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Abstract 

 

Railway switches are crucial for normal operation and during disruptions of the railroad system since they allow 

trains to use alternative routes. Switches moving parts are subject to high deterioration and prone to 

malfunctioning, representing a potential safety hazard. Thus frequent inspection, maintenance and renewal are 

required. Models to optimize the railroad system operation and reduce costs are possible on the basis of 

inspections vehicles, online condition monitoring, inspection standardization and data-based models. This paper 

presents a switch condition now- and forecasting model based on continuous monitored data (switch engine 

current during blades movement). The model is capable of identifying unusual behavior due to emerging failures 

without the need of manually set switch-specific thresholds. In this approach no labelled training data set of 

historic switch failures is required for training the model. Its output combined with maintenance information and 

the switch functional model sheds light on switch degradation modes, helping to optimize maintenance actions.  
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1 Introduction  

Train punctuality depends on correct train operation, which in turn partly depends on the ability to guide the 

trains to the correct track or platform. If a switch fails to move the switch-blades the train cannot change tracks 

and get into the right position, often leading to delays and, in the worst case, causing a chain reaction affecting 

many following trains. Switches as complex electro-mechanical systems are prone to failure, thus there is a high 

interest in developing reliable monitoring systems capable of anticipating malfunctions with sufficient time in 

advance. Such a system would lead to a decrease in maintenance expenses and an increased quality of service 

(Rama and Andrews, 2013), making the railway transport more attractive. 

A common approach to monitor switches driven by electric engines is to measure the engine current with a 

sensor while the switch-blades are moving (García et al., 2010). Assuming that the current is proportional to the 

engine’s power consumption (Stoll and Bollrath, 2002), variations in it are detectable through the measured 

current curves, which enable to identify e.g. degradation or irregularities in the switch movement. Automated 

switch status forecasting systems based on continuous switch current consumption (or other comparable 

measurements such as from a force sensor at the switch-blades) are not yet seen in 24/7 operation. (Camci et al., 

2016) provides a comprehensive overview of existing significant efforts at research institutions and companies to 

develop forecasting models. The main challenge that such systems face is the numerous failure types, which can 

occur simultaneously, and that are inherent to railway switches as complex electro-mechanical systems. Even 

under well controlled laboratory conditions with simulated failure development physical models show poor 

performance (Camci et al., 2016). Therefore recent developments have focused on data-driven models based on 

historic data e. g. by (Eker et al., 2010) and (Letot et al., 2015). Several studies have applied a wide range of 

sophisticated empirical statistical models and supervised machine learning approaches. The main advantage of 

data-driven methods (especially of supervised machine learning approaches) is that models with good apparent 

prediction performance can be derived from example data sets. Main remaining challenges are over-fitting, the 

creation of complete (containing all relevant types of switch failures) training data sets with correct labelling, 

and the generalization of derived models for a large amount of switches. 

1.1 State of the art switch monitoring 

Failures originate due to various causes. Not all failure types can be monitored through electric power 

consumption or by the latest technology. To detect potential failures several commercial switch or point engine 

diagnosis systems are used (Böhm, 2013); one of them is POSS® by Strukton Rail (SR), which monitors about 

2000 switches in the Netherlands. Approximately 80% of these switches have an engine similar to the one 

considered here
†
. POSS® monitors the condition of the point engine by analyzing the power it consumes (via the 

measured current curve) while the position of the switch-blades changes. 25% to 50% of all switch failures, 

depending on various factors, are detected with POSS®. Many failures can be prevented based on the alerts the 

system provides
‡
. 

