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Abstract 

For-hire services have emerged as promising solutions to meet mobility demand in customized ways. Yet, they 

still have to achieve profitability: this requires developing the service quality to achieve attractiveness to 

potential users. Among quality factors, the availability in time of space of modal resources such as vehicles and 

parking slots is prominent. It follows that models targeted to aid decision-making in the planning and 

management of for-hire services have to deal with availability as an endogenous property that varies over time 

and space and depends on the real-time disaggregate conditions of resource occupancy and trip demand.  

This paper brings about a microeconomic model of supply and demand for a for-hire service in which 

availability is represented explicitly. The specific function is formulated under a particular form related to a 

stylized urban area. After providing the model formulation, which involves probabilistic assumptions and 

calculus, we use it to investigate the issues of demand-supply equilibrium, service profitability and business 

model optimization. 
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1. Introduction  

1.1. Background 

The rapid development of wireless communication technologies have enabled the emergence of various taxi 

hailing apps (i.e. Uber, Lyft, Ola…). The transaction time is incredibly reduced and the costs for suppliers and 

users are significantly decreasing. As a result, the demand has been boosted and it is strongly believed that the 

taxi market efficiency will be improved. This transformation has then motivated several researches, which are 

investigating the conditions of optimizing the matching between cabs and riders while ensuring the economic 

and social sustainability of the service. 

Therefore, researches concerned by taxi service issues have investigated the regulation and pricing strategies 

while integrating the waiting time of customers as a demand variable (Douglas, 1972; De Vany, 1975; Manski 

and al., 1976; Hackner and al., 1995; Cairns and al., 1996). In 1998, Yang and Wong introduced a taxi model 

applied at a network level (Yang, and al., 1998). The traffic equilibrium optimizes the utilization of taxis with 

reducing their searching time of customers for a given distribution of demand. The model was developed 

progressively to include traffic congestion (2001), elasticity demand (2001), social welfare (2002) and 

externalities (2005).  In 2010, Yang and coauthors explicitly introduced a meeting function to investigate the 

searching and meeting frictions between customers and taxi drivers (Yang, and al., 2010; 2016). The meeting 

rate and the number of waiting customers jointly determine the customer waiting time. In other terms, they 

consider that the customers’ waiting time is not only dependent on the taxi availability but also on the number of 

waiting customers. In next years, Yang and coauthors used elasticities of the meeting function to the number of 

vacant taxis and the number of waiting customers to analyze the service profitability and the social optimum for 

the monopoly. The model is applied on a simplistic network. 

1.2. Objective 

This paper is devoted to specify the meeting efficiency by defining the availability function of a private taxi 

service. The specific function is the minimum time for a customer to get a cab. We formulated the function for a 

stylized urban area, that we called Orbicity. The area is in form of a ring where origin and destination trips are 

distributed uniformly. The sensitivities of the demand to the fare level and availability time are introduced. 

Further, the service production process is defined to meet efficiently the demand. Based on the constructed 

model, we investigate the conditions of the traffic equilibrium. Then we turn to analyze the optimal business 

model profitability for three market’s configuration: the monopoly, the social optimum and the second-best 

optimum. We bring out simple analytical formulas to compare these three markets. 

1.3. Method 

Our model combines the spatial modelling of the traffic and the microeconomic modelling of the taxi service. 

We built progressively the spatial model by defining the geographic parameters, the demand distribution and the 

technical process of the service production. Then, we construct a microeconomic model where the rules of 

assignment taxis to users is defined, and the production costs are defined per cab and unit of time. Finally, 

combining these two models under stationary operating conditions we analyze the service profitability for 

operators and regulators. 

