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ABSTRACT

Mutual Information is the metric that is used to perform link
adaptation, which allows to achieve rates near capacity. The
computation of adaptive transmission modes is achieved by
employing the mapping between the Signal to Noise Ratio
and the Mutual Information. Due to the high complexity of
the computation of the Mutual Information, this process is
performed off-line via Monte Carlo simulations, whose re-
sults are stored in look-up tables. However, in Index Modu-
lations, such as Spatial Modulation or Polarized Modulation,
this is not feasible since the constellation and the Mutual In-
formation are channel dependent and it would require to com-
pute this metric at each time instant if the channel is time va-
rying. In this paper, we propose different approximations in
order to obtain a simple closed-form expression that allows
to compute the Mutual Information at each time instant and
thus, making feasible the link adaptation.

Index Terms— Mutual Information, Spatial Modulation,
Polarized Modulation, Index Modulations, Link Adaptation

1. INTRODUCTION

Link Adaptation in modern communications is performed
by computing the Effective Signal to Noise (SNR) Mapping
(ESM) based on Mutual Information (MI-ESM) [1]–[3]. For
instance, the work described in [4] describes the procedureof
computing MI-ESM in Single-Input Single-Output systems
for IEEE 802.16e standard. Analogously, authors of [5] des-
cribe the MI-ESM algorithm for Long Term Evolution (LTE)
networks. All of these works have in common the compu-
tation of the Mutual Information (MI), which involves an
expectation of a function of a Random Variable (RV) without
closed-form solution.

In the literature, the computation of the expectation of MI
is performed off-line via Monte Carlo simulations and the re-
sults are stored into a look-up table (LUT). After this step,the
received SNR of each symbol within a codeblock or frame is
mapped to the LUT to obtain the MI corresponding to the
SNR.

This work is funded by projects MYRADA (TEC2016-75103-C2-2-R),
ELISA (TEC2014-59255-C3-1-R) and TERESA (TEC2017-90093-C3-1-R).

In Index Modulations (IM), such as Spatial Modulation
[6] or Polarized Modulation [7], the information is transmit-
ted not only with a fixed constellation, such as Quadrature
Amplitude Modulation (QAM), but also with the channel
hops. Due to the dependence on the channel, the MI com-
putation cannot be performed off-line since the expressions
contain the channel realization [8]. The solution is to compute
the MI curve in each time instant, depending on the channel
realization. Due to the high computational complexity of MI
computation, this approach is not feasible.

This paper presents closed-form expressions based on dif-
ferent order approximations of the MI of IM. Based on the
works [9]–[11], which compute the capacity of IM, we aim at
solving the difficulty of finding a closed-form expression of
MI. Thanks to this expression, we are able to compute the MI
at each time instant with much less computational complexity
and making the problem of adaptive IM affordable. Hence,
the MI estimated is used to select the Modulation and Coding
Scheme in the link adaptation algorithm process.

2. SYSTEM MODEL AND MUTUAL INFORMATION

Given a discrete time instant, the IM over an arbitrary
Multiple-Input Multiple-Output (MIMO) channel realization,
with t inputs andr outputs, is defined as

y =
√
γHx+w, (1)

wherey ∈ C
r is the received vector,γ is the average SNR,

x = ls, l is the all-zero vector except at positionl that is 1,
H = [h1 . . . ht] ∈ Cr×t is the channel matrix,l ∈ [1, t] is
the hopping index,s ∈ C is the complex symbol from the
constellationS. The AWGN noise is modeled as vectorw ∈
Cr ∼ CN (0, Ir). In other words,x has only one component
different from zero (lth component) and its value iss; that is,
the transmitted symbol hops among the different channels.

Differently from previous works, in this paper we do not
analyze the statistics ofH, as we are only interested in the MI
given a channel realization.H models the effects and specific
impairments of the employed domain (spatial, polarization,
frequency, etc.).
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Since the transmitted vector is determined by(s, l), it is
possible to rewrite (1) as

y =
√
γhls+w. (2)

Thus, the MI between the received signal and(s, l) is expres-
sed as

I(y; s, l) = I(y; s|l) + I(y; l)

= H(s|l)− h(s|l,y) +H(l)− h(l|y)
= H(s) +H(l)− h(s, l|y)

(4)

where the third equality assumes thats andl are independent
RV,H(X) = −∑x∈X pX (x) log2 (pX (x)) is the entropy ofX
andh(X) = −

∫∞
−∞ fX (x) log2 (fX (x)) dx is the differential

entropy ofX . Note that, in contrast to [11], where the capacity
is obtained, in our case the symbols is not maximized and
belongs to a particular constellation.

The entropy ofs and l is expressed asH(s) = log2 S
andH(l) = log2 t, whereS is the number of symbols defined
in the constellation. The expression of the differential entropy
h(s, l|y) is denoted in (3), whereY is the domain ofy, IEX {·}
is the expectation ofX , fS,L,Y (s, l,y) is the joint probability
density function (pdf) ofs, l andy, fY |S,L(y, s, l) is the con-
ditional pdf ofy conditioned tos andl, fY (y) is the pdf ofy,
pS(s) = 1/S andpL(l) = 1/t are the probabilities of symbol
s and indexl, respectively,
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.
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· · ·
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andYi is the domain of theith component ofy.

