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Abstract 

In recent years, there have been several studies about the impact of connected and automated vehicles (CAVs) on 
the capacity of street networks. However, most studies consider a purely automated traffic on freeways where 
neither human drivers nor pedestrians or bicyclists are present. With the introduction of CAVs into the urban road 
environment, the effect of CAVs on inner-city traffic becomes more and more important. This paper focuses on 
the impact that an increasing share of CAVs with a harmonized driving behaviour will have on the capacity of 
signalized urban intersections. We do not only consider the scenario with pure automated traffic, but analyse 
several scenarios with mixed traffic, where an increasing number of CAVs shares the road with human drivers as 
well as other road users. The effects are assessed by simulating a representative signalized intersection in central 
Munich, Germany, using real data considering the geometry of the intersection, the signal control and the traffic 
volume. Our study shows that average waiting times at the intersection can decrease significantly. 
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1. Introduction 

During the last decades, traffic congestion has become a significant problem in large cities. In Munich, for 
example, drivers need to put up with an increase in travel time of 51% during the morning peak, according to the 
TomTom Traffic Index (TomTom International BEV, 2017). Traffic problems in cities might become even bigger 
in the future, as an increasing share of the world’s population resides in urban areas – in 2014, 54% of the world’s 
population was urban, whereas by 2050, 66% of the world’s population is projected to live in urban areas (United 
Nations, 2014). This will lead to increased traffic and the urge for innovative ideas. Many people hope for an 
increase in street and intersection capacity due to the emergence of connected and autonomous vehicles (CAVs). 
CAVs are expected to be especially beneficial at signalised intersections, where the reorganization of intersection 
policies, i.e. so-called Autonomous Intersection Management (AIM) strategies show promising results (Chen et 
al., 2016).  However, the AIM strategies introduced in recent studies only work for purely autonomous 
intersections without any human interaction. This will most likely never be the case for most intersections in urban 
areas, as bicyclists and pedestrians are an important part of urban road users. Additionally, CAVs will not be 
implemented all at once, but the vehicle fleet in a city will change continuously over time. Therefore, it is not only 
interesting to assess how traffic will change when all vehicles are CAVs but also how traffic is influenced if 10, 
20, …, 100% of the vehicles driving in a city are CAVs.  
 
Effects of CAVs in mixed traffic have been studied mainly for freeways and inter-urban highways and are expected 
to be implemented in these fields first. This is due to the fact that in urban traffic, many complex situations arise 
where vehicles have to interact with so-called vulnerable road users (VRUs), i.e. with pedestrians and bicyclists, 
in rapidly changing situations. However, introducing CAVs to the urban environment has a great potential, 
especially when enabling autonomous taxi services. Urban traffic infrastructure is installed for a long period of 
time and does not change completely with the introduction of the first CAVs. Therefore, CAVs have to cope with 
the existing infrastructure and human road users, and effects of CAVs on intersections have to be measured 
assuming existing structures.  
 
In this paper, we analyse the impacts of an increasing share of CAVs on the capacity of a signalized intersection 
including human driven vehicles, trucks, pedestrians and bicyclists. To this end, we model all road users 
considering important parameters such as reaction times, and acceleration behaviour. We then calculate the 
capacity of a real signalized intersection in Munich, Germany and simulate the traffic flow at this intersection 
including an increasing number of CAVs. For the simulations, we apply the signal control plan that is used at this 
intersection in reality. We are aware that the results obtained in this study cannot be generalized to findings valid 
for all intersections, as each intersection has to be investigated separately. However, the change in capacity is an 
indicator for other intersections as well.  
 
The remainder of the paper is structured as follows: in Chapter 2, we give an overview of related literature 
considering capacity impacts of CAVs. In Chapter 3, we present the considered intersection in Munich, Germany, 
including necessary information such as signal programme, layout plan and traffic volume. In Chapter 4, we 
present results of the capacity calculation using the “Handbuch für die Bemessung von Straßenverkehrsanlagen” 
(HBS) – the German version of the Highway Capacity Manual – and simulation results. We also explain the 
assumed parameters for the simulation of the behaviour of both human road users and CAVs used in our study. 
Finally, we give a conclusion and outlook in Chapter 5. 