1.4. Structure of paper 

The rest of the paper is organized in four parts. First, we describe the geographic model and present the supply-

demand model of a for-hire service with emphasis on availability. We define the according fleet size, the 

production costs and the traffic equilibrium. Secondly, we briefly describe the problem of the monopoly. We 

analyze the profitability conditions and the optimal fare level, access time and fleet size. Then, we consider that 

the regulator ensure the social welfare and investigate the impact on the operator. Observing that the demand 

volume is reduced, we studied the second best optimum under budget constraint. 
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2. Supply demand model  

2.1. Service production 

Consider a city in the form of a ring with radius R; let us call the city Orbicity. The demand volume 𝑄 is 

distributed uniformly along the edges of the ring. It is generated along the study period 𝐻 according to the ratio 

𝜆 = 𝑄/𝐻. Let 𝑁 the fleet size. The cab busy times include the ride times, say 𝑡𝑅 on average per trip, plus the 

transaction time 𝑡𝑇 and the access time, denoted 𝑡𝐴. The latter is called the availability time. At instant  ℎ, let 

note  𝑛 the number of occupied taxis and 𝑘+ the number of vacant taxis: 0 nNk . If 0k then the 

client is put in the waiting list. Denote  ]  , [ the angular deviation between the position of vacant taxis 

and the position of the new request. Specifically, assume that the vacant taxis are located at the destination of the 

previous rider. Since the origin and destinations are distributed uniformly, then i { k..,2,1 }, i  also 

distributed uniformly in ]  , [. The distance iL between the vacant taxi i  and the client is equal to 

ii RL   where i  is uniformly distributed in ] ,0 [. Then the cumulative distribution function is 
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Since the destination points have the same probability to be chosen by the user, then the vacant taxis have 
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We find the form of access time used in the literature (for instance, Douglas, 1972; De Vany, 1975; Cairns and 

Liston-Heyes, 1996; Yang et al., 2002, 2005). Thereafter, we assume that the average availability time (denoted 

t) is approached by the function 
)(V

A

kt applied to the average number of vacant taxis k̂ . The average number of 

occupied taxis n  is defined by the product of the temporal flow 𝜆 and the mean ride time TRART tttt   

(Little’s law). Then we have 

 )( tttn RT    (3) 
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By combining (3) and (4) while introducing for simplification )( RttT   , the number of occupied taxis is 
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And in turn the availability function of the service is  
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Furthermore, since ARTttn   , then using (4) the fleet size is given by )/(21 AtnN   

If we neglect -1, then the fleet size is expressed by  
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2.2. Costs function 

The production costs on a daily basis amounts to: 

 )(c)(),(C R ttQNQN uP   , (8) 

 Wherein: 𝐶 is the total production cost, 𝜒 includes the costs of depreciation, driver wages and cost of the 

transaction platform, and 𝑐𝑢 is the running cost per cab and per unit of time. The function  increases with N . 

Assume that N/dd  is constant.  

Since the fleet and the availability time are linked through (7), then the production costs could be expressed with 

respect to the availability time and the demand volume as 

 )(c)),(ˆ()),,(ˆ(C),(Ĉ R ttQQtNQQtNQt uPP   (9) 

Thus, we observe that the availability time and the demand volume influence the production costs through their 

fixed and variable parts. By noting Huu /cc   and Httu /c RTR   , the derivatives of the cost with 

respect to the availability time and the demand volume are respectively 
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The function (10) increases with t . It is positive for )c/(2*  uQtt   . The function (11) is positive and 

increases with t .  

The average production cost per trip is higher than the marginal cost QP  /Ĉ . It is equal to 
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2.3. Demand model 

Assume the demand function is 

 ),D( tQ   (13) 

Wherein 𝑄 represents the quantity of passenger trips by cab on a daily basis and 𝜏 the fare of a cab trip. The 

demand volume decreases if the tariff and/or the availability time increases (i.e. 𝜕𝐷/𝜕𝜏 < 0, 𝜕𝐷/𝜕t < 0). 