POSS® monitors the power consumed during the different phases of the switch blade movement and generates 

alerts when these exceed the corresponding thresholds. Each phase of the current graph is associated to a 

different step/part of the functional switch model (FM). For the switch considered here these are: inrush current 

to start the motor, blades unlocking, blades movement, blades locking. The thresholds are manually set for every 

switch individually by an engineer based on experience and the latest observed switch behavior. Some of the 

thresholds are set to exceed the reference graph by up to 45% in order to reduce the number of false alerts. The 

reference graphs representing ‘normal’ switch movement are manually chosen by maintenance engineers for 

each switch and each direction from available historic measurements. Most switches have per direction a 

reference graph associated to ‘normal’ behavior in the summer and another one in the winter (per switch four 

reference graphs need to be set and maintained), given that temperature plays a decisive role on the power 

consumed by the motor during the movement
§
. Defining the thresholds heavily depends on a good reference, 

which is not an automatic process and is thus a limiting factor for the precise detection of problems. POSS® 

raises an alarm when it detects abnormal behavior of a measured current curve with respect to the reference 

curve, i.e. when any of the thresholds is exceeded. Figure 1a shows a current curve whose shape is typically 

                                                           

†
 http://www.struktonrail.com/smart-maintenance-services/measure-monitor/ 

‡ Success completely depends on the company which operates POSS® and the way the system is being used in their process 
§
 The relationship between power consumption and temperature is unique for each switch. 
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associated to a failure in the blades locking part. This movement triggered an alarm because it exceeded the total 

power consumption threshold set based on the reference graph. We refer the reader to (Dutschk et al., 2017) for 

further details of POSS®. A process flow diagram (Figure 1b) shows schematically the decaying quality of an 

asset, i.e. its functional capability; typically POSS® detects odd engine current curves and generates an alarm 

when the condition can compromise the functionality. In case of alarm a maintenance engineer determines the 

necessary repair/maintenance actions. It is challenging to determine the urgency of these actions, given that the 

time evolution of the condition curve is not well understood and depends on the failure type as well as on 

external factors. POSS® preventive maintenance approach, described in the next section, ideally consists of 

detecting possible problems and providing alerts with sufficient time in advance such that the problem can be 

solved before the failure occurs. 

 

1.2 Data-driven switch failure detection and forecasting tools  

POSS® has provided insight into switch behavior under different circumstances, and into the switch functional 

states (degradation behavior), enriching the domain knowledge significantly. However it is desirable to 

incorporate forecasting tools into switch monitoring systems (POSS® in particular) to detect developing failures 

and provide a switch condition forecast. For this purpose statistical, data-driven (supervised/unsupervised 

methods) and model-based approaches are currently being exploited (Vileiniskis et al., 2014). 

The approach presented in this paper consists of a data-driven unsupervised machine learning approach in 

combination with the switch FM. They are expected to jointly provide information to identify both patterns 

associated to asset failures and their cause, leading to failure forecast and current asset technical status. In 

practice the shift from (current) preventive to predictive maintenance implies developing algorithms that: 

 set dynamical thresholds (adapted to environmental information), 

 detect abnormal switch behavior in an early stage,  

 forecast failures,  

 recognize the failure origin and allocate the corresponding switch component, 

 provide insight into unique asset behavior 

 

Here a switch failure detection model concept is described, which builds on the existing domain knowledge 

formalized in a FM (see section 2) and an unsupervised data-driven approach, namely the statistical process 

control (SPC) model. The SPC model is presented through a case study showing its ability to detect the 

development of failures, see (Böhm et al., 2016). The SPC model is trained with available current curves during 

‘normal’ functioning of a given switch. The link between the FM and the SPC model will be further explored in 

two directions. First, the FM will be used to extend the heuristically selected features (see section 0) such that 

they are directly related to switch units and their functions (see Figure 2). Second, based on these specialized 

features the SPC model will identify abnormal switch behavior and relate it to potentially affected units and/or 

functions, see (Yue and Qin, 2001). In this way, the detections provided by the SPC failure detection model will 

be enriched with diagnostic information to improve the asset now- and forecasted status. 

This paper is based on work package (WP) 9 in conjunction with WP6 of the In2Rail project. It represents an 

interim step towards the development of automated repair switches. To reach this longer-term goal these work 

 

Figure 1 (a) Current graph (blue) triggered an alert due to 24% more power consumption with respect to the reference curve (green); (b) 

process flow diagram showing a classic preventive maintenance process and the time when POSS® alarms are usually triggered 

a)  100% 

functional

Functional 

failure

potentional 

failure

Time

C
o

n
d

it
io

n
 /

 F
u

n
ct

io
n

al
 c

ap
ab

il
it

y

In
sp

ec
ti

o
n

In
sp

ec
ti

o
n

LeadtimeMTTC

MTTF

(possible) 