2. Related Literature 

Even though it is not yet clear when CAVs will be available to the public, there is already quite a lot of literature 
available that estimates the effects that CAVs will have on the capacity of road networks. Most studies either 
consider mixed traffic on freeways and highways or purely autonomous traffic at intersections. 
 
Krause et al. (2017) analysed the impacts of AVs and CAVs on the capacity of German freeways in different 
merging situations. They observed an increased capacity only for a share of at least 50% of CAVs, while an 
increasing share of AVs showed a decrease in capacity due to bigger headways. Van Arem et al. (2006) analyzed 
the impacts of cooperated adaptive cruise control (CACC) on traffic flow for a highway-merging scenario from 
four to three lanes. They found out that CACC is able to improve traffic stability and throughput. These benefits 
appear for a CACC penetration rate of more than 60%, whereas no effect could be shown for low penetration 
rates of less than 40%. 
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Lioris et al. (2017) showed that the capacity of an intersection can be doubled due to the forming of platoons. 
They analyzed the capacity by evaluating a mesoscopic simulation of a sequence of streets and intersections near 
Los Angeles. However, they did not analyse mixed traffic conditions considering both CAVs and human drivers.  
 
Levin et al. (2016) developed a cell transmission model for shared human and autonomous roads to investigate 
the impacts of autonomous vehicles on the travel time both on highways and at intersections. They observed a 
linear reduction in travel time for an increased share of autonomous vehicles. These results have not been 
verified with simulations or real tests yet. 
 
Independent of autonomous vehicles, the possibility of vehicle to vehicle and vehicle to infrastructure 
communication shows a high potential for improving traffic efficiency and emission reduction. Several projects 
on cooperative traffic signal control have been conducted, simultaneously optimizing the traffic signal 
programme and the speed of the vehicle approaching a traffic light. If the approaching vehicle is not 
autonomous, the driver is given an optimal speed advisory in order to reach the traffic light during a green light 
phase (Santa et al., 2014). The coordinated traffic signal timing to provide green waves can also be improved 
using vehicle to infrastructure communication (Hu, 2016). 
 
Our paper contributes to the current research in that we take “one step back” as compared to other studies. Not 
only do we consider a mixed traffic flow in most of the scenarios, but we also leave the circumstances 
encountered at the intersection today unchanged. For example, we do not change the signal control programme 
of the intersection. Signalised intersections are planned considering all traffic participants. When calculating 
intergreen times, it is important to take into account the velocity and clearing times of all road users in order to 
ensure a safe crossing of the intersection for all traffic participants. Obviously, the lowest velocity and hence 
highest clearing time of all road users are crucial. This means that the clearing times of bicyclists are decisive for 
the calculation of intergreen times in the signal control plan. This is independent of the proportion of CAVs in 
the traffic flow. Additionally, we do not consider green light optimal speed advisory or other car-to-
infrastructure communication. Car manufacturers aim at building autonomous vehicles that do not rely on 
infrastructure in order to be able to drive anywhere independent of the infrastructure investments of the 
respective country or municipality. Additionally, a German ethics commission advising the government in 
regulatory questions for CAVs warns of missing protection of data privacy (Di Fabio et al., 2017).  
 