Let us gather the respective influences of fare level 𝜏, run time 𝑡𝑅, transaction time 𝑡𝑇̃ and availability time t onto 

the user into a generalized cost of trip as follows, wherein α denotes the money value of time to the user: 
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~

( TR tttg    (14) 

Assume further that the demand volume depends on 𝑔 only ))D(( gQ  with constant elasticity  . Then the 

derivatives of D with respect to the tariff and the availability time can be expressed by 

 gQg /dD/dD/   (15) 

 gQgt /D/ddD/   (16) 

In addition, let  and t be the elasticity of the demand with respect to the tariff and the availability time. That 

means that  

 



  /

D/

D
/ g


  

(17) 

 
 /

D/

D
/ g

t
t t 


  

(18) 

Thereafter, we assume that the demand volume depends on 𝑔 according to the relation  
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2.4. Traffic equilibrium 

The traffic equilibrium is obtained when the supply function and demand function are satisfied at the same time. 

In other terms, it corresponds to  
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That constitutes a system of non-linear equations that can be solved using the fixed-point algorithm: 

Step0. Set an initial value 𝑄(𝑘). Let 𝑘 = 0. 

Step1. Calculate the availability function according to )
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Step2. Update the demand volume according to 
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Step3. If |𝑄(𝑘+1) − 𝑄(𝑘)| ≤ 𝜃, then stop where 𝜃 is a predetermined convergence tolerance. Otherwise 𝑘 = 𝑘 +

+1 and return to Step1. 

3. Supplier behavior as a monopoly 

The service supplier aims to maximize the profit which is the difference between commercial revenues and 

production costs 

),(C.),,(P QNQQN PP   

To maximize the profit, the service provider could act on two levers: the fleet size and the service fare. Then, the 

service supplier can be cast into the maximization program: 

),,(Pmax , QNPN    s.t.  ),D( tQ    et  ),,,(T RT
V
A QttNt   

To deal with the constraints simply, it is easier to embed the mutual dependency of demand volume and 

availability time in an adapter profit function: 

)),D(,(Ĉ),D(.),(P̂ tttt PP    

To look how the adapted profit changes with tariff and availability time, we differentiate ),(P̂ tP  with respect to 

 and t  yielding 
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Then, the first order optimality conditions can be expressed using (15) and (16) of the generalized cost  
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From (24), (25) and (10) we get then that at the monopoly optimum we have )
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Conditions of profitability 

The profitability condition for the service provider states that the tariff is higher than the mean cost per trip 

)./C( QP  Thus, the tariff which optimizes the profit have to respect the following condition 
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By substituting (12) and (17) into the condition (27)  
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Proving that the profit is positive only and only if 1 , or g/  .We consider thereafter that 2  

Solution of the monopoly problem 

Substituting Erreur ! Source du renvoi introuvable. and (11) into (24), the tariff is 
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And in turns using the availability time and the generalized cost are respectively 
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The demand function verify )(ĝ)(t̂)(ˆ
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)1( QQQtQ   . It is a fixed-point problem in Q only. The 

functions )1(D   and t̂  decrease with Q . Also, ̂  decreases with Q  when 1  and  uc . In addition, 

the existence and unicity of a solution depend on the function D. For instance, consider the favorable situation 

where QQ).(D )1( is a decreasing function from the value 0Q such as 0000
)1( )(ĝ).(D QQQQ  . Since the 
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point between the two functions, and this solution is higher than 0Q .  
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]/g[)(ĝ 0001
QQxgyQ 


 . So using the reduced variable 0/' ggg  , this equation could be expressed as  

)(
1

2/



 gxyg  

Since 2 , these equations are simplified, and: 

 
22

1

0
M )(

y

x
QQ


   

(32) 

 

x

y
gg




2

10
M  

(33) 

 

x

xyg
QQg

x
t

uu 











2

1

02/1
00

M

c
)/(

c 
 

(34) 

 
)

c
1(

~

2

10
MM

RT
M x

x

y
gtgt

u









  

(35) 

Note the unit profit tQ uP )c2(/Ĉ    and  the tariff is RT
~

)c2(2 ttu    . They increase with 

the availability time. The unit profit is independent on demand and access time. It is equal to  
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The total profit is then directly proportional to the optimized volume of demand *Q . 

