other data structures which fulfill requirements
such as a query language [46]. Verification methods allow to
ensure the completeness of the dataset and therefore increase
the trust in research. In this work we show how we can expand
our existing framework by privacy preserving data citation
capabilities.

B. Dynamic Data Citation for Sensitive Sources

Recently data citation also constitutes to reproducibility,
as it allows tracing dynamic datasets through their whole life
cycle. Therefore data citation constitutes an important building
block for reproducible research as it enable researchers to
re-execute experiments with the very same data again. In
this work, we utilize the concepts of data citation in order
to support the long term availability of execution metadata.
Additionally to describing datasets and larger data collections
on landing pages, we focus on the provenance metadata which
needs to be stored in order to provide the knowledge for
detecting deviations in workflow executions. Additionally we
maintain the privacy of sensitive data by enforcing secure
protocols for subsets of data.

As described in Section IV-A, full data access is prohibited
due to privacy considerations. Access is only grated via the
interface, which gives extended control about the datasets to
be retrieved by the users. In order to still enable reproducibil-
ity, the queries responsible for creating specific subsets get
annotated metadata and a persisted identifier. The metadata
which is needed for re-executing a k-anonymous query needs
to be stored and linked to the query itself. The same is true for
watermarking the result sets and the secret metadata to do so.
Therefore a so called execution store is used which is described
in VII-A. This approach collects sustainable metadata not only

4https://www.force11.org/datacitation
5https://www.rd-alliance.org/group/data-citation-wg.html

about the query itself, but also about the details required for
maintaining the privacy of records inside the database.

We describe how the existing data citation framework [44]
can be made compliant with the privacy requirements imposed
by sensitive environments. In order to detect data leaks water-
marking algorithms need to be applied, as described in Section
IV-C. Each generated subset of a sensitive data source must
comply to the requirements of the privacy policies (cf. IV-B).
Both methods can be provisioned on demand and individually
for each data set and for differential users. Additionally, the re-
execution of a query also requires to maintain the permission
rights of the records as access to a specific portion of the data
may be granted or revoked. Therefore the method introduces
additional security layers for enforcing privacy and traceable
datasets.

The necessary metadata for these operations needs to be
preserved for enabling the dynamic creation of datasets on
demand. The execution store is therefore an extension of
the query store of our previous work. Additionally to the
query metadata, anonymization, access and permission policies
are stored and maintained and consulted upon re-execution.
The anonymization and watermarking parameters are linked
individually for each user respectively datasets and may be re-
generated on demand. As the data is available at all times,
permissions for retrieving data can be adapted to current
requirements.

VI. PRIVACY IN PROCESS PRESERVATION

Besides needing to document and preserve the data that is
used for an investigation, there is further a need for means to
allow repeatability and reproducibility of the experiment itself.
This includes description of the experiment design, specifically
the computational steps that are performed to achieve the
final result, specifically including also the order of steps, and
how they are connected and invoked. Further, a documentation
and detailed description of the computational environment that
was supporting the experiment, including the hardware and
software setup. Further, configurations and parameters required
for the experiment need to be made available to allow re-
execution the same experiment.

Various approaches to achieve this goal have been pre-
sented. One step towards sharing the execution environment
is via scientific workflows, which have shown to be a useful
concept to this end, for example utilising the Taverna Workflow
Engine [1]. However, a workflow definition file itself is often
not sufficient, and execution often breaks, as has been shown
e.g. in [47]. Therefore, descriptions building on top of work-
flows and augmenting the metadata on the experiments have
been proposed, such as e.g. the Research Object model [2],
which allows for semantically linking more resources that
describe and compose the research workflow, to improve doc-
umentation and understandability. The Workflow4Ever project
also provided functionality to monitor the evolution of the
stability of a workflow, e.g. by checking whether external
services are still available.

The aforementioned technical experiment setup, for exam-
ple what software and hardware is utilised, including details
on the configuration and dependencies, is also an important



aspect, but often not covered sufficiently by workflow sys-
tems [3] or the Research Objects. The Context Model presented
in [48], along with the tools extracting this information from
the system, can alleviate this issue.