We follow the calculations on capacity impacts, considering both freeways and highways as well as signalised 
intersections given by Friedrich (2016) and Wagner (2016). Friedrich states that intersections are the bottlenecks 
of urban traffic and, when traffic load is high, waiting queues of traffic do occur independent of the coordination 
of traffic signals. Therefore, the vehicles start moving from standstill when the traffic light changes to green and 
the capacity of the intersection is most dependent on reaction times, on the time gap between vehicles, and on the 
velocity with which they cross the intersection (Friedrich, 2016). Wagner describes the process of approaching a 
traffic signal as one of the candidates in which autonomous vehicles promise significant benefits. He simulates a 
signalized intersection with autonomous and human vehicles, assuming 0.5  to be the time gap for 
autonomous, and 1.5  the time gap for human-driven vehicles with altering demand and 5 different shares of 
autonomous vehicles (Wagner, 2016). It can be seen that the average delay time per vehicle mostly depends on 
the traffic demand at the intersection, but rises much slower for a high share of autonomous vehicles. 
 
Our approach is based on these assumptions and provides a model of an existing intersection where these 
assumptions are tested using a microscopic simulation. 

3. The considered Intersection in Munich, Germany 

The considered intersection (on Lindwurm and Kapuziner Street in Munich) is on a main arterial road between 
the centre of Munich and the west of the city. The position of the intersection in Munich as well as the geometry 
of the intersection are shown in Figure 1. The intersection is flat and sufficiently visible, and a dry surface is 
assumed. The Lindwurm Street connecting East and West with traffic flows V1 and V3 is the main road with 
two lanes in each direction and separated bicycle lanes on each side. However, during the peak hours, the flows 
V2 and V4 on the collector street Kapuziner Street and Herzog Heinrich Street are quite high as well. 
 
Average daily traffic volume is about 27,000 vehicles crossing the section Lindwurm Street, with a heavy traffic 
share between 1 and 8%. For the simulation, the peak hours in the morning (between 7:45 and 8:45 a.m.) and 
evening (between 4:30 and 5:30 p.m.) are considered, when up to 3,240 motor vehicles and 950 bicycles cross 
the intersection. As the intersection lies in the city centre with subway stations nearby, we assume the pedestrian 
movements to be around 300-400 persons per hour on each street of the intersection. The exact numbers of 
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traffic volume considered in the calculations and simulations can be seen in Figure 2.  
 

 
 

Fig.1 position of considered intersection in Munich, Germany, and geometry of the intersection 

 

 
Fig. 2 traffic volume at considered intersection for a) morning peak hour and b) evening peak hour 

The intersection is signalized with fixed signal programmes depending on the time of the day. The traffic signal 
programmes applied during the morning and evening peak hours have a cycle length of 90 seconds and are 
shown in Figure 3.  
 
As our paper aims to assess the capacity impact of CAVs given the current situation of traffic demand and signal 
control, we apply the traffic demand and signal control as shown in the figures. This means, that we do neither 
apply a traffic actuated signal nor allow the CAVs to register at the intersection and influence the traffic light at 
the intersection. Due to the fact that pedestrians and bicyclists are an important part of the traffic demand at the 
considered intersection, the all red periods can also not be shortened. In the next chapter, we are going to present 
the results of the capacity calculation as well as the approach and the results of the microsimulation. 
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Fig. 3 Signal programme at considered intersection for a) morning peak hour and b) evening peak hour 

 

4. Capacity Calculations and Simulations 

 

Fig. 4 Flowchart describing the capacity calculation and simulation approach 

 
In this chapter, we explain the approach and the results of the capacity calculations as well as the simulation 
analyses. The approach is illustrated in Figure 4. First of all, we explain the assumptions made for the parameters 
of the simulation when modelling human driving behaviour and the driving behaviour of CAVs. Afterwards, we 
present the results of the capacity calculations and the simulation runs. 