In addition, the fleet size is *))((*/2/.ˆ 1c
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4. First best social optimum  

The social surplus is defined as the summation of consumers’ net benefits and producers’ profit. Since the 

demand depends on the generalized cost only, then the consumers’ surplus is given by 
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Considering that the service provider have two main levers, the tariff and the accessibility time, let assess the 

sensitivity of the social surplus to these two variables. The derivatives of the social surplus with respect to   and 

t  are 
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Conditions of profitability 

By reminding that )/(2/Ĉ/Ĉ tQQQ PP   , then the service is unprofitable. The net profit is negative 

and decreases with the time availability. It is equal to tQQQQ PPPP  /2)/Ĉ/Ĉ(ĈP̂  . In other 

terms, the subsidy required to ensure the equilibrium for the operator is equal to tP
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Solution of the social optimum  

The first order optimality conditions are 
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From (41), we obtain that QtQ u  2/2c  then  utQ c/2 2 . Using x and y as defined above, 

then the system defined by  , t  and Q   
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As for monopoly, we could demonstrate easily that there exists a unique solution for (45) which is higher than 

0Q  Furthermore, since the generalized cost for the system is lower than that for the monopoly, ĝg~  then 

QQ ˆ~
 and in turn tt ˆ~

  and  ˆ~ . That means that the regulator needs to reduce the availability time and the 

tariff. Also, the fleet size should be higher than that for a monopoly. In particular, let us introduce another time 

the reduced variable 2/
0/'  gxyggg . Then for the elasticity 2 , )1/( xyg  . The previous 

equations could be simplified as  
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Comparing to the monopoly profit yields  
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(50) 

The ratio is less than 
2

1
since x ]0,

2
1 [, which means that to ensure the social welfare, the generalized cost and 

the availability time have to be reduced by more than two times comparing to the monopoly situation. By 

reducing the availability time t , the unit production cost is reduced since tQ uP )c2(/Ĉ     

The total profit will be reduced by more than 4 times, since it depends on Q only.  

In addition, the productivity by taxi is ))(/(1ˆ/
c1

RT
1 ttNQ u

HH 






 decreases with t . As a result, the 

reduction of t involves higher productivity, so better utilization of taxis.  
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5. Second best optimum under budget constraint 

Running a private industry while maximizing the social optimum involves substantial subsidies. To avoid 

subsidies, another solution consists on maximizing the social welfare given the constraint that revenues cover 

costs. This second-best social optimum is obtained by the following program 

 ),,(P̂max , QtSt    s.t.  ),D( tQ     and  ),(Ĉ. QtQ P . (51) 

Solution of the second-best optimum 

We can form the following Lagrange function: 
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(52) 

 Where 0 is the Lagrange multiplier. The conditions of the first-order optimality conditions yield to a system 

of three equations: 
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And in turn 
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From (58) and using (11), we conclude that ttQQ uP )c(/2/Ĉ   , which by substitution in (56) 
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And in turn, we can deduce  , g and Q : 
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So using x , y and the reduced variable 'g , then  
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From (61) and (64) we conclude that   verify  
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In particular, considering that 2 , then x
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Comparing to the monopoly problem, we observe that  
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Comparing to the monopoly situation, the generalized cost and the availability are divided by two. The tariff 

level is more than two times less: )
~

( RT
M

2
1C t . In addition, the demand volume is divided by 4 

MC 4QQ  which means using (36) that the total profit is reduced by more than 4 times. 

6. Conclusion 

We have provided a microeconomic model applied on a stylized urban area to analyze the conditions of 

profitability and optimize the business model. The availability time is a critical factor of service quality so of the 

demand volume. That is in turn beneficial to the supplier in both the production of availability and the 

production cost. These interrelations are described through the traffic equilibrium.  

Starting from a situation of monopoly, we provide the market conditions of profitability and determined the 

system’s optimality conditions for a given demand elasticity. Then we explored the optimum conditions in order 

to maximize the social surplus. As for microeconomic theory, further development may be target to explore the 

system optimization, the duopoly and oligopoly issues, the regulation impacts. 

The spatial model that we suggest “Orbicity” allows approaching results with simple relations. We could 

imagine that the stylized network is a transit service operating on-demand in a fixed line as a form of ring. 

Further development of the spatial model would permit to represent more complex networks. 
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