The pdf ofy conditioned tos and l is obtained by as-
sumings and l to be deterministic in (2). In this case, it is
clear thaty is a multivariate complex Gaussian RV, with mean
equal to

√
γhls and identity covariance. Thus, the conditio-

ned pdf is expressed as
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. (5)

Note that we assume thats andl are equiprobable. By substi-

tuting (5) in (3), the expectation can be described as
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where W ′ ∼ CN
(

0, 1
γ I
)

and, thus, the conditioned RV

Y |S, L ≡ W ′.
Computing (6) is achieved numerically by generating a

very large number of realizations ofW ′ and averaging the re-
sults via Monte Carlo simulations. However, this can only be
feasible in scenarios where fixed constellations are employed.
In the case of IM, the constellation depends on the channel
realization. Hence, the expectation has to be calculated at
each time instant, requiring high computational complexity
and making the problem of link adaptation unaffordable. Our
approach overcomes this problem, since it does not require
off-line computations and presents closed-form expressions.

OncefW ′ is defined, we apply the same procedure as des-
cribed in [11], which uses the Taylor Series Expansion (TSE)
to approximate the expectation of a function by its moments.
The central moments ofW ′ are defined by
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i,ℑ are the real and imaginary parts of the
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we define the TSE of functiongsl(w′) in the vicinity of
µW ′ asgsl(w′) = T (gsl,w

′,µW ′) = PN (gsl,w
′,µW ′) +
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′, ξ), wherePN is the Taylor polynomial of degree

N andRN is the remainder term of degreeN . Thus, the
expectation of (6) is equal to

IEW ′ {T (gsl,w′,µW ′)} = gsl (µW ′)

+

∞
∑

n=1

1

(2γ)n(2n)! !

r
∑

m=1

(

∂2ngsl
∂w

′2n
m,ℜ

(µW ′) +
∂2ngsl
∂w

′2n
m,ℑ

(µW ′)

)

.
= PN (gsl,w

′,µW ′) +RN (gsl,w
′, ξ) ,

(9)

whereξ ∈ [µW ′ ,w′] and

PN (gsl,w
′,µW ′) = IEW ′ {PN (gsl,w

′,µW ′)} = gsl (µW ′)

+

⌊N/2⌋
∑

n=1

1

(2γ)n(2n)! !

r
∑

m=1

(

∂2ngsl
∂w

′2n
m,ℜ

(µW ′) +
∂2ngsl
∂w

′2n
m,ℑ

(µW ′)

)

RN (gsl,w
′, ξ) = IEW ′ {RN (gsl,w

′, ξ)} .
(13)

Hereinafter, for the sake of clarity, we introduce the following
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The first term of (9) is described as
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Thus, by using (9), (15) and substituting them into (4),
then the MI can be expressed in a closed-form as in (10) and
it can be approximated by considering additional terms. The
simplest expression is the first order approximation, whichis
obtained by omitting the third term in (10). Consequently, the
first order approximation is denoted by
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are the arithmetic and geometric means overs′ and l′ by
keepings and l fixed. Hence, by plugging (11) in (10), the
second order approximation of MI is described by (12).

2.1. Bounds of approximated Mutual Information

TSE applied to the expectation of a function of a RV allows to
express it as a function of its moments instead of the RV; thus,
making more efficient the computation by successive approx-
imations. An important remark is that the expectation of TSE
is lower or upper bounded by the first order approximation,
depending on its convexity or concavity, respectively.

In our case, this can be proven by examining the convexity
of (8) and applying the Jensen’s inequality, which results that
the expectation of TSE is lower bounded by (15).

This can be proven by using the Jensen’s inequality as
follows

P1 (f,x,µX ) = f (µX ) = f (IEX {x}) ≤ IEX {f(x)} . (19)

Note that, due to the minus sign in (4), the lower bound of
Jensen’s inequality becomes an upper bound, which is incre-
ased by the factorlog2(tS) and averaged byt andS.

3. RESULTS

In this section, we illustrate the results derived from the previ-
ous sections. We compare the performance of first and second
order approximations, i.e., (16) and (12), respectively, by si-
mulating the curves of MI with the integral-based expression
(3), (4).

In this simulation, we generate103 independent channel
realizations following a Rayleigh distribution and average the
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Fig. 1. Comparison of the MI for different order approximati-
ons and the integral-based expression, i.e., (16), (12) and(4),
respectively.

results to obtain a single smooth curve. Note that we do not
average over noise realizations since we obtained mathema-
tical expressions that are not functions of a noise RV. We
also depict different input/outputs configurations and diffe-
rent constellations. Particularly, we consider QPSK and 16-
QAM constellations.

Fig. 1 illustrates the MI of first and second order ap-
proximations, (16) and (12), respectively, compared with the
integral-based expression, (3), (4). First, as we denoted in
Section 2.1, the first order approximation is, at the same time,
the upper bound of the integral-based expression. Additio-
nally, we can observe that, as expected, the second order ap-
proximation produces tighter curve compared with the first
order approximation.

4. CONCLUSIONS

In this paper we introduce the problem of implementing link
adaptation in Index Modulations, such as Spatial Modulation
or Polarized Modulation, where the information is modula-
ted with fixed constellations and dynamic channel hops. If
the channel is time varying, it is unaffordable to compute the
Mutual Information at each time instant. With our appro-
ach it is possible to obtain a smooth curve by using closed-
form expressions, decreasing the computational complexity
and allowing to perform the link adaptation. Finally, we de-
pict the first and second order approximations compared with
integral-based expression for several configurations and con-
stellation size.
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