There are, however, also potential privacy concerns with
the meta-data gathered for enabling re-execution of the inves-
tigation. For example, [49], [50] argue that also the formalised
experiment structure and implementation of specific tasks in
the workflow can be a threat to privacy, demonstrated in the
example of a disease susceptibility workflow. The authors
introduce module privacy as the need to keep the functionality
of a specific step in the workflow from unauthorised access,
and structural privacy as the need to conceal the information
that specific modules and data is used to obtain the output of
a module or the whole workflow. As an example given, one
might want to hide the fact that data from a publicly available
repository is utilised, which might allow inference on private
data in the workflow.

Besides the workflow definition, also other information
captured in a Research Object or Context Model instance might
contain privacy related information, e.g. on the users involved
in the process.

VII. A DATASET CENTRIC MODEL FOR SECURE
PROVENANCE DATA

Researchers use tools such as I2B2 to interact with the
database and retrieve datasets which are subsequently used
in their investigations. This abstraction allows us to collect
and gather metadata which keeps the privacy of data intact
and does still provide meaningful metadata for detecting
errors or deviations in experiments. All data excerpts which
are retrieved from the database must comply with privacy
policies. Therefore each dataset only contains k-anonymised
records, therefore no personally identifiable data is included
as described in Section IV.

In most papers on the topic of k-anonymity (cf. Sec-
tion IV-B), datasets are exported only once and then made
publicly available. Therefore most applications only require
the application of the anonymisation algorithm one time. In
our use case the data may change during the course of the
project, thus ad-hoc methods are required. As a result we have
to recompute the k-anonymous datasets after each update while
still being able to generate previously issued datasets, including
the very same equivalence classes. Therefore the knowledge
about the construction of k-anonymity needs to be preserved
and constitutes additional metadata for each processing step
involving data retrieval from sensitive sources.

A. The Execution Store

We adapted the query store concept from [46] and re-
coined it for the persistent storage of execution metadata which
goes beyond classical metadata queries. The execution store
is used for storing the information of each workflow step
which allows understanding why an agent (who) introduced
what kind of data at which steps (where) at a given time
(when) and how this step influenced the further processing.
The source database needs to be adapted and augmented with
privacy relevant metadata. Therefore each table which contains
potentially personally identifiable information needs to get

marked as confidential. Each query which gets issued against
such a table needs to fulfil the predefined privacy requirements.
This entails that the query potentially needs to get rewritten
in order to return k-anonymised data as described in Section
IV-B. All the metadata such as equivalence classes and further
privacy enhancing metadata needs to get stored within the
execution store for later reference.

Once the result set has been anonymised, it needs to be
analysed for storing additional metadata such as result set
sizes, hash keys and timing information. This data is relevant
for detecting deviations and changes at a later point in time.
It is important to stress that this metadata must not contain
any information which could allow an attacker to derive
information about the actual content. More details about the
additional metadata is given in Section VII.

Additionally, the technical metadata describing how a step
transformed and processed the data is preserved as well.
Tools developed e.g. in [3] demonstrated that systems can be
automatically described in a fine grained and accurate manner.
Applying the same principles to the steps of a workflow
provides the technical metadata needed for describing the re-
quired software and hardware components for each single step.
This allows gathering the necessary metadata for describing
the exchanged data, therefore enabling to reason about the
expected qualitative properties of the data. A generic repository
of common file formats and their significant properties can be
built, which semantically describes properties such as expected
file formats, sizes, data types, value ranges et cetera. Therefore
the approach we present in this work goes much beyond the
comparison of checksums such as SHA1 hashes for detecting
deviations in exchanged data.