4.1 Parameters and Assumptions for the Simulation 

In order to simulate traffic at a signalized intersection taking into account pedestrians, bicyclists, drivers in 
passenger cars and trucks as well as autonomous vehicles, parameters such as reaction times and acceleration 
behaviour are a crucial input. The most important considered parameters are presented in Table 1, and the 
underlying assumptions are explained in the following. At first point, it is important to understand the behaviour 
of human drivers. The main difference between human drivers and autonomous vehicles will be the 
inconsistency of human behaviour in comparison to the deterministic behaviour of autonomous vehicles. Let it 
be the acceleration at a traffic light, the gap to the leader vehicle or the reaction time in different situations, these 
parameters do not only differ between different human drivers but also between one single driver in several 
driving situations. In order to represent human driving behaviour as accurately as possible, we consider 
parameter values found in the literature. The intersection is simulated using the microsimulation software 
AIMSUN (version 8.2) by TSS. The micro simulator uses the Gipps following model (Gipps, 1981). Default 
values for input parameters are given in the paper by Anya et al. (2014). Most parameters used in our simulation 
are adjusted to the values recommended for the simulation of traffic on German freeways (Geistefeldt et al., 
2017). These values are calibrated for German cars and drivers. However, due to the fact that we consider urban 
traffic instead of freeway traffic, we adapted some of the parameters and assumptions as explained below.  
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Table1. Setting of parameters in microscopic simulation 

 Human Drivers Autonomous Cars Trucks Bicycles 

Reaction time [s] 
Varying between  
0.6 and 1.8 seconds
mean: 1.1 seconds 

0.6 seconds 
Varying between  
0.6 and 1.2 seconds 
mean: 0.8 seconds 

0.6 seconds 

Reaction time for front 
vehicle at traffic light [s] 

Varying between  
0.8 and 1.2 seconds
mean: 1.0 seconds 

0.6 seconds 
Varying between  
1 and 1.2 seconds 
mean: 1.1 seconds 

0.8 seconds 

Gap [sec] 
Varying between  
0.4 and 2 seconds 
mean: 0.8 seconds 

0.6 seconds 
Varying between  
0.5 and 2 seconds 
mean: 1 sec. 

Varying between  
0 and 0.6 seconds 
mean: 0.2 seconds 

Length [m] 
Varying between  
3.4 and 5.6 meters 
mean: 4.5 meters 

Varying between  
3.0 and 5.0 meters 
mean: 4.5 meters 

Varying between  
6 and 15 meters 
mean: 12 meters 

1 meter 

Distance between vehicles at 
full stop [m] 

Varying between  
0.5 and 2.6 meters 
mean: 1.5 meters 

1 meter 
Varying between  
1 and 2.50 meters 
mean: 1.70 meters 

Varying between  
0.1 and 1 meters 
mean: 0.3 meters 

Maximum acceleration 
[m/s²] 

Varying between 
2.6 and 4.5 m/s² 
mean: 3 m/s² 

3 m/s² 
Varying between  
0.6 and 1.8 m/s² 
mean: 1.2 m/s² 

Varying between 
0.8 and 1.5 m/s² 
mean: 1.2 m/s² 

Speed limit acceptance 
(SLA) [-] 

Varying between  
0.9 and 1.3 
mean: 1.1 

1.0 
Varying between  
1 and 1.1 
mean: 1.05 

1.0 

Maximum desired speed 
(MDS) [km/h] 

Varying between  
100 and 200 km/h 
mean: 130 km/h 

130 km/h 
Varying between  
70 and 85 km/h 
mean: 80 km/h 

Varying between  
15 and 30 km/h 
mean: 25 km/h 

Preferred speed [km/h] min(SLA × speed 
limit, MDS) 

min(SLA × speed 
limit, MDS) 

min(SLA × speed 
limit, MDS) 

min(SLA × speed 
limit, MDS) 

 

It was found out, that reaction times differ a lot depending on the person, and on the fact if that person is 
distracted or not (Hugemann, 2002). Additionally, reaction times can be differentiated into reaction times within 
regular traffic conditions and reaction times in accidents and other drastic and threatening situations (Hugemann, 
2002). Reaction times in unexpected and dangerous situations are especially difficult to measure because they 
are hard to simulate. The mean reaction time obtained in a study by Zhang et al. (2016) is 1.2 seconds with a 
standard deviation of 0.4 seconds, which coincides with common legal recommendations considering the safety 
gap. We assume a slightly shorter reaction time, because we consider inner-city commuter traffic, when drivers 
are more experienced and attentive. Due to the reaction times, human drivers should respect a gap to the front 
vehicle of at least 0.9 seconds, and most official sources recommend a gap of around 2 seconds (Wagner, 2016). 
However, gaps are often shorter in urban traffic and especially during peak hours. We hence assume a mean gap 
of 0.8 seconds for human drivers, varying between 0.4 and 2 seconds.  
 