POSS® alarms

C
u
rr

e
n
t 

(A
m

p
ér

e
) 

Time (s) 

b) 

Time (s) 



Narezo Guzman et al. / TRA2018, Vienna, Austria, April 16-19, 2018 

 

4 

 

packages are being developed in parallel with - and will be integrated to – work currently carried out in WP2, 

which focuses on new locking mechanisms with integrated switch motion system and embedded sensors that 

enable self-diagnosis and remote condition monitoring. In this paper we focus on asset status now- and 

forecasting for legacy switch types utilizing data of existing systems to monitor the point machine power 

consumption. The approach presented here is beyond the state of the art as unsupervised data analysis techniques 

are applied to detect emerging failures in an early stage without the need for switch type-specific labelled 

training data sets of historic failures. 

2 Functional model  

There are different switch types and manufacturers, and local circumstances such as load and weather conditions 

may differ significantly. As a consequence, the maintenance/repair costs analysis is done mostly at individual 

switches. To compare the performance of similar switches and evaluate and improve maintenance concepts, 

more insight into the degeneration process of switches and their components or units is needed. For this purpose 

it is of advantage to look at switches from a more generic point of view. In the FM a switch is represented by its 

main- and sub-functions (see Figure 2) with the purpose of linking these, independent of switch type and/or 

manufacturer, to costs, criticality, malfunctions, usage, maintenance activities, etc. Through the FM, new insight 

can be gained and used as a decision support tool, as previously explained.  

Domain knowledge and the availability of data are key for the implementation and daily operation of the FM. SR 

brings in knowledge and experience on maintenance and reliability engineering (consisting of the Failure Mode, 

Effect and Criticality Analysis (FMECA)) as well as access to data from its maintenance contracts in order to 

analyze the failure and maintenance costs and determine the cost-drivers and performance killers. The outcome 

of FMECA is a long term risk-based maintenance plan (under continuous improvement) that considers a given 

(sub-) function and the effects of failures per maintainable unit. Combining risk data with the FM gives a good 

indication where most failure modes are, which sub-function is most critical and further optimizes maintenance 

concepts. Several common failures/anomalies are associated to specific switch components and might be 

forecasted by the SPC model; this information will be incorporated into the FM to generate a predictive 

maintenance plan that pinpoints the root-cause of the problem, reduces the probability of failure and optimizes 

maintenance.  

 

Figure 2 Graphical representation of the switch functional model. The functions of each unit are indicated, the units are: 10) interlocking 

output, 20) electromotor, 30) clutch and drive bars, 40) switch blades, 50) detection bars, 60) detection circuit, 70) interlocking input 

3 Input data  

For the case study 12’674 switch blade movements measured at a given switch between 01-January-2013 and 

31-December-2015 are considered. During this period twelve failures were reported by network operators; they 

were then treated and documented by the maintenance operators. It is possible that during this period temporary 

malfunctions occurred, which emerged and vanished within a short period of time without a maintenance or 

repair action taking place (e.g. blades blocked by snow or an obstacle), and were thus not reported by the 
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operators to SR. The main input for the data-driven model is the engine current curves acquired by POSS® with 

a frequency of 50 Hz during each switch movement. The input data is complemented by ambient temperature 

measurements at the relay house (about 1 km away from the switch) at the time of each switch movement. 

Available information about maintenance (scheduled) and repair (due to a reported failure) actions performed on 

the switch are useful for identifying sudden changes in the power consumption and the general asset behavior. 

Maintenance actions are either performed every 24 months and include several activities and repairs, or are 

follow-up actions from inspections done every 3 months. These actions (of mechanical or signaling/electronic 

nature) can influence the switch behavior with different degrees (small or large). The switch movements that 

raised an alarm in POSS® are used here to verify the performance of the SPC model. The alarms provide four 

different messages: power too high, power too low, current too high and time too long.  