For achieving this goal, each execution step of a workflow
requires a persistent identifier. This PID allows the unique
identification of each step and allows the storage and re-
trieval of metadata needed for reproducing the behaviour of
a component at any given point in time. Each execution step
may subsume several datasets from various sources. As we
described in Section IV-A users interact with the data via
predefined interfaces. Therefore the parameters which they use
for their queries can be recorded and analysed. The query
is stored within the execution store and the metadata gets
extracted. This includes data source identifiers such as database
names and tables, the dataset specific query parameters such
as sorting and filters and the user metadata.

Whenever the data needs to be aggregated or adapted for
fulfilling privacy policies, the additional metadata is stored
together with the query information and the user metadata.
Thus the aggregation of results due to the application of the
privacy preserving measures can be re-enacted and therefore
the exact same dataset can be retrieved. This also includes
watermarking metadata and anonymisation parameters, thus
the very same dataset can be created by re-executing the query
from the information stored in the query store. Figure 1 shows
a schematic overview of the process.

Firstly, the user utilizes the application interfaces (for
instance from I2B2) for selection the data needed for his exper-
iment. When she submits the query, the system automatically
intercepts and analyses the request. All properties of the query
are stored together with a time-stamp and the user details



Fig. 1. The Execution Store

within the execution store. The system then normalizes the
query and calculates a hash sum of the query parameters. Thus
the system can detect whether or not the query has been sent
before. If the query is new, a new PID is assigned. If the
query is already known to the system, the data is checked for
the most recent update. As the database is timestamped, it can
be easily detected, whether or not there was an update between
the execution of two queries. If no update was detected, the
system immediately responds with the already known PID and
trans mitts the anonymized data. The execution of the query
gets recorded and the user details are being stored. If there
was an update between two executions of a query, the system
decides to assign a new persistent identifier for denoting the
changed dataset. Hierarchical PIDs allow to create versioned
trees of query executions and may therefore compare previous
query executions.

The use case we described in Section II requires to detect
data leaks from subsets of data. Hence watermarking requires
special care in our scenario. As described in Section IV-C,
we need to include individual watermarks for all participating
institutions or even on user level. Again the creation of water-
marks has to be repeated whenever the dataset gets updated.
The previously inserted watermarks need to be preserved
together with their metadata for the later retrieval. Thus each
dataset and the user who created it can be recognized at a later
point of time. Upon re-execution the system needs to detect
whether or not the underlying data source changed.

Each run of an experiments generates new datasets. Linking
the metadata of these datasets via the execution store with per-
sistent identifiers allows retrieving the data again at any time.
Therefore our metadata view is dataset centric, which entails
that characteristics and significant properties are retrieved from
the datasets. For each independent step within an investigation,
we store additional metadata about the exchanged data between
the components in order to detect deviations and errors from
the expected standard behaviour. There are several aspects of
datasets which can be considered and which do not disclose
sensitive information.

• Different input and output data has different metadata
characteristics

• Number of records / size in the resultset

• Number of attributes/features included (e.e. columns
of a resultset)

• Expected values/units/datatypes per attribute (e.g.
ranges, temporal, spatial, SI units, datatypes)

• Expected datatype/format (csv, table, binary file, ...)

• Other characteristics (comprehensiveness (e.g. null
values) precision, encoding

The properties are also stored within the execution store and
linked to each research investigation persistently. The metadata
does not disclose any knowledge contained within the records
themselves, as it has been anonymised previously. Still it
constitutes to the provenance trail of an scientific experiment.
Researchers may utilize the data for discovering alterations in
the process and react accordingly.

B. Machine Actionability

The amount or provenance data can escalate quickly.
Therefore the processing and interpretation of provenance data
must be automated. Semantic provenance data can be used to
add meaning to the collected metadata [51]. Therefore the data
can be automatically interpreted by software and knowledge
can be derived based on formal ontologies. So far semantic
provenance data has been used mainly in workflow engines
such as Taverna via standards as Janus [52]. Hardly any of
the existing semantic data models as described in [53] are
applied to data itself. Extracting dataset metadata and feeding it
into formally described semantic models allows to interpret the
data more efficiently. The relational database data model for
instance can be retrieved from the DBMS in an automated way
and allows describing selected columns and their properties
such as data types, uniqueness, default values or constrains in
an efficient way. Thus detailed knowledge about the datasets
without having to disclose the actual content can be obtained
and stored in a machine processable fashion. Together with the
semantic metadata of the processing steps of an experiment, the
experimental setup can be described automatically. Assigning
identifiers to metadata, not only to data and processing steps,
but to each experimental, cycle allows retrieving fine granular
but secure metadata about complex research investigations.