The reaction time for the front vehicle at a red traffic light is even more dispersed than the general reaction time 
due to the fact that the reaction time is not crucial for the driver. Many different factors have an impact on the 
reaction time at a traffic light, e.g. the weather conditions and the duration of the red phase (Yanqun et al., 2013). 
The reaction times for following vehicles depend on their position in the queue (Yang et al., 2012). They 
observed a reaction time of around 2.2 seconds for the first vehicle and a decreasing reaction time for the 
following vehicles, as they already see the green light and are hence prepared to start driving. This results in a 
headway of around 1.8 seconds when crossing the traffic light. The value of 1.8 seconds is also used in the HBS 
(FGSV, 2015). In our simulation, we assume a reaction time of approximately 1 second for the first vehicle at 
the traffic light, because the traffic light has a red-yellow phase of 1 second already announcing the upcoming 
green phase. The maximum acceleration values for human driven cars and trucks were taken from an overview 
of acceleration behaviour studies (Lange, 2006). The values presented there coincide with the values presented 
by Rittger et al. (2015), where the acceleration and deceleration behaviour when approaching and leaving a 
traffic light was analysed.  
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The parameters and assumptions for bicycle behaviour (speed, acceleration and deceleration) are taken from the 
Dutch Manual for Planning Bicycle Infrastructure, which is summarized in Parkin et al. (2010). Obviously, 
acceleration and deceleration behaviour in the bicycle case highly depends on the slope of the considered 
intersection. In our case, the intersection shows no slope, which means we can use the average values for flat 
conditions. Pedestrians are simulated using the simulation extension Legion for Aimsun, see Alexandersson 
(2013) for an explanation. The parameters for pedestrian behaviour were not adjusted, as the focus of the 
simulation lies on evaluating the differences between human and autonomously driven vehicles instead of 
modelling pedestrian behaviour. 
 
The main characteristic of CAVs is that the variations experienced with human drivers disappear. The 
acceleration and reaction times do not differ between several cars, but are identical. This means that CAVs can 
start almost simultaneously and cross an intersection in the same velocity. Traffic with a high share of CAVs is 
harmonized and shows smaller gaps between cars. We assume that CAVs respect a headway of 0.6 seconds 
(Friedrich, 2016). The mean acceleration value is not changed as compared to human drivers, because drivers 
need to feel comfortable when being driven by a CAV. Other than that, there is a lack in information about 
parameter values and hence a big need for research considering CAV driving behaviour and interaction (Calvert 
et al., 2017). 

4.2 Results of the Capacity Calculation 

First of all, the theoretical capacity and level of service (LOS) of the considered intersection is calculated 
according to the latest version of “Handbuch für die Bemessung von Straßenverkehrsanlagen (HBS) 
Stadtstraßen” – the German Manual for the Assessing of Road Traffic Facilities for Urban Roads (FGSV, 2015). 
The results for the morning peak hour are shown in Table 2, and the results for the evening peak hour in Table 3. 