3.1 Feature extraction 

The performance of the SPC model for failure or anomaly detection depends on the capability of the features 

extracted from the current curves to represent them. The heuristic feature selection for this study case combines 

data science and asset maintenance domain knowledge as well an explorative data analysis, see (Dutschk et al., 

2017). The feature set consists of 1) area under the current curve, 2) maximum current, 3) median current, 4) 

current kurtosis, 5) current skewness, 6) movement duration, 7) mean current value during switch blade 

movement, and 8) current standard deviation during switch-blade movement. The values in feature sets typically 

vary in range, e.g. maximum values of current curves vary between 14 and 16 A, while the current standard 

deviation during switch movement is usually below 0.5 A. As most data-driven approaches the SPC model is 

sensitive to the different feature ranges and requires the normalization of each feature such that each scaled 

feature has zero mean and standard deviation equal to one; this transformation is also known as centering and 

scaling, see (Kuhn and Johnson, 2016). Additionally the features present systematic temperature dependence, 

e.g. the total power consumption decreases when temperature increases due to changes in the switch-blades 

length caused by thermal expansion. In order to account for the temperature dependence of the features, the 

centering and scaling transformation is separately applied to feature values belonging to current curves, which 

were measured at approximately the same temperature (within 1 K temperature bins). By scaling the features in 

this way, the temperature dependence is removed. In what follows we refer to the scaled features as features. 

4 Statistical Process Control model 

A SPC model (Böhm et al., 2016) is built for each blade moving direction (identified by 0 and 1); features from a 

selection of current curves for each direction are used to train the model. The selected current curves were 

acquired in a time frame (July 1
st
 2014 - July 1

st
 2015) with no reported failures, thus it is assumed that the 

selected curves represent normal switch behavior. Further selection criteria are applied as there are a few current 

graphs in this time frame showing significant unusual behavior (which did not lead to switch malfunctioning), 

such as outstanding large total duration and/or total power. The selection criteria thresholds are derived 

automatically from the statistics of the training set. Once the training data set is selected a data compression 

technique (basically a change of basis) named Principal Component Analysis (PCA) (Jackson and Mudholkar, 

1979), (Sotiris and Pecht, 2017) is applied to the features extracted from this set. By applying PCA the 

redundancy (or correlation) among the features describing the observations is minimized, thus information is 

summarized into fewer representative dimensions, the so-called Principal Components (PCs). The higher the 

correlation, the less PCs are required. PCA assumes the dynamics of interest exist along the orthogonal PCs with 

the largest variance. PCA builds a model subspace retaining (in our case chosen) 90% of the PCs variance of the 

training set and a complementary orthogonal residual subspace. PCA transforms features of a current curve into 

the new basis; the projection into the model and residual subspaces results in statistical indexes Hotelling’s 

Parameter (T
2
) and Square Prediction Error (SPE), respectively. That is, T

2
 is derived from the most dominant 

components of the PCA, and SPE from the residual components. The parameters T
2
 and SPE obtained for the 

training set follow a chi-square probability distribution, which allows defining confidence intervals (based on 

probability quantiles) for normal switch behavior. Confidence intervals are used as thresholds as they describe a 

probability that the SPE or T² value is within normal behavior. If the features significantly change but remain in 

line with the prevailing relations among all features under normal behavior, this will be reflected in T
2
. Feature 

changes which are abnormal with respect to the prevailing relations affect the SPE parameter. Finally the SPC 

concepts (Böhm et al., 2016) are applied to the statistical indexes T
2
 and SPE, and remain valid as long as the 

model maintains its structure through time. 
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5 SPC model verification and analysis  

The models (for each direction) based on the training data set are applied to other current curves measured 

between January 1
st
 2013 and June 30

th
 2014, and from July 2

nd
 2015 to December 31

st
 2015. For each current 

curve not belonging to the training data set T
2
 and SPE parameter values are obtained. The T

2
 and SPE 

confidence intervals are used to identify outliers associated to abnormal current curves. The failure, maintenance 

and alarms available information is used to verify the models and shed light on the switch behavior e.g. after a 

major maintenance action. 

