Beryllium Abundances in Li-Rich Red Giants Joleen K. Carlberg¹, Katia Cunha^{2,3}, Verne V. Smith⁴, José D. do Nascimento Jr.^{5,6}

¹Space Telescope Science Institute, ²Observatório Nacional, ³Steward Observatory, ⁴NOAO, ⁵Harvard-Smithsonian CfA, ⁶UFRN

Figure 1: Best fit *A*(Be) for 4 AMOEBA fitter runs, varying the number of free parameters.

Companion Engulfment? ★ Hot/warm Jupiter engulfment can add planetary Li to stellar atmosphere.

\star Maximum replenishment: $A(Li) \sim 2 dex$ under simple assumptions of stellar and companion compositions and sizes.

Fe/H]	ξ	$v\sin i$	$A({ m Li})_{ m NLTE}$	$^{12}\mathrm{C}/^{13}\mathrm{C}$	Source	Notes ^b
(dex)	$(\mathrm{km}\ \mathrm{s}^{-1})$	$(\mathrm{km} \mathrm{s}^{-1})$	(dex)			
-0.08	1.50^{a}	5.0	2.07	16	K11	PPE
-0.01	1.57^{a}	4.1	2.10	25	K11	PPE
+0.02	1.51^{a}		2.14	7	K11	ILS
-0.25	1.54	2.5	1.99		A14,Z12	CPH
-0.17	1.63	6.0	1.44		A14,Z12	PPE
+0.09	1.65^{a}	•••	2.65	5	K11	ILS
+0.08	1.67^{a}	1.2	2.16	16	K11	PPE
+0.09	1.80^{a}	1.6	2.95	19	K11	PPE
+0.01	1.72	2.7		34	C12	

 b PPE – possible planet engulfment, ILS – internal lithium synthesis, CPH – candidate planet host Table from Carlberg+ 2018, in prep.

Synthetic spectra created with:

★ MARCS spherical models (Gustaffson+ 2008) ★ MOOG 2014 (Sneden 1974) ★ a NEW line list (Carlberg+ 2018) ★ updated continuous opacities (Carlberg+ 2018)

Why use an automated fitter?

Molecular equilibrium chemistry makes it difficult to intuit how a change in the input abundances affects the output spectrum.

Multiple AMOEBA fits are run

1. adopting scaled solar abundances only,

- 2. allowing C and O to vary,
- 3. allowing Ti to vary,
- 4. allowing C, O, and Ti to vary.

1.5 1.0 ⊢ 0.5 0.0 A(Be -0.5-1.0 -1.5

> **Figure 2:** Observed A(Be) and A(Li) for the sample of Li-rich red giants studied here (circles) and from a large sample of red giants in the literature (small triangles, x's and squares). The curved lines show families of models predicting how stellar Li and Be change from their initial values (blue stars) when engulfing bodies with solar (dashed gray) and 2x solar (solid gold) ratios of Li to Be.

* "Engulfment candidates" and "Li synthesis candidates" generally fall on different regions of the A(Be) vs. A(Li) plot. \rightarrow Most of the Li-rich red giants from T17 are expected to have low ¹²C/¹³C, given their location in Fig. 2.

* Abundances of the engulfment candidates are best reproduced by engulfing companions that have Li/Be ~ 2x solar.

relationship.

References:

- Carlberg et al., 2012 (C12)

Beryllium Results

Conclusions

 \star Larger samples of Li-rich giants with both Be and $^{12}C/^{13}C$ are needed confirm this apparent

Adamów et al., 2014, A&A, 569, 55 (A14) Carlberg et al., 2018, ApJ, 865, 8 Gustaffson et al., 2008, A&A, 486, 951

- Holtzman, et al., AJ, 150, 148
- Kumar et al, 2011, ApJL, 730, 12 (K11)
- Lodders, 2003, ApJ, 591, 1220
- Sneden, 1974, ApJ, 189, 493

- Takeda & Tajitsu, 2014, PASJ, 66, 91 (T14)
- Takeda & Tajitsu, 2017, PASJ, 69, 74 (T17)
- Zieliński et al., 2012, A&A, 547, 91 (Z12)