Table 2. Capacity of each direction [veh/h], morning peak hour 

 Lindwurm Street West 
(V1) 

Herzog-Heinrich-Street 
(V2) 

Lindwurm Street 
East (V3) 

Kapuziner 
Street (V4) 

           

Direction V1 L V1 S V1 SR V2 L V2 S V2 R V3 S V3 SR V4 L V4 SR 

Capacity [veh/h] 443 1027 923 160 583 303 655 534 120 526

Occupancy rate [%] 65.6%  55.7% 55.6% 56.3% 77.6% 38.6% 45.2% 45.1% 76.7% 85.7% 

Av. Waiting time 
[s] 35.4 17.2 19.9 44.5 45.0 35.9 25.6 29.6 53.6 66.5 

Level of service  
[-] C A A C C C B B D D 

Av. Queue length 
[m] 46.8 62.5 59.6 17.6 77.6 17.8 37.4 32.6 25.4 95.3 

 

Table 3. Capacity of each direction [veh/h], evening peak hour 

 Lindwurm Street West  
(V1) 

Herzog-Heinrich-Street  
(V2) 

Lindwurm Street 
East (V3) 

Kapuziner 
Street (V4) 

           

Direction V1 L V1 S V1 SR V2 L V2 S V2 R V3 S V3 SR V4 L V4 SR 

Capacity [veh/h] 263 926 760 141 551 243 637 568 152 677

Occupancy rate [%] 81.4%  45.4% 45.4% 59.6% 87.1% 69.0% 78.6% 78.5% 87.8% 66.1% 

Av. Waiting time 
[s] 

50.4 18.2 22.7 46.4 70.1 47.5 43.9 47.1 60.6 32.0 

Level of service  
[-] D A B C E C C C D B 

Av. Queue length 
[m] 

49.6 45.6 41.4 17.6 104.5 32.8 85.4 78.3 43.2 64.7 
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The capacities of each street differ between the morning and evening peak hour due to the different traffic signal 
control plans that are applied. It can be seen that in the morning, Kapuziner and Herzog Heinrich Street (V4 and 
V2) show the highest occupancy and hence the highest average waiting times of up to 64 seconds and the lowest 
level of service. In the evening, the highest occupancy can be found in Herzog Heinrich Street and Lindwurm 
Street East (V2 and V3), with an average waiting time of up to 62 seconds.  

4.3 Results of the Simulations 

In a next step, the intersection is modelled and simulated in the Aimsun micro simulator and calibrated in order 
to fit the capacity calculations using the HBS. The results of the calibrated micro simulation as compared to the 
calculations are shown in Table 4.  

Table 4. Comparison of waiting times between the HBS calculations and the microsimulation for the base scenario 

 Lindwurm Street 
West (V1) 

Herzog Heinrich 
Street (V2) 

Lindwurm Street 
East (V3) 

Kapuziner Street 
(V4) 

Morning peak hour:  
avg. waiting time according to  
HBS-calculation [s] 

22.1 43.3 27.4 64.3 

Morning peak hour:  
avg. waiting time according to 
microsimulation [s] 

21.4 45.1 23.8 65.7 

Evening peak hour:  
avg. waiting time according to  
HBS-calculation [s] 

26.8 62.2 45.4 38.5 

Evening peak hour:  
avg. waiting time according to 
microsimulation [s] 

26.0 59.9 41.3 36.3 

 

This current state is the base scenario of our analysis. What effects will the different proportions of autonomous 
vehicles as a percentage of traffic have on the waiting times at each street of the intersection? To answer this 
question, additionally to the base scenario, ten different scenarios are implemented and tested, where an 
increasing share (10%, 20%, …, 100%) of vehicles is removed and replaced by CAVs. We simulate the traffic in 
the morning and evening peak for 120 minutes each. This time interval should be big enough to evaluate the 
performance of the intersection. For each scenario, 10 different replications are run and the average outcome is 
used. The results of the microsimulations are illustrated in Figure 5 and show that an increasing share of CAVs 
leads to shorter overall waiting times at the intersection as well as shorter waiting times in each street. 
 