Figure 3 Logarithm of parameters (a) T2 and (b) SPE of switch movements in direction 1 
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The parameters T
2
 and SPE for switch movement in direction 1 are shown in Figure 3 (direction 0 presents fewer 

alarms, due to this and space constriction the results are not included). Each dot represents a measured current 

curve. Black points belong to the training set; grey dots are current curves outside the training set, thus denoted 

as “other movements”. Horizontal lines indicate the mean value of the training set (blue), the 68.2% (green), 

95.4% (yellow) and 99.7 % (red) confidence intervals. The data points of the training set mostly lay within the 

99.7% confidence interval. Thin solid vertical lines in light red and yellow indicate maintenance actions with 

expected large and small possible implications, respectively. The red open circles correspond to switch 

movements that raised an alarm in POSS®. All are well beyond the 99.7% confidence interval, except for one in 

Figure 3b. Fifteen dashed vertical lines (two nearly overlap, thus only fourteen can visually be identified) 

indicate reported switch failures (note there is none in the training set), e.g. due to snow on the switch. Most data 

points outside the 99.7% confidence interval are close to several of the failure incidents maintenance actions.  

Figure 4 Logarithm of parameters (a) T2 and (b) SPE in movement direction 0 of movements between mid-October 2013 and mid-April 2014 

 

In order to link the reported failure incidents as well as the maintenance actions with the results of the SPC 

model, a closer look into single incidents is necessary (see Figure 4). The time between a switch malfunction 

being reported and being repaired corresponds to the width of the dashed bars representing reported failures: 

reported on December 26
th

 2013 and repair time of about 19 hours (purple); reported on January 3
rd

 2014 and 

repair time of 2 hours and 10 minutes (red); reported on February 27
th

 2014 and repair time of 2 hours and 15 



Narezo Guzman et al. / TRA2018, Vienna, Austria, April 16-19, 2018 

 

8 

 

minutes (green). Maintenance duration takes at most a few hours and is carried out either the night before the 

reported date or the night after, however this specific information is not available. Therefore the width of the 

shaded areas is set to 24 hours. The failure reported on December 26
th

 2013 (in purple) was due to water leaking 

into the engine-case over a longer time causing degradation and rusting of the gear box. Based on the SPC model 

results, first alerts could have been raised days before the malfunction occurred. That is, in the 0-direction the T
2
 

and SPE values cross and exceed the 99.7% confidence interval for the first time since the previous big-

mechanical maintenance action (on October 10
th

) on December 5
th

. In the 1-direction (not shown here due to the 

lack of space) there are about a dozen T
2
 and SPE outliers, the first one on December 15

th
, found after October 

10
th

 and before the failure, however the trend among those outliers is not as clear. The systematic increase is 

especially evident in the T
2
 evolution in both directions. This trend reflects the steady increasing power 

consumption due to the degrading gear box. The model calculates extremely high T
2
 and SPE values in direction 

1 one hour before the malfunction was reported, which also raised the “time too long” alarm in POSS®. Clearly 

all these indications (outliers, systematic trends followed by extreme outliers as well as alarms) can be exploited 

to implement statistical rules for failure forecast. After the 26
th

 December reported malfunction (purple) and its 

consecutive repair, the switch performed no movements during three consecutive days. During this time the rust 

accumulated and caused the switchgear to jam, which prevented the engine from moving the switch-blades. The 

next movement after the repair (of the purple failure) in both directions raised the “power too high” alarm and is 

detected as extreme outlier in both directions by the SPC model. From the movements that followed and that 

took place before the next reported failure on January 3
rd

 (in red), one is detected as outlier by the model in the 

direction 0 and raised an alarm. This could indicate that the repair actions conducted for the December 26
th
 

malfunction (purple) did not fully solve all the mechanical/signalling problems that initiated in December. On 

January 3
rd

 a malfunction (in red) was reported, indicating the necessity to replace the point-machine. Afterwards 

the switch was not used during four days, until the switch engine was exchanged on January 8
th

. There was 

additional maintenance given on January 18
th

 and 22
nd

. After these maintenance actions, the switch resumed 

normal operation. On February 27
th

 another malfunction (in green) was reported; previous to it no outliers are 

detected in either direction or parameters. Nevertheless in direction 0 the model detects the failure through 

extreme outliers, which are linked to alarms of types “time too long” and “power too high”. This indicates that 

some types of failures, like the one that occurred on February 27
th

 (green) caused by a burned electrical contact 

in the switch control part (not of mechanical nature), might not be able to be forecasted by condition monitoring 

based on current curve measurements; however they are detected right when they occur, as done by POSS®. 