C. Automated Deviation Detection

Machine readable and actionable semantic metadata about
scientific investigations provides several advantages. In addi-
tion to the automated metadata collection during the executions
of an experiment, the database of the metadata becomes a
prime resource for analysing the experiment on a meta level.
As the characteristics of each data exchange between steps
are recorded, deviations can be detected. Changes in the
characteristics of a dataset can be an indicator for activities
which require further investigations.

D. Human Readability

In addition to the machine processable metadata informa-
tion, human data consumption is an essential aspect for the
acceptance of citable research investigations. Having printable
documentation of the metadata generated during experiments
increases the understanding of internal details and constitutes
trust into the scientific process. In essence, landing pages
need to be provided for each individual persistent identifier.
As several different entities are to be resolved (e.g. metadata



about datasets, process step descriptions or user identification
data), several different anchors exist which can be browsed
from agents but also from human beings.

VIII. CONCLUSIONS AND FUTURE WORK

In this paper we present challenges introduced by the
collaborative work of competing organisations in the eHealth
domain. We motivate our findings with a concrete example
from one of our current projects where researchers from or-
ganisations with potential conflicts of interest need to share and
exchange data. Based on data excerpts from a very large and
sensitive relational database, researchers conduct experiments
and draw their results. The raw data cannot be shared as it
contains pseudonymous but individual health care data from
millions of Austrian citizens. As the combination of data
from external sources would allow crafty attackers to deduce
information even from anonymized data, privacy preserving
methods have to be applied.

We identified reproducibility as a key factor of scientific
endeavours. For this reason maintaining privacy has an adverse
effect as it hides information and increases complexity in an
already challenging task. The goal of our work was to find
means how scientific investigations can be rendered repro-
ducible while still maintaining the required privacy levels for
all exchanged data. For this reason we focused on three areas
which are crucial for understanding how an experiment was
conducted: data access, data exchange and provenance.

We increased the privacy of the already pseudonymous
data by introducing security preserving methods such as k-
anonymization, which hinders the deduction of knowledge
from the sensitive data by cross-joining several data sources
and inferring facts by data linking. As an additional security
layer we include automated and on-demand watermarking and
fingerprinting of the data excerpts. We precisely describe the
effects on data quality and introduced a persistent storage of
the information which is needed for keeping not only the
data, but also their fingerprinted and watermarked exports
reproducible. Thus data leakage can be traced to individual
organisations and even researchers. We enforce these security
measures by only allowing indirect data access via a predefined
application interface. Therefore all data extraction tasks are
within the control of the data owner. This ensures that only
privacy enabled subsets are retrieved from the database and
that each subset can be linked to a user.

So far, the introduced steps increase privacy but have
negative effects on reproducibility as the data looses precision.
For overcoming this issue, we adapted existing data citation
approaches which enable to identify each dataset individually
as it is transformed along the processing chain. The execution
store we introduced in this work allows not only to trace which
user created as specific dataset, but also to understand how the
source data had to be adapted for preserving privacy. This
approach has several advantages compared with traditional
data publication paradigms. First of all, data citation clearly
improves reproducibility as each dataset can be retrieved at
a later point in time. Secondly as the information of each
dataset and how it was created is available. This entails that
each dataset can be retrieved in its original, unchanged version
from the source database, as long as the required security

clearance levels can be granted. Hence the results can be
reviewed with the highest available precision on demand, for
instance by trusted reviewers, while the data does not have
to be released publicly. Adding the generic research process
metadata provides a holistic provenance data collection which
allows understanding how a investigation was conducted.
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