Considering the 100% replacement of passenger cars by CAVs, the overall waiting time at the intersection reduces 
from around 41 to around 27 seconds for the morning peak hour and from around 51 to around 28 seconds in the 
evening peak hour. It can be seen that the streets with the highest average waiting times in the base scenario show 
the highest potential for improvement. If we look at the Lindwurm Street (V1 and V3) for the morning peak hour, 
we can see that average waiting times in the base scenario are quite low with 21 seconds coming from the West 
and 24 seconds coming from the East. Considering that, arriving from the East, we have a green phase of 30 
seconds out of 90 seconds cycle time, the average waiting time for a single vehicle arriving at an empty intersection 
at a random time is 20.3 seconds. This means that even under perfect traffic conditions the average waiting time 
cannot fall below this value. Therefore, the potential for a reduction in waiting time is limited. In general, let  be 
the cycle time of the traffic signal programme, and let  be the red time of the considered lane. Then the minimum 
average waiting time  for a vehicle arriving at a random time is  
 

	 ∗

∗
                (1) 

 
The shown results match the observation of Wagner, who found out that CAVs have an impact on capacity, 
however, if the demand on a street is not at the capacity limit, the impact on waiting time is small (Wagner, 2016).  
 
Looking at the scenarios with mixed traffic, it can be seen that the reduction in waiting time is not linear and does 
not show the same curve when comparing the different streets. In the morning peak hour, we observe an increasing 
average waiting time for mixed traffic with a little percentage of CAVs, and only for a share of at least 40% CAVs,  
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the average waiting time falls below the average waiting time of the base scenario for all streets. In the evening, 
the reduction in average waiting time is already quite high in the 10% CAV case. We do not know why the results 
show this behaviour. As the rise in average waiting time does not occur on Lindwurm Stret (V1 and V3) but only 
on V2 and V4, we assume that it is due to the fact that vehicles going straight and turning vehicles share the same 
lane in the case of V2 and V4. However, this needs to be further investigated in the future. 
 

 

Fig. 5 Simulation results for a) morning peak hour and b) evening peak hour 

5. Conclusion and Outlook 

Our paper shows the current situation at a busy inner-city intersection during the peak hours in the morning and 
in the evening. We simulated the current traffic mix considering cars, heavy traffic, bicycles and pedestrians and 
compared it to several scenarios where humans share the road with CAVs. It can be seen that, under the assumed 
conditions, the average waiting times at the intersection can be reduced. Comparing the base scenario (0% 
CAVs) and the 100% replacement of passenger cars by CAVs, the overall waiting time is reduced by 34% in the 
morning peak hour and by 45% in the evening peak hour which is significant. This is due to the fact that the 
assumed reaction times for CAVs are smaller than the average reaction times of human drivers and that the 
driving behaviour of CAVs allows for a more harmonic traffic flow. The potential for improvement depends on 
the occupancy rate of the streets, the number of lanes, and the share of green time. If the occupancy rate of a 
certain street is low and waiting times are hence short, there is not much room for improvement, which can be 
observed in the case of Lindwurm Street East (V3) in the morning peak hour, for example. We assume that this 
result is valid for other intersections as well, but there is still some work to be done to validate the results. 
 
When considering mixed traffic scenarios with a low penetration rate of CAVs, we could observe an increase in 
waiting time on V2 and V4 but not on V1 and V3. It has to be further investigated, if this is due to the fact that 
vehicles driving straight and turning vehicles share the same lane on V2 and V4. These findings have to be 
compared to analyses of other intersections to conclude generally valid effects. In future analyses, we also plan 
to examine not only one intersection but the effects considering green waves over a longer sequence of street 
sections, as well as traffic actuated signal control programmes. Additionally, the results depend on the 
assumptions made for the reaction times, acceleration and deceleration behaviour etc. As mentioned before, there 
is a lack in information about parameter values considering CAV driving behaviour and interaction (Calvert et 
al., 2017). A comparison of results depending on varying parameter values shall be conducted. 
 
In general, the microsimulation is a suitable tool in order to assess the effects that CAVs will have on urban 
traffic system. Further studying these effects will be an important supplement to existing studies that investigate 
effects of CAVs on highways and freeways and do not take bicyclists and pedestrians into account. 
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