 

Maintenance and repairs can reset the normal behavior of a switch, as exemplified in Figure 5. The April 7
th

 

2013 reported failure (dark blue) was repaired 3 hours and 45 minutes later. The actions performed on the switch 

led to a step change in the SPE parameters in direction 0. This failure was not preceded by outliers in direction 0 

and only by a few T
2
 ones (with no systematic trend) in direction 1. After this failure the switch operated 

normally until the next failure (light blue) on June 23
rd

, which was repaired within 1.5 hours. This failure was 

preceded by a few isolated outliers for both parameters in both directions 0. Nevertheless the SPC model in 

direction 0 detected several outliers as the failure occurred, which were missed by POSS®, i.e. no alarm was 

raised. In direction 1 several extreme outliers detected by the SPC model during the failure raised the “time too 

long” alarm. It is expected that certain maintenance/repair actions trigger changes in the normal functioning 

behavior of the switch, and that this can be reflected in both parameters. 

6 Forecasting strategies 

The forecasting approach presented here consists of applying SPC concepts to both output parameters and 

confidence intervals derived from the training set to detect switch failure through outlier identification and, 

whenever possible (e. g. through systematic trends) to create a short- to mid-term (several days to a few weeks) 

forecast of emerging switch failures together with automatic alerts (Atienza et al., 1997). In this approach no 

historic failure data set, as well as no a-priori knowledge of switch failures together with their typical 

degradation behaviour (in the form of a labelled training set) are necessary since failures are detected through 

SPC outliers. Furthermore given that the SPC model is built by utilizing data of normal operation (with failures 

explicitly excluded from the training set before modelling), it can be trained within a short time after installation 

or maintenance, which, as shown, can have an effect on the normal switch operation.  
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7 Conclusions and outlook 

The approach presented in this paper consists of training the SPC model with features of condition monitoring 

data. The model can robustly detect failures and be used to automatically raise alarms, eliminating frequent 

manually selected thresholds necessary in POSS®. Based on a study case the forecasting capabilities of the 

model are discussed in terms of failures that present systematic trends in time. Not all failures can be foreseen, 

this depends on the nature of the failure and (not monitored) environmental conditions. Nevertheless most 

reported failures and virtually all POSS® alarms are detected by the model. The performance of the SPC model 

heavily relies on the quality and completeness of the used feature set. At this stage more research is necessary in 

order to optimize the feature set; for this purpose the FM will be exploited. The quality of the features used in the 

case study was shown to be good enough to capture failures and alarms, however a higher sampling frequency of 

the engine current would increase feature precision, for example through a better resolved maximum current 

curve value. Relevant influences such as weather conditions (including rain, solar radiation, etc.), maintenance 

(scheduled and reactive) and train operations need to be included into the automated data analysis to further 

improve now- and forecasting for switches. The detection approach can be taken one step further by developing 

models trained on specific (sub) feature sets to generate specialized detection and diagnostic information of a 

specific failure type. To validate the model, larger data sets from more switches need to be included. 

Figure 5 Logarithm of parameters (a) T2 and (b) SPE of switch movements in direction 0 between mid-March and mid-July 2013 
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In Figure 6 a flow diagram shows the interaction, yet to be implemented, between the different models presented 

in this paper. Together they provide switch failure information to generate a maintenance plan that shall be 

optimized based on FMECA analysis. The SPC model transfers information about nowcasted and forecasted 

failures into the functional model. The functional model links this input to the functions and maintainable units 

of the switch possibly affected by the detected (emerging) failure. The FMECA analysis considers the different 

failure modes and necessary interventions and determines which maintenance actions are required in the longer 

term. The costs implicated can be asses based on risk analysis. Feedback concerning the effects that failures and 

repairs had on the switch is provided for continuous improvement of the whole process. 

 
Figure 6 Interaction between parts of the switch detection and forecasting model yet to be implemented that shall enable early failure 
detection and an optimized maintenance